首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Soba P  Zhu S  Emoto K  Younger S  Yang SJ  Yu HH  Lee T  Jan LY  Jan YN 《Neuron》2007,54(3):403-416
A neuron's dendrites typically do not cross one another. This intrinsic self-avoidance mechanism ensures unambiguous processing of sensory or synaptic inputs. Moreover, some neurons respect the territory of others of the same type, a phenomenon known as tiling. Different types of neurons, however, often have overlapping dendritic fields. We found that Down's syndrome Cell Adhesion Molecule (Dscam) is required for dendritic self-avoidance of all four classes of Drosophila dendritic arborization (da) neurons. However, neighboring mutant class IV da neurons still exhibited tiling, suggesting that self-avoidance and tiling differ in their recognition and repulsion mechanisms. Introducing 1 of the 38,016 Dscam isoforms to da neurons in Dscam mutants was sufficient to significantly restore self-avoidance. Remarkably, expression of a common Dscam isoform in da neurons of different classes prevented their dendrites from sharing the same territory, suggesting that coexistence of dendritic fields of different neuronal classes requires divergent expression of Dscam isoforms.  相似文献   

2.
Han C  Wang D  Soba P  Zhu S  Lin X  Jan LY  Jan YN 《Neuron》2012,73(1):64-78
Dendrites of the same neuron usually avoid each other. Some neurons also repel similar neurons through dendrite-dendrite interaction to tile the receptive field. Nonoverlapping coverage based on such contact-dependent repulsion requires dendrites to compete for limited space. Here we show that Drosophila class IV dendritic arborization (da) neurons, which tile the larval body wall, grow their dendrites mainly in a 2D space on the extracellular matrix (ECM) secreted by the epidermis. Removing neuronal integrins or blocking epidermal laminin production causes dendrites to grow into the epidermis, suggesting that integrin-laminin interaction attaches dendrites to the ECM. We further show that some of the previously identified tiling mutants fail to confine dendrites in a 2D plane. Expansion of these mutant dendrites in three dimensions results in overlap of dendritic fields. Moreover, overexpression of integrins in these mutant neurons effectively reduces dendritic crossing and restores tiling, revealing an additional mechanism for tiling.  相似文献   

3.
Emoto K  He Y  Ye B  Grueber WB  Adler PN  Jan LY  Jan YN 《Cell》2004,119(2):245-256
To cover the receptive field completely but without redundancy, neurons of certain functional groups exhibit tiling of their dendrites via dendritic repulsion. Here we show that two evolutionarily conserved proteins, the Tricornered (Trc) kinase and Furry (Fry), are essential for tiling and branching control of Drosophila sensory neuron dendrites. Dendrites of fry and trc mutants display excessive terminal branching and fail to avoid homologous dendritic branches, resulting in significant overlap of the dendritic fields. Trc control of dendritic branching involves regulation of RacGTPase, a pathway distinct from the action of Trc in tiling. Timelapse analysis further reveals a specific loss of the ability of growing dendrites to turn away from nearby dendritic branches in fry mutants, suggestive of a defect in like-repels-like avoidance. Thus, the Trc/Fry signaling pathway plays a key role in patterning dendritic fields by promoting avoidance between homologous dendrites as well as by limiting dendritic branching.  相似文献   

4.
BACKGROUND: Understanding how dendrites establish their territory is central to elucidating how neuronal circuits are built. Signaling between dendrites is thought to be important for defining their territories; however, the strategies by which different types of dendrites communicate are poorly understood. We have shown previously that two classes of Drosophila peripheral da sensory neurons, the class III and class IV neurons, provide complete and independent tiling of the body wall. By contrast, dendrites of class I and class II neurons do not completely tile the body wall, but they nevertheless occupy nonoverlapping territories. RESULTS: By developing reagents to permit high-resolution studies of dendritic tiling in living animals, we demonstrate that isoneuronal and heteroneuronal class IV dendrites engage in persistent repulsive interactions. In contrast to the extensive dendritic exclusion shown by class IV neurons, duplicated class III neurons showed repulsion only at their dendritic terminals. Supernumerary class I and class II neurons innervated completely overlapping regions of the body wall, and this finding suggests a lack of like-repels-like behavior. CONCLUSIONS: These data suggest that repulsive interactions operate between morphologically alike dendritic arbors in Drosophila. Further, Drosophila da sensory neurons appear to exhibit at least three different types of class-specific dendrite-dendrite interactions: persistent repulsion by all branches, repulsion only by terminal dendrites, and no repulsion.  相似文献   

5.
Kuo CT  Zhu S  Younger S  Jan LY  Jan YN 《Neuron》2006,51(3):283-290
Ubiquitin-proteasome system (UPS) is a multistep protein degradation machinery implicated in many diseases. In the nervous system, UPS regulates remodeling and degradation of neuronal processes and is linked to Wallerian axonal degeneration, though the ubiquitin ligases that confer substrate specificity remain unknown. Having shown previously that class IV dendritic arborization (C4da) sensory neurons in Drosophila undergo UPS-mediated dendritic pruning during metamorphosis, we conducted an E2/E3 ubiquitinating enzyme mutant screen, revealing that mutation in ubcD1, an E2 ubiquitin-conjugating enzyme, resulted in retention of C4da neuron dendrites during metamorphosis. Further, we found that UPS activation likely leads to UbcD1-mediated degradation of DIAP1, a caspase-antagonizing E3 ligase. This allows for local activation of the Dronc caspase, thereby preserving C4da neurons while severing their dendrites. Thus, in addition to uncovering E2/E3 ubiquitinating enzymes for dendrite pruning, this study provides a mechanistic link between UPS and the apoptotic machinery in regulating neuronal process remodeling.  相似文献   

6.
Zinn K 《Neuron》2004,44(2):211-213
Two papers in the current issues of Neuron (Gallegos and Bargmann) and Cell (Emoto et al.) identify a conserved kinase, SAX-1/Trc, and a large protein required for Trc activity, SAX-2/Fry, as essential elements in the control of dendritic branching and tiling in Drosophila and C. elegans. The tiling and ectopic branching phenotypes of trc mutants appear to be independently generated. Thus, this kinase is the first signaling protein to be associated specifically with tiling.  相似文献   

7.
Insect dendritic arborization (da) neurons provide an opportunity to examine how diverse dendrite morphologies and dendritic territories are established during development. We have examined the morphologies of Drosophila da neurons by using the MARCM (mosaic analysis with a repressible cell marker) system. We show that each of the 15 neurons per abdominal hemisegment spread dendrites to characteristic regions of the epidermis. We place these neurons into four distinct morphological classes distinguished primarily by their dendrite branching complexities. Some class assignments correlate with known proneural gene requirements as well as with central axonal projections. Our data indicate that cells within two morphological classes partition the body wall into distinct, non-overlapping territorial domains and thus are organized as separate tiled sensory systems. The dendritic domains of cells in different classes, by contrast, can overlap extensively. We have examined the cell-autonomous roles of starry night (stan) (also known as flamingo (fmi)) and sequoia (seq) in tiling. Neurons with these genes mutated generally terminate their dendritic fields at normal locations at the lateral margin and segment border, where they meet or approach the like dendrites of adjacent neurons. However, stan mutant neurons occasionally send sparsely branched processes beyond these territories that could potentially mix with adjacent like dendrites. Together, our data suggest that widespread tiling of the larval body wall involves interactions between growing dendritic processes and as yet unidentified signals that allow avoidance by like dendrites.  相似文献   

8.
Target of rapamycin (TOR) kinase controls cell growth and metabolism in response to nutrient availability. In the fission yeast Schizosaccharomyces pombe, TOR complex 1 (TORC1) promotes vegetative growth and inhibits sexual differentiation in the presence of ample nutrients. Here, we report the isolation and characterization of mutants with similar phenotypes as TORC1 mutants, in that they initiate sexual differentiation even in nutrient‐rich conditions. In most mutants identified, TORC1 activity is downregulated and the mutated genes are involved in tRNA expression or modification. Expression of tRNA precursors decreases when cells undergo sexual differentiation. Furthermore, overexpression of tRNA precursors prevents TORC1 downregulation upon nitrogen starvation and represses the initiation of sexual differentiation. Based on these observations, we propose that tRNA precursors operate in the S. pombe TORC1 pathway to switch growth mode from vegetative to reproductive.  相似文献   

9.
Neurons establish diverse dendritic morphologies during development, and a major challenge is to understand how these distinct developmental programs might relate to, and influence, neuronal function. Drosophila dendritic arborization (da) sensory neurons display class-specific dendritic morphology with extensive coverage of the body wall. To begin to build a basis for linking dendrite structure and function in this genetic system, we analyzed da neuron axon projections in embryonic and larval stages. We found that multiple parameters of axon morphology, including dorsoventral position, midline crossing and collateral branching, correlate with dendritic morphological class. We have identified a class-specific medial-lateral layering of axons in the central nervous system formed during embryonic development, which could allow different classes of da neurons to develop differential connectivity to second-order neurons. We have examined the effect of Robo family members on class-specific axon lamination, and have also taken a forward genetic approach to identify new genes involved in axon and dendrite development. For the latter, we screened the third chromosome at high resolution in vivo for mutations that affect class IV da neuron morphology. Several known loci, as well as putative novel mutations, were identified that contribute to sensory dendrite and/or axon patterning. This collection of mutants, together with anatomical data on dendrites and axons, should begin to permit studies of dendrite diversity in a combined developmental and functional context, and also provide a foundation for understanding shared and distinct mechanisms that control axon and dendrite morphology.  相似文献   

10.
11.
Much attention has focused on dendritic translational regulation of neuronal signaling and plasticity. For example, long-term memory in adult Drosophila requires Pumilio (Pum), an RNA binding protein that interacts with the RNA binding protein Nanos (Nos) to form a localized translation repression complex essential for anterior-posterior body patterning in early embryogenesis. Whether dendrite morphogenesis requires similar translational regulation is unknown. Here we report that nos and pum control the elaboration of high-order dendritic branches of class III and IV, but not class I and II, dendritic arborization (da) neurons. Analogous to their function in body patterning, nos and pum require each other to control dendrite morphogenesis, a process likely to involve translational regulation of nos itself. The control of dendrite morphogenesis by Nos/Pum, however, does not require hunchback, which is essential for body patterning. Interestingly, Nos protein is localized to RNA granules in the dendrites of da neurons, raising the possibility that the Nos/Pum translation repression complex operates in dendrites. This work serves as an entry point for future studies of dendritic translational control of dendrite morphogenesis.  相似文献   

12.
13.
The TOR (Target of Rapamycin) protein kinase pathway plays a central role in sensing and responding to nutrients, stress, and intracellular energy state. TOR complex 1 (TORC1) is comprised of TOR, Raptor, and Lst8 and its activity is sensitive to inhibition by the macrolide antibiotic rapamycin. TORC1 regulates protein synthesis, ribosome biogenesis, autophagy, and ultimately cell growth through the phosphorylation of S6 K, 4E-BP, and other substrates. As TORC1 activity is positively or negatively modulated in response to upstream regulators, cellular growth rate is, respectively, enhanced or suppressed. A separate multiprotein TOR complex, TORC2, is insensitive to direct inhibition by rapamycin and does not regulate growth patterns directly; TORC2 can, however, impact certain aspects of TORC1 signaling and cell survival. TOR signaling is an ancient pathway, conserved among the yeasts, Dictyostelium, C. elegans, Drosophila, mammals, and Arabidopsis. This review will focus on the regulation of TORC1 in mammalian cells in the context of amino acid sensing/regulation and intracellular ATP homeostasis, but will also include comparisons among other organisms.  相似文献   

14.
Size and weight control is a tightly regulated process, involving the highly conserved Insulin receptor/target of rapamycin (InR/TOR) signaling cascade. We recently identified Cyclin G (CycG) as an important modulator of InR/TOR signaling activity in Drosophila. cycG mutant flies are underweight and show a disturbed fat metabolism resembling TOR mutants. In fact, InR/TOR signaling activity is disturbed in cycG mutants at the level of Akt1, the central kinase linking InR and TORC1. Akt1 is negatively regulated by protein phosphatase PP2A. Notably the binding of the PP2A B′-regulatory subunit Widerborst (Wdb) to Akt1 is differentially regulated in cycG mutants, presumably by a direct interaction of CycG and Wdb. Since the metabolic defects of cycG mutant animals are abrogated by a concomitant loss of Wdb, CycG presumably influences Akt1 activity at the PP2A nexus. Here we show that Well rounded (Wrd), another B' subunit of PP2A in Drosophila, binds CycG similar to Wdb, and that its loss ameliorates some, but not all, of the metabolic defects of cycG mutants. We propose a model, whereby the binding of CycG to a particular B′-regulatory subunit influences the tissue specific activity of PP2A, required for the fine tuning of the InR/TOR signaling cascade in Drosophila.  相似文献   

15.
16.
Using Golgi techniques we have studied neuronal cell types in the anterior dorsal ventricular ridge (ADVR) of the adult lizard Gallotia galloti. Multipolar, bitufted, and juxtaependymal neuronal forms were found. The multipolar and bitufted neurons are present in both the periventricular and central ADVR zones. Multipolar neurons can be subdivided into multipolar neurons with polygonal somata and four to six main dendritic trunks and multipolar neurons with pyramidal somata and three or more dendritic trunks. The former are the cells most frequently impregnated in the ADVR. In the population of bitufted neurons, we distinguish subtypes I, II, and III according to the number of dendritic trunks that emerge from the somata. Juxtaependymal neurons are restricted to a cell-poor zone, adjacent to ependymal cells. Their dendrites either are orientated parallel to the ventricular surface or extend into the periventricular zone. The dendrites of ADVR neurons have pedunculated spines with knob-like tips. However, such spines do not appear on the somata or on the primary dendritic trunks. The number of spines is scarce or moderate. The periventricular neuronal clusters contain two to five cells. The morphology of these neurons is mainly multipolar, but we also found some bitufted neurons.  相似文献   

17.
Sugimura K  Satoh D  Estes P  Crews S  Uemura T 《Neuron》2004,43(6):809-822
Morphological diversity of dendrites contributes to specialized functions of individual neurons. In the present study, we examined the molecular basis that generates distinct morphological classes of Drosophila dendritic arborization (da) neurons. da neurons are classified into classes I to IV in order of increasing territory size and/or branching complexity. We found that Abrupt (Ab), a BTB-zinc finger protein, is expressed selectively in class I cells. Misexpression of ab in neurons of other classes directed them to take the appearance of cells with smaller and/or less elaborated arbors. Loss of ab functions in class I neurons resulted in malformation of their typical comb-like arbor patterns and generation of supernumerary branch terminals. Together with the results of monitoring dendritic dynamics of ab-misexpressing cells or ab mutant ones, all of the data suggested that Ab endows characteristics of dendritic morphogenesis of the class I neurons.  相似文献   

18.

Background

The protein kinase Target Of Rapamycin (TOR) is a nexus for the regulation of eukaryotic cell growth. TOR assembles into one of two distinct signalling complexes, TOR complex 1 (TORC1) and TORC2 (mTORC1/2 in mammals), with a set of largely non-overlapping protein partners. (m)TORC1 activation occurs in response to a series of stimuli relevant to cell growth, including nutrient availability, growth factor signals and stress, and regulates much of the cell’s biosynthetic activity, from proteins to lipids, and recycling through autophagy. mTORC1 regulation is of great therapeutic significance, since in humans many of these signalling complexes, alongside subunits of mTORC1 itself, are implicated in a wide variety of pathophysiologies, including multiple types of cancer, neurological disorders, neurodegenerative diseases and metabolic disorders including diabetes.

Methodology

Recent years have seen numerous structures determined of (m)TOR, which have provided mechanistic insight into (m)TORC1 activation in particular, however the integration of cellular signals occurs upstream of the kinase and remains incompletely understood. Here we have collected and analysed in detail as many as possible of the molecular and structural studies which have shed light on (m)TORC1 repression, activation and signal integration.

Conclusions

A molecular understanding of this signal integration pathway is required to understand how (m)TORC1 activation is reconciled with the many diverse and contradictory stimuli affecting cell growth. We discuss the current level of molecular understanding of the upstream components of the (m)TORC1 signalling pathway, recent progress on this key biochemical frontier, and the future studies necessary to establish a mechanistic understanding of this master-switch for eukaryotic cell growth.
  相似文献   

19.
The regulated degeneration of axons or dendrites (pruning) and neuronal apoptosis are widely used during development to determine the specificity of neuronal connections. Pruning and apoptosis often share similar mechanisms; for example, developmental dendrite pruning of Drosophila class IV dendritic arborization (da) neurons is induced by local caspase activation triggered by ubiquitin-mediated degradation of the caspase inhibitor DIAP1. Here, we examined the function of Valosin-containing protein (VCP), a ubiquitin-selective AAA chaperone involved in endoplasmic reticulum-associated degradation, autophagy and neurodegenerative disease, in Drosophila da neurons. Strong VCP inhibition is cell lethal, but milder inhibition interferes with dendrite pruning and developmental apoptosis. These defects are associated with impaired caspase activation and high DIAP1 levels. In cultured cells, VCP binds to DIAP1 in a ubiquitin- and BIR domain-dependent manner and facilitates its degradation. Our results establish a new link between ubiquitin, dendrite pruning and the apoptosis machinery.  相似文献   

20.
Neurogenesis is the process of neuron generation, which occurs not only during embryonic development but also in restricted niches postnatally. One such region is called the subventricular zone (SVZ), which gives rise to new neurons in the olfactory bulb (OB). Neurons that are born postnatally migrate through more complex territories and integrate into fully functional circuits. Therefore, differences in the differentiation of embryonic and postnatally born neurons may exist. Dendritogenesis is an important process for the proper formation of future neuronal circuits. Dendritogenesis in embryonic neurons cultured in vitro was shown to depend on the mammalian target of rapamycin (mTOR). Still unknown, however, is whether mTOR could regulate the dendritic arbor morphology of SVZ‐derived postnatal OB neurons under physiological conditions in vivo. The present study used in vitro cultured and differentiated SVZ‐derived neural progenitors and found that both mTOR complex 1 and mTOR complex 2 were required for the dendritogenesis of SVZ‐derived neurons. Furthermore, using a combination of in vivo electroporation of neural stem cells in the SVZ and genetic and pharmacological inhibition of mTOR, it was found that mTOR was crucial for the growth of basal and apical dendrites in postnatally born OB neurons under physiological conditions and contributed to the stabilization of their basal dendrites. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1308–1327, 2016  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号