首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We have investigated whether VEGF (vascular endothelial growth factor) regulates the proliferative capacity and eNOS (endothelial nitric oxide synthase)/NO (nitric oxide) pathway of EPCs (endothelial progenitor cells) by activating CaN (calcineurin)/NFAT (nuclear factor of activated T-cells) signalling. EPCs were obtained from cultured mononuclear cells isolated from the peripheral blood of healthy adults. Treatment with VEGF (50 ng/ml) potently promoted CaN enzymatic activity, activation of NFAT2, cell proliferation, eNOS protein expression and NO production. Pretreatment with cyclosporin A (10 μg/ml), a pharmacological inhibitor of CaN or 11R-VIVIT, a special inhibitor of NFAT, completely abrogated the aforementioned effects of VEGF treatment and increased apoptosis. The results indicate that VEGF treatment promotes the proliferative capacity of human EPCs by activating CaN/NFAT signalling leading to increased eNOS protein expression and NO production.  相似文献   

2.
血管内皮生长因子受体信号转导通路与肿瘤血管生成   总被引:2,自引:0,他引:2  
血管内皮生长因子是促进血管生成的重要调节因子.它能促进内皮细胞增殖、迁移,阻止内皮细胞凋亡、管腔网状结构退化,增加血管渗透性.所有这些作用都是通过血管内皮生长因子受体信号转导通路实现的.它们在肿瘤血管生成、肿瘤生长中起着重要的作用.以血管内皮生长因子受体信号转导通路为靶点是开发肿瘤血管生成抑制剂的理想策略.  相似文献   

3.
肝细胞生长因子(hepatocyte growth factor, HGF)是一种多功能的细胞因子,其生物学活性由c-Met蛋白所介导.HGF/c-Met信号通路在肿瘤生成、侵袭、转移以及肿瘤新生血管生成方面起重要促进作用. 因此, HGF/c-Met信号转导通路可以作为抗肿瘤药物设计的靶点.其中,HGF-α链N端447个氨基酸组成的NK4蛋白是HGF的特异性拮抗剂,它不仅通过抑制HGF/c-Met系统的信号转导发挥抗肿瘤效应;而且可以通过拮抗HGF和其它血管生成因子如成纤维细胞生长因子(fibroblast growth factors, FGF)、血管内皮生长因子(vascular endothelial growth factor, VEGF)的活性,进而抑制肿瘤新生血管生成,最终导致肿瘤细胞的凋亡.NK4的这种双重抗肿瘤功能使其成为一类很有前景的新型抗肿瘤药物.本文就NK4对肿瘤的抑制作用及其机制的研究进展进行综述.  相似文献   

4.
The aim of this study was to observe the effects of rapamycin on proliferation, apoptosis and invasion of SW579 in vitro. The proliferation and apoptosis of SW579 cells were detected by methyl thiazolyl tetrazolium and flow cytometry. Transwell assay was used to observe the changes of invasive ability of SW579 cells after being treated with rapamycin. The effects of rapamycin on the expression of mammalian target of rapamycin (mTOR) signalling and vascular endothelial growth factor C (VEGF‐C) were observed by Western blot. The inhibition and apoptosis rates increased obviously when the concentration of rapamycin was 20 nm. When the rapamycin concentration was 10 nm, the invasive ability of SW579 cells changed significantly than when it was 5 nm. Our data showed that when the concentrations of rapamycin were over 20 nm, the expression of mTOR and p70S6K decreased significantly, and the expression of PTEN increased notably. There were no remarkable variations observed when we detected the expression of Akt. We found the expression of VEGF‐C was high in SW579 cells and decreased slightly when the cells were treated with 5 nm rapamycin. When the concentration of rapamycin was over 5 nm, significant changes were observed. Rapamycin could inhibit the proliferation and induce the apoptosis of human thyroid cancer cells in vitro by mTOR inhibition. No obvious changes observed in the expression of AKT indicated that there might be a feedback loop effect by the mTOR inhibition induced by rapamycin. Rapamycin could inhibit the invasive ability of SW579 cells by down‐regulating the expression of VEGF‐C. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
6.
Growth factor-induced signaling by receptor tyrosine kinases (RTKs) plays a central role in embryonic development and in pathogenesis and, hence, is tightly controlled by several regulatory proteins. Recently, Sprouty, an inhibitor of Drosophila development-associated RTK signaling, has been discovered. Subsequently, four mammalian Sprouty homologues (Spry-1-4) have been identified. Here, we report the functional characterization of two of them, Spry-1 and -2, in endothelial cells. Overexpressed Spry-1 and -2 inhibit fibroblast growth factor- and vascular endothelial growth factor-induced proliferation and differentiation by repressing pathways leading to p42/44 mitogen-activating protein (MAP) kinase activation. In contrast, although epidermal growth factor-induced proliferation of endothelial cells was also inhibited by Spry-1 and -2, activation of p42/44 MAP kinase was not affected. Biochemical and immunofluorescence analysis of endogenous and overexpressed Spry-1 and -2 reveal that both Spry-1 and -2 are anchored to membranes by palmitoylation and associate with caveolin-1 in perinuclear and vesicular structures. They are phosphorylated on serine residues and, upon growth factor stimulation, a subset is recruited to the leading edge of the plasma membrane. The data indicate that mammalian Spry-1 and -2 are membrane-anchored proteins that negatively regulate angiogenesis-associated RTK signaling, possibly in a RTK-specific fashion.  相似文献   

7.
Angiogenesis is indispensable to guide a regeneration of good periodontal tissue in the wound healing after periodontal surgery. Hepatocyte growth factor is well known for a strong angiogenic factor and it may play important roles in the periodontal tissue during periodontal wound healing. In exploring the promotion of angiogenesis in the periodontal ligament, proliferative and tubulogenic responses of endothelial cells to hepatocyte growth factor and to soluble factors secreted by fibroblasts were investigated. Pavement-shaped cells isolated from a human periodontal ligament were identified as the endothelial cell by their granular immunoreactivity for factor VIII. The proliferation of the endothelial cells was accelerated by the addition of hepatocyte growth factor or fibroblast-conditioned medium, and far more by adding both than either. The endothelial cells seeded on the agar containing both hepatocyte growth factor and fibroblast products formed a dense network in a shorter time than on the agar containing either. The endothelial cells in the dense network took a tube-like structure with lumen and were covered with laminin. These results suggest that hepatocyte growth factor administered into the regenerating periodontal tissue may promote, synergistically with local factors produced by the activated fibroblast, the proliferation and tubulogenesis of the remaining endothelial cells.  相似文献   

8.
The sites of targeted therapy are limited and need to be expanded. The FGF‐FGFR signalling plays pivotal roles in the oncogenic process, and FGF/FGFR inhibitors are a promising method to treat FGFR‐altered tumours. The VEGF‐VEGFR signalling is the most crucial pathway to induce angiogenesis, and inhibiting this cascade has already got success in treating tumours. While both their efficacy and antitumour spectrum are limited, combining FGF/FGFR inhibitors with VEGF/VEGFR inhibitors are an excellent way to optimize the curative effect and expand the antitumour range because their combination can target both tumour cells and the tumour microenvironment. In addition, biomarkers need to be developed to predict the efficacy, and combination with immune checkpoint inhibitors is a promising direction in the future. The article will discuss the FGF‐FGFR signalling pathway, the VEGF‐VEGFR signalling pathway, the rationale of combining these two signalling pathways and recent small‐molecule FGFR/VEGFR inhibitors based on clinical trials.  相似文献   

9.
How mechanical factors affect angiogenesis and how they and chemical angiogenic factors work in concert remain not yet well‐understood. This study investigated the interactive effects of cyclic uniaxial stretch and two potent proangiogenic molecules [basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF)] on angiogenesis using a stretchable three‐dimensional (3‐D) cell culture model. Endothelial cells seeded atop a 3‐D collagen gel underwent sprouting angiogenesis while being subjected to either 10 or 20% cyclic uniaxial stretch at a frequency of either 1/12 or 1 Hz, in conjunction with an elevated concentration of bFGF or VEGF. Without the presence of additional growth factors, 10 and 20% stretch at 1 Hz induced angiogenesis and the perpendicular alignment of new sprouts, and both inductive effects were abolished by cytochalasin D (an actin polymerization inhibitor). While “10% stretch at 1 Hz,” “20% stretch at 1 Hz,” bFGF, and VEGF were strong angiogenesis stimulants individually, only the combination of “20% stretch at 1 Hz” and bFGF had an additive effect on inducing new sprouts. Interestingly, the combination of “20% stretch at a lower frequency (1/12 Hz)” and bFGF decreased sprouting angiogenesis, even though the level of perpendicular alignment of new sprouts was the same for both stretch frequencies. Taken together, these results demonstrate that both stretch frequency and magnitude, along with interactions with various growth factors, are essential in mediating formation of endothelial sprouts and vascular patterning. Furthermore, work in this area is warranted to elucidate synergistic or competitive signaling mechanisms. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:879–888, 2014  相似文献   

10.
The system of hepatocyte growth factor (HGF) and its receptor c‐Met plays a critical role in tumor invasive growth and metastasis. The mortality rate of colorectal cancer (CRC), one of the most commonly diagnosed malignancies, is increased by it gradual development into metastasis, most frequently in the liver. Overexpression of c‐Met, the protein tyrosine kinase receptor for the HCF/scatter factor, has been implicated in the progression and metastasis of human colorectal carcinoma. In this study, we aimed to investigate the role of c‐Met in CRC liver metastasis and illustrate the clinical impact of regulating HGF/c‐Met signaling in patients with CRC liver metastasis. We found that (I) higher levels of c‐Met expression (mRNA and Protein) in CRC liver metastasis than primary CRC by assessing the patient tissue samples; (II) a positive correlation of c‐Met expression with tumor stages of CRC liver metastasis, as well as c‐Met expression in CRC, live metastasis concurred with regional lymph node metastasis; (III) the clinical impact of downregulation of HGF/c‐Met signaling on the reduction of proliferation and invasion in CRC liver metastasis. Therefore, we demonstrate that the regulation of HGF/c‐Met pathways may be a promising strategy in the treatment of patients with CRC liver metastasis.  相似文献   

11.
Hepatocyte growth factor (HGF) plays a crucial role in the recovery of injured liver. Liver functions are mostly impaired in patients with liver diseases including cirrhosis. However, a significant amount of inactive HGF precursor (proHGF) is reported in the plasma of these patients. proHGF is proteolytically converted to an active form (mature HGF) by HGF-activator. Thus conversion of proHGF into mature HGF presumably contributes to the recovery of liver functions. In this study, rats with a partial hepatectomy were used, as proHGF is accumulated in the remnant liver. Recombinant human HGF-activator was administered via the portal vein to investigate the effect on molecular forms of HGF and its biological signaling. rhHGF-activator promptly converted proHGF into mature HGF, reaching maximal levels at 5-10 min after the injection, while the decreased proHGF was quickly recovered to the initial levels in the liver. The HGF receptor/c-Met was found to be autophosphorylated in the liver treated with rhHGF-activator. Further, the proliferating cell nuclear antigen labeling index and the liver regeneration rate were significantly higher in rhHGF-activator group than in control animals. These results indicate that exogenously administered HGF-activator produces a biologically active HGF from its precursor form and increases the potential for liver regeneration in vivo.  相似文献   

12.
血管内皮生长因子受体-2所介导信号通路的研究进展   总被引:2,自引:0,他引:2  
血管新生是许多生理和病理进程发生的重要机理.在生物体内,血管新生需经过多步精细调控历程,现有研究表明,血管内皮生长因子(VEGF)及其受体蛋白酪氨酸激酶,尤其是血管内皮生长因子受体-2(VEGFR-2)所介导的信号级联通路是其中关键性的调节途径.VEGF/VEGFR-2所介导的信号级联通路可以调控血管内皮细胞的增殖、迁移、存活和通透性的改变,促进血管的新生.VEGF与VEGFR-2的胞外区特异性结合后,引起受体的二聚化和自身的交互磷酸化,使胞内特定的酪氨酸残基磷酸化.下游信号蛋白可以通过其Src同源结构域-2(SH2)与VEGFR-2结合,随后激活下游的效应蛋白,调控内皮细胞的生物学活性.此外,VEGF/VEGFR-2信号通路还可以下调树突细胞(DC)的活性.对VEGF/VEGFR-2信号通路作用的深入了解,将有助于新药的研发.  相似文献   

13.
目的:探讨匹伐他汀对Klotho基因敲除杂合子小鼠血管新生的促进作用及其作用机制。方法:建立Klotho基因敲除杂合子小鼠(hetero kl+/-)和同窝出生野生型小鼠(wild kl+/+)下肢缺血模型并分为4组:①hetero正常组;②hetero匹伐他汀组;③wild正常组;④wild匹伐他汀组。使用激光多普勒血流测定仪测定klotho(kl+/-,kl+/+)小鼠投药前、下肢缺血手术后双下肢血流。免疫荧光组化SP法计数Klotho(kl+/-,kl+/+)小鼠缺血肢毛细血管数。免疫酶组化直接法计数Klotho(kl+/-,kl+/+)小鼠缺血肢磷酸化Akt阳性细胞数。蛋白印迹杂交方法检测Klotho(kl+/-)小鼠缺血肢VEGF蛋白表达。结果:匹伐他汀使Klotho(kl+/-,kl+/+)小鼠术后缺血肢血流恢复明显,缺血肢与非缺血肢血流面积比明显增加;匹伐他汀使Klotho(kl+/-、kl+/+)小鼠缺血肢毛细血管密度增加、p-Akt阳性细胞数明显增加;匹伐他汀使Klotho(kl+/-)缺血肢VEGF蛋白表达增强。结论:匹伐他汀有促进Klotho基因敲除杂合子小鼠血管新生的作用。其作用机制可能是通过VEGF—p—Akt—NO径路实现的。  相似文献   

14.
目的 :观察肝细胞生长因子 (HGF)和血管内皮细胞生长因子 (VEGF)对体外培养牛冠状动脉内皮细胞(BCAEC)增殖、迁移的影响。方法 :分离和培养BCAEC ,设对照组、VEGF组、HGF组。采用四甲基偶氮唑蓝法(MTT)观察细胞增殖 ;倒置显微镜观察培养的血管内皮细胞的迁移。结果 :对照组、VEGF组、HGF组的OD值分别为 0 .2 2± 0 .0 1、0 .40± 0 .1 4、0 .44± 0 .1 5 ;VEGF组、HGF组BCAEC的增殖率分别为 81 .8%± 1 6 .9%、1 0 0 %±2 1 .1 % ;对照组BCAEC迁移不明显 ,而VEGF组和HGF组BCAEC迁移明显。结论 :VEGF、HGF能促进BCAEC增殖、迁移 ,HGF作用强度不亚于VEGF。  相似文献   

15.
16.
Fan B  Wang YX  Yao T  Zhu YC 《生理学报》2005,57(1):13-20
血管内皮细胞中血管内皮生长因子(vascular endothelial growthfactor,VEGF)的合成增加在促进血管新生的过程中起着非常重要的作用.然而低氧诱导VEGF分泌的细胞内信号转导机制还不是很清楚.人脐静脉内皮细胞系(ECV304)在低氧或常氧的状态下培养12~24 h后分别用实时定量PCR和Western blot的方法来检测VEGF mRNA的表达及ERK1/2和p38激酶的磷酸化水平.分泌到培养液中的VEGF蛋白用酶联免疫吸附(ELISA)的方法来检测.业已报道,ERK的抑制剂PD98059能够抑制低氧诱导的VEGF基因的表达,根据这个报道,我们发现在低氧情况下,ECV304细胞的ERK1/2磷酸化水平增高以及VEGF的合成增加等这些变化也能被PD98059所抑制.本次实验的新发现是p38激酶的激活在低氧诱导VEGF合成增加中的作用.p38激酶的抑制剂SB202190能抑制低氧诱导的VEGF合成增加.这些数据首次直接证实了p38激酶在低氧诱导人内皮细胞分泌VEGF增加过程中的作用.  相似文献   

17.
血管内皮细胞生长因子研究进展   总被引:5,自引:0,他引:5  
从不同侧面阐述了血管内皮细胞生长因子(VEGF)在新生血管形成中的作用.VEGF诱导新生血管形成,具有血管渗透性,是新生血管形成的主要调控者之一.VEGF mRNA不同剪接,形成5种VEGF变异体(isoform)即VEGF121-206.VEGF诱导新生血管的调控过程、拮抗VEGF成为大家竞相研究的领域.  相似文献   

18.
观察NK4通过拮抗肝细胞生长因子(HGF)诱导不同肿瘤细胞凋亡,研究其生物学作用及分子机制.以足叶乙甙(VP-16)诱导凋亡,分别或经HGF蛋白、NK4蛋白处理5种肿瘤细胞(B细胞淋巴瘤细胞系Raji、人急性粒细胞白血病细胞系HL-60、宫颈癌细胞系HeLa、前列腺癌细胞系PC-3、非小细胞肺癌细胞系A549),采用流式细胞术(FCM)、吖啶橙 (AO) 染色法、苏木素 伊红(HE)染色法定量观察5种肿瘤细胞的凋亡情况,并进行相关分析. FCM发现,经VP-16处理5种肿瘤细胞凋亡率均显著高于对照组(P<0.001),而HGF+VP-16组凋亡率明显下降(P<0.01),HGF+NK4+VP-16组细胞凋亡率均明显高于HGF+VP-16组(P<0.05). AO染色和HE染色结果也证实,5种肿瘤细胞经VP-16处理后凋亡率均显著增高 (P<0.001,P<0.001),而HGF+VP-16组细胞凋亡率均明显低于VP-16组(P<0.001,P<0.01), HGF+NK4+VP-16组细胞凋亡率均明显高于HGF+VP-16组(P<0.001,P<0.05).此外,发现NK4+VP-16组、HGF+ NK4+VP-16组、VP-16组等3组间凋亡率无统计学差异(P>0.05). 以上结果提示,HGF蛋白可抵抗凋亡诱导剂VP-16的作用, 明显降低细胞凋亡;NK4通过竞争性抑制HGF从而促进肿瘤细胞的凋亡,具有潜在的肿瘤治疗价值.  相似文献   

19.
Notch and bone morphogenetic protein signaling pathways are important for cellular differentiation, and both have been implicated in vascular development. In many cases the two pathways act similarly, but antagonistic effects have also been reported. The underlying mechanisms and whether this is caused by an interplay between Notch and BMP signaling is unknown. Here we report that expression of the Notch target gene, Herp2, is synergistically induced upon activation of Notch and BMP receptor signaling pathways in endothelial cells. The synergy is mediated via RBP-Jkappa/CBF-1 and GC-rich palindromic sites in the Herp2 promoter, as well as via interactions between the Notch intracellular domain and Smad that are stabilized by p/CAF. Activated Notch and its downstream effector Herp2 were found to inhibit endothelial cell (EC) migration. In contrast, BMP via upregulation of Id1 expression has been reported to promote EC migration. Interestingly, Herp2 was found to antagonize BMP receptor/Id1-induced migration by inhibiting Id1 expression. Our results support the notion that Herp2 functions as a critical switch downstream of Notch and BMP receptor signaling pathways in ECs.  相似文献   

20.
肝细胞再生因子(hepatocyte growth factor, HGF)对多种细胞都具有促进增殖及运动、抗凋亡的作用,对组织器官的发育形成也起到重要作用.在肝脏、肾脏、肺、心脏等器官受损之后的修复过程中,有积极的促进再生的作用.本研究采用了心虚血再灌流大鼠模型,发现心肌细胞受损伤后 6 h 血清中HGF水平显著增高.在比较了肾脏、肺、肝脏、脾脏等组织提取液中HGF的含量之后,发现心虚血再灌流手术后,肾脏、肺、肝脏中HGF的含量变化不明显,而脾脏的提取液中HGF的含量增加显著.对脾脏组织的连续切片进行HGF与血管内皮细胞的特异性标志物von Willanbrand Factor (vWF)免疫组织化学染色研究,发现手术后脾脏中产生HGF的细胞主要为血管内皮细胞.此项研究首次阐明组织器官受损后,远端组织器官的血管内皮细胞能够增加HGF的合成和分泌,增加的HGF通过体液循环到达受损组织器官,促进其修复再生.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号