首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Major royal jelly protein-1 (MRJP1) is the most abundant glycoprotein of royal jelly (RJ) and is considered a potential component of functional foods. In this study, we used silkworm transgenic technology to obtain five transgenic silkworm lineages expressing the exogenous recombinant Chinese honeybee, Apis cerana cerana, protein-1 (rAccMRJP1) under the control of a fibroin light chain (Fib-L) promoter in the posterior silk glands. The protein was successfully secreted into cocoons; specifically, the highest rAccMRJP1 protein content was 0.78% of the dried cocoons. Our results confirmed that the protein band of the exogenous rAccMRJP1 protein expressed in the transgenic silkworm lineages was a glycosylated protein. Therefore, this rAccMRJP1 protein could be used as an alternative standard protein sample to measure the freshness of RJ. Moreover, we also found that the overall trend between the expression of the endogenous and exogenous genes was that the expression level of the endogenous Fib-L gene declined as the expression of the exogenous rAccMRJP1 gene increased in the transgenic silkworm lineages. Thus, by employing genome editing technology to reduce silk protein expression levels, a silkworm bioreactor expression system could be developed as a highly successful system for producing various valuable heterologous proteins, potentially broadening the applications of the silkworm.  相似文献   

2.
The plant seed is a leading platform amongst plant-based storage systems for the production of recombinant proteins. In this study, we compared the activity of human adenosine deaminase (hADA) expressed in transgenic seeds of three different plant species: pea (Pisum sativum L.), Nicotiana benthamiana L. and tarwi (Lupinus mutabilis Sweet). All three species were transformed with the same expression vector containing the hADA gene driven by the seed-specific promoter LegA2 with an apoplast targeting pinII signal peptide. During the study, several independent transgenic lines were generated and screened from each plant species and only lines with a single copy of the gene of interest were used for hADA expression analysis. A stable transgenic canola line expressing the ADA protein, under the control of 35S constitutive promoter was used as both as a positive control and for comparative study with the seed specific promoter. Significant differences were detected in the expression of hADA. The highest activity of the hADA enzyme (Units/g seed) was reported in tarwi (4.26 U/g) followed by pea (3.23 U/g) and Nicotiana benthamiana (1.69 U/g). The expression of mouse ADA in canola was very low in both seed and leaf tissue compared to other host plants, confirming higher activity of seed specific promoter. Altogether, these results suggest that tarwi could be an excellent candidate for the production of valuable recombinant proteins.  相似文献   

3.

Main conclusion

Resistance against anthracnose fungi was enhanced in transgenic pepper plants that accumulated high levels of a carboxylesterase, PepEST in anthracnose-susceptible fruits, with a concurrent induction of antioxidant enzymes and SA-dependent PR proteins. A pepper esterase gene (PepEST) is highly expressed during the incompatible interaction between ripe fruits of pepper (Capsicum annuum L.) and a hemibiotrophic anthracnose fungus (Colletotrichum gloeosporioides). In this study, we found that exogenous application of recombinant PepEST protein on the surface of the unripe pepper fruits led to a potentiated state for disease resistance in the fruits, including generation of hydrogen peroxide and expression of pathogenesis-related (PR) genes that encode mostly small proteins with antimicrobial activity. To elucidate the role of PepEST in plant defense, we further developed transgenic pepper plants overexpressing PepEST under the control of CaMV 35S promoter. Molecular analysis confirmed the establishment of three independent transgenic lines carrying single copy of transgenes. The level of PepEST protein was estimated to be approximately 0.002 % of total soluble protein in transgenic fruits. In response to the anthracnose fungus, the transgenic fruits displayed higher expression of PR genes, PR3, PR5, PR10, and PepThi, than non-transgenic control fruits did. Moreover, immunolocalization results showed concurrent localization of ascorbate peroxidase (APX) and PR3 proteins, along with the PepEST protein, in the infected region of transgenic fruits. Disease rate analysis revealed significantly low occurrence of anthracnose disease in the transgenic fruits, approximately 30 % of that in non-transgenic fruits. Furthermore, the transgenic plants also exhibited resistance against C. acutatum and C. coccodes. Collectively, our results suggest that overexpression of PepEST in pepper confers enhanced resistance against the anthracnose fungi by activating the defense signaling pathways.
  相似文献   

4.
The silk gland of silkworm Bombyx mori, is one of the most important organs that has been fully studied and utilized so far. It contributes finest silk fibers to humankind. The silk gland has excellent ability of synthesizing silk proteins and is a kind tool to produce some useful recombinant proteins, which can be widely used in the biological, biotechnical and pharmaceutical application fields. It’s a very active area to express recombinant proteins using the silk gland as a bioreactor, and great progress has been achieved recently. This review recapitulates the progress of producing recombinant proteins and silk-based biomaterials in the silk gland of silkworm in addition to the construction of expression systems. Current challenges and future trends in the production of valuable recombinant proteins using transgenic silkworms are also discussed.  相似文献   

5.
Bombyxin (BBX) is an insulin-like peptide exists in the silkworm Bombyx mori. Our previous studies on the effects of inhibiting BBX-B8 expression found that BBX-B8 is important for the development of organ, reproduction and trehalose metabolism in the silkworms. In this paper, we investigated the expression profile of the BBX-B8 gene and effect of BBX-B8 overexpression on the development, body weight, silk protein synthesis and egg diapause of B. mori to further understand BBX-B8 functions. BBX-B8 gene expression could be detected in the brains, midguts, anterior silkglands, ovaries, testes, fat bodies, hemolymph, malpighian tubules and embryos by RT-PCR, however it was mainly expressed in the brain. Western blots showed that the change in BBX-B8 expression was not obvious in the brain of 1- to 4-day-old larvae of fifth instar silkworms, but expression increased substantially at 5- to 6-day-old larvae of fifth instar silkworms. Transgenic silkworms overexpressing BBX-B8 were obtained by introducing non-transposon transgenic vector pIZT-B8 containing a BBX-B8 gene driven by Orgyia pseudotsugata nucleopolyhedrovirus IE2 promoter into the genome. Development duration of the transgenic silkworms was delayed by 2.5–3.5 days. Cocoon shell weight of transgenic silkworms was reduced by 4.79 % in females and 7.44 % in males, pupal weight of transgenic silkworms was reduced 6.75 % in females and 13.83 % in males compared to non-transgenic silkworms, and 5.56–14.29 % of transgenic moths laid nondiapausing eggs. All results indicated that BBX-B8 plays an important role in the development, silk protein synthesis and egg diapause of silkworm.  相似文献   

6.
Cereal grains offer great potential as a storage system for production of highly valuable proteins using biotechnological approaches, but such applications require tight temporal and spatial control of transgene expression. Towards this aim, we have undertaken a detailed analysis of α-kafirin (α-kaf) promoter and α-kaf signal peptide (sp) in transgenic sorghum plants, using green fluorescent protein gene (gfp) as a reporter. Constructs containing either the α-kaf promoter or the constitutive maize ubiquitin-1 (ubi) promoter driving either gfp or sp-gfp translational fusion were introduced into Sorghum bicolor inbred line Tx430 by particle bombardment. We show for the first time that the α-kaf promoter directs endosperm-specific transgene expression, with activity first detected at 10 days post-anthesis (dpa), peaking at 20 dpa, and remaining active through to physiological maturity. Furthermore, we demonstrate for the first time that the α-kafirin sp is sufficient to direct foreign protein to protein bodies in the endosperm. The evidence is also provided for possible mis-targeting by α-kaf sp in vegetative tissues of transgenic lines with ubi-sp-gfp, resulting in loss of reporter gene translational activity that no GFP signal was observed. These results demonstrate that α-kaf promoter and α-kaf sp are well suited for seed bioengineering to produce recombinant proteins in sorghum endosperm or deposit foreign proteins into sorghum protein bodies.  相似文献   

7.
The domesticated silkworm, Bombyx mori, is a fundamental insect for silk industry. Silk is obtained from cocoons, protective envelopes produced during pupation and composed of single raw silk filaments secreted by the insect silk glands. Currently, silk is used as a textile fibre and to produce new materials for technical and biomedical applications. To enhance the use of both fabrics and silk-based materials, great efforts to obtain silk with antimicrobial properties have been made. In particular, a convincing approach is represented by the enrichment of the textile fibre with antimicrobial peptides, the main effectors of the innate immunity. To this aim, silkworm-based transgenic techniques appear to be cost-effective strategies to obtain cocoons in which antimicrobial peptides are integrated among the silk proteins. Recently, cocoons transgenic for a recombinant silk protein conjugated to the silkworm Cecropin B antimicrobial peptide were obtained and showed enhanced antibacterial properties (Li et al. in Mol Biol Rep 42:19–25,  https://doi.org/10.1007/s11033-014-3735-z, 2015a). In this work we used the piggyBac-mediated germline transformation to generate several transgenic B. mori lines able to overexpress Cecropin B or Moricin antimicrobial peptides at the level of the silk gland. The derived cocoons were characterised by increased antimicrobial properties and the resulting silk fibre was able to inhibit the bacterial growth of the Gram-negative Escherichia coli. Our results suggest that the generation of silkworm overexpressing unconjugated antimicrobial peptides in the silk gland might represent an additional strategy to obtain antimicrobial peptide-enriched silk, for the production of new silk-based materials.  相似文献   

8.
Baculovirus expression vector system (BEVS) is widely known as a mass-production tool to produce functional recombinant glycoproteins except that it may not be always suitable for medical practice due to the differences in the structure of N-linked glycans between insects and mammalian. Currently, various approaches have been reported to alter N-linked glycan structures of glycoproteins derived from insects into terminally sialylated complex-type N-glycans. In the light of those studies, we also proposed in vitro maturation of N-glycan with mass-produced and purified glycosyltransferases by silkworm–BEVS. β-1,4-Galactosyltransferase 1 (β4GalT1) is known as one of type II transmembrane enzymes that transfer galactose in a β-1, 4 linkage to accepter sugars, and a key enzyme for further sialylation of N-glycans. In this study, we developed a large-scale production of recombinant human β4GalT1 (rhβ4GalT1) with N- or C-terminal tags in silkworm–BEVS. We demonstrated that rhβ4GalT1 is N-glycosylated and without mucin-type glycosylation. Interestingly, we found that purified rhβ4GalT1 from silkworm serum presented higher galactosyltransferase activity than that expressed from cultured mammalian cells. We also validated the UDP-galactose transferase activity of produced rhβ4GalT1 proteins by using protein subtracts from silkworm silk gland. Taken together, rhβ4GalT1 from silkworms can become a valuable tool for producing high-quality recombinant glycoproteins with mammalian-like N-glycans.  相似文献   

9.
10.
Phelipanche and Orobanche spp. (broomrapes) are economically important parasitic weeds, causing severe damage to many agricultural crops. However, conventional methods to control these parasitic weeds are often not effective. Targeting molecular and biochemical processes involved in the establishment of the connection between the parasite and the host may offer a new perspective for control. However, progress in the understanding of these processes is hampered by the fact that genetic transformation and regeneration of these parasites is difficult if not impossible due to their specific lifecycle. Phelipanche and Orobanche spp. are holoparasites that need to attach to the roots of a host plant to get their assimilates, nutrients and water to develop and reproduce. The present study describes a highly efficient genetic transformation and regeneration protocol for the root holoparasitic Phelipanche ramosa. We present a new transformation system for P. ramosa using Agrobacterium rhizogenes MSU440 carrying a non-destructive selection marker gene coding for a red fluorescent protein (DsRed1). Using this protocol up to 90% transformation efficiency was obtained. We transformed 4 weeks old P. ramosa calli and transgenic calli expressing DsRed1 were then cultured on host plants. For the first time, we present shoot and flower development of the transgenic parasitic plant P. ramosa after successful connection of transgenic calli with the host plant roots. Moreover, we also present, for the first time, growth and development of P. ramosa shoots and flowers in vitro in the absence of a host plant.  相似文献   

11.
12.
13.

Key message

The heterodimer formation between B-class MADS-box proteins of GsAP3a and GsPI2 proteins plays a core role for petal formation in Japanese gentian plants.

Abstract

We previously isolated six B-class MADS-box genes (GsAP3a, GsAP3b, GsTM6, GsPI1, GsPI2, and GsPI3) from Japanese gentian (Gentiana scabra). To study the roles of these MADS-box genes in determining floral organ identities, we investigated protein–protein interactions among them and produced transgenic Arabidopsis and gentian plants overexpressing GsPI2 alone or in combination with GsAP3a or GsTM6. Yeast two-hybrid and bimolecular fluorescence complementation analyses revealed that among the GsPI proteins, GsPI2 interacted with both GsAP3a and GsTM6, and that these heterodimers were localized to the nuclei. The heterologous expression of GsPI2 partially converted sepals into petaloid organs in transgenic Arabidopsis, and this petaloid conversion phenomenon was accelerated by combined expression with GsAP3a but not with GsTM6. In contrast, there were no differences in morphology between vector-control plants and transgenic Arabidopsis plants expressing GsAP3a or GsTM6 alone. Transgenic gentian ectopically expressing GsPI2 produced an elongated tubular structure that consisted of an elongated petaloid organ in the first whorl and stunted inner floral organs. These results imply that the heterodimer formation between GsPI2 and GsAP3a plays a core role in determining petal and stamen identities in Japanese gentian, but other B-function genes might be important for the complete development of petal organs.
  相似文献   

14.
Although light is the ultimate substrate in photosynthesis, strong light can also be harmful and lead to photoinhibition. The DEG proteases play important roles in the degradation of misfolded and damaged proteins. In this study, two photoinhibition-related genes from soybean [Glycine max (L.) Merr.], GmDeg1 and GmDeg2, were cloned. Bioinformatics analysis indicated that these two proteases both contain a PDZ domain and are serine proteases. The expression levels of GmDeg1 and GmDeg2 increased significantly after 12 h of photooxidation treatment, indicating that GmDeg1 and GmDeg2 might play protective roles under strong light conditions. In in vitro proteolytic degradation assays, recombinant GmDeg1 and GmDeg2 demonstrated biological activities at temperatures ranging from 20°C to 60°C and at pH 5.0 to 8.0. By contrast, the proteases showed no proteolytic effect in the presence of a serine protease inhibitor. Taken together, these results provided strong evidence that GmDeg1 and GmDeg2 are serine proteases that could degrade the model substrate in vitro, indicating that they might degrade damaged D1 protein and other mis-folded proteins in vivo. Furthermore, GmDeg1 and GmDeg2 were transformed into Arabidopsis thaliana to obtain transgenic plants. Leaves from the transgenic and wild-type plants were subjected to strong light conditions in vitro, and the PSII photochemical efficiency (Fv/Fm) was measured. The Fv/Fm of the transgenic plants was significantly higher than that of the wild-type plants at most time points. These results imply that GmDeg1 and GmDeg2 would have similar functions to Arabidopsis AtDeg1, thus accelerating the recovery of PSII photochemical efficiency.  相似文献   

15.
The plastidic thioredoxin F-type (TrxF) protein plays an important role in plant saccharide metabolism. In this study, a gene encoding the TrxF protein, named SlTrxF, was isolated from tomato. The coding region of SlTrxF was cloned into a binary vector under the control of 35S promoter and then transformed into Arabidopsis thaliana. The transgenic Arabidopsis plants exhibited increased starch accumulation compared to the wild-type (WT). Real-time quantitative PCR analysis showed that constitutive expression of SlTrxF up-regulated the expression of ADP-glucose pyrophosphorylase (AGPase) small subunit (AtAGPase-S1 and AtAGPase-S2), AGPase large subunit (AtAGPase-L1 and AtAGPase-L2) and soluble starch synthase (AtSSS I, AtSSS II, AtSSS III and AtSSS IV) genes involved in starch biosynthesis in the transgenic Arabidopsis plants. Meanwhile, enzymatic analyses showed that the major enzymes (AGPase and SSS) involved in the starch biosynthesis exhibited higher activities in the transgenic plants compared to WT. These results suggest that SlTrxF may improve starch content of Arabidopsis by regulating the expression of the related genes and increasing the activities of the major enzymes involved in starch biosynthesis.  相似文献   

16.
Heat shock proteins (HSPs) are ubiquitous protective proteins that play crucial roles in plant development and adaptation to stress, and the aim of this study is to characterize the HSP gene in alfalfa. Here we isolated a small heat shock protein gene (MsHSP17.7) from alfalfa by homology-based cloning. MsHSP17.7 contains a 477-bp open reading frame and encodes a protein of 17.70-kDa. The amino acid sequence shares high identity with MtHSP (93.98 %), PsHSP17.1 (83.13 %), GmHSP17.9 (74.10 %) and SlHSP17.6 (79.25 %). Phylogenetic analysis revealed that MsHSP17.7 belongs to the group of cytosolic class II small heat shock proteins (sHSP), and likely localizes to the cytoplasm. Quantitative RT-PCR indicated that MsHSP17.7 was induced by heat shock, high salinity, peroxide and drought stress. Prokaryotic expression indicated that the salt and peroxide tolerance of Escherichia coli was remarkably enhanced. Transgenic Arabidopsis plants overexpressing MsHSP17.7 exhibited increased root length of transgenic Arabidopsis lines under salt stress compared to the wild-type line. The malondialdehyde (MDA) levels in the transgenic lines were significantly lower than in wild-type, although proline levels were similar between transgenic and wild-type lines. MsHSP17.7 was induced by heat shock, high salinity, oxidative stress and drought stress. Overexpression analysis suggests that MsHSP17.7 might play a key role in response to high salinity stress.  相似文献   

17.
The doublesex gene regulates the somatic sexual development of Bombyx mori by alternatively splicing into sex-specific splice forms. In our previous study, the splice form Bmdsx F7 , which encodes the BmDSXF5 protein, was found to be expressed in a female-specific manner and to contain a novel C-terminus. In this study, we aimed to investigate the role of this C-terminus. Two transgenic lines, L1 and L2, were constructed to ectopically express Bmdsx F7 in males. Phenotype and W chromosome-specific polymerase chain reaction (PCR) analysis showed that developmental abnormalities and sex reversal did not occur. Moreover, the sex ratio was also normal. Quantitative PCR revealed that the expression levels of SP1 and Vg were upregulated in the fat body of transgenic males. Additionally, the expression level of PBP was downregulated in the antenna of transgenic males. The results suggested that the C-terminus of BmDSXF5 functioned as a regulatory domain during regulation of downstream target gene expression and that BmDSXF5 participated in the sexual development of somatic cells together with other DSX proteins in B. mori.  相似文献   

18.

Background

Reliable marking systems are critical to the prospective field release of transgenic insect strains. This is to unambiguously distinguish released insects from wild insects in the field that are collected in field traps, and tissue-specific markers, such as those that are sperm-specific, have particular uses such as identifying wild females that have mated with released males. For tephritid fruit flies such as the Mexican fruit fly, Anastrepha ludens, polyubiquitin-regulated fluorescent protein body markers allow transgenic fly identification, and fluorescent protein genes regulated by the spermatocyte-specific β2-tubulin promoter effectively mark sperm. For sterile male release programs, both marking systems can be made male-specific by linkage to the Y chromosome.

Results

An A. ludens wild type strain was genetically transformed with a piggyBac vector, pBXL{PUbnlsEGFP, Asβ2tub-DsRed.T3}, having the polyubiquitin-regulated EGFP body marker, and the β2-tubulin-regulated DsRed.T3 sperm-specific marker. Autosomal insertion lines effectively expressed both markers, but a single Y-linked insertion (YEGFP strain) expressed only PUbnlsEGFP. This insertion was remobilized by transposase helper injection, which resulted in three new autosomal insertion lines that expressed both markers. This indicated that the original Y-linked Asβ2tub-DsRed.T3 marker was functional, but specifically suppressed on the Y chromosome. The PUbnlsEGFP marker remained effective however, and the YEGFP strain was used to create a sexing strain by translocating the wild type allele of the black pupae (bp+) gene onto the Y, which was then introduced into the bp- mutant strain. This allows the mechanical separation of mutant female black pupae from male brown pupae, that can be identified as adults by EGFP fluorescence.

Conclusions

A Y-linked insertion of the pBXL{PUbnlsEGFP, Asβ2tub-DsRed.T3} transformation vector in A. ludens resulted in male-specific expression of the EGFP fluorescent protein marker, and was integrated into a black pupae translocation sexing strain (T(YEGFP/bp+), allowing the identification of male adults when used in sterile male release programs for population control. A unique observation was that expression of the Asβ2tub-DsRed.T3 sperm-specific marker, which was functional in autosomal insertions, was specifically suppressed in the Y-linked insertion. This may relate to the Y chromosomal regulation of male-specific germ-line genes in Drosophila.
  相似文献   

19.
Plant leucine-rich repeats receptor-like kinases (LRR-RLKs) play key roles in plant growth, development, and responses to environmental stresses. However, the functions of LRR-RLKs in bryophytes are still not well documented. Here, a putative LRR-RLK gene, PnLRR-RLK, was cloned and characterized from the Antarctic moss Pohlia nutans. Phylogenetic analysis revealed that PnLRR-RLK protein was clustered with the Arabidopsis thaliana LRR XI family proteins. Subcellular localization analysis of PnLRR-RLK revealed that it was mainly localized on plasma membrane. The expression of PnLRR-RLK was induced by mock high salinity, cold, drought, and exogenously supplied abscisic acid (ABA) and methyl jasmonate (MeJA). Meanwhile, the overexpression of PnLRR-RLK showed an increased tolerance of transgenic Arabidopsis to salt and ABA stresses than that of the wild type (WT) plants. Furthermore, the expression levels of several salt tolerance genes (AtHKT1, AtSOS3, AtP5CS1, and AtADH1) and an ABA negatively regulating gene AtABI1 were significantly increased in transgenic plants. Meanwhile, the expression levels of ABA biosynthesis genes (AtNCED3, AtABA1, and AtAAO3) and ABA early response genes (AtMYB2, AtRD22, AtRD29A, and AtDREB2A) were decreased in transgenic Arabidopsis after salt stress treatment. Therefore, these results suggested that PnLRR-RLK might involve in regulating salt stress-related and ABA-dependent signaling pathway, thereby contribute to the salinity tolerance of the Antarctic moss P. nutans.  相似文献   

20.
Since their discovery, germin and germin-like proteins (GLPs) were found to be associated with salt stress along with other physiological roles. Although a number of GLP family members showed spatio-temporal changes in expressional up-regulation or down-regulation upon exposure to salt stress across plant species, very little is known about any rice GLP member in relation to salt stress. Rice germin-like protein 1 (OsGLP1), belongs to “Cupin” superfamily, is a plant glycoprotein and is associated with the plant cell wall. Our previous studies on endogenous down-regulation of OsGLP1 in rice and heterologous expression in tobacco documented that the OsGLP1 possessing superoxide dismutase activity is involved in cell wall cross-linking and fungal disease resistance in plants. In the present study, the transgenic rice lines having reduced OsGLP1 expression were analyzed in advanced generation for deciphering the involvement of OsGLP1 under salt stress. OsGLP1 gene-silencing construct integated transgenic lines were confirmed by Southern hybridization and RNA-interfernce (RNAi) mediated gene-silencing of the transgenic rice lines was confirmed by northern blot analysis. The expression of endogenous OsGLP1 protein level was found to be reduced in salt sensitive indica rice cultivar Badshahbhog following salt stress. Additionally, the RNAi-mediated OsGLP1 gene-silencing in transgenic rice lines resulted improved salt tolerance as compared to the untransformed ones during seed germination, initial establishment, early seedling growth and callus proliferation. Salt tolerance nature of the OsGLP1 gene-silenced plants at early stages of growth and development depicted the negative correlation between the OsGLP1 expression and salt tolerance of rice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号