首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: Homomeric AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid)-type glutamate receptors (GluRs) were stably expressed in kidney cells from cDNAs encoding GluR1 flop, GluR2 flip, GluR2 flop, and GluR3 flop subunits. The recombinant receptors were of the expected size and showed functional properties in whole-cell recording as previously reported. [3H]AMPA binding to all subunits was increased to a similar extent by the chaotropic ion thiocyanate (SCN?). Significant differences were found in the Scatchard plots, however, which were linear and of high affinity for GluR1 and -3 receptors (KD values of 33 and 52 nM, respectively) but showed curvature for GluR2 receptors, indicating the presence of two components with distinct affinities. As with brain AMPA receptors, solubilization of GluR2 receptors reduced the number of lower-affinity sites and correspondingly increased the number of higher-affinity sites. The sulfhydryl reagent p-chloromercuriphenylsulfonic acid, which increases binding to brain receptors, produced only minor changes except in the case of GluR2 flip. These results indicate that GluR2, among the subunits examined here, most closely resembles the native AMPA receptors in brain membranes. [3H]AMPA binding was inhibited in a noncompetitive manner by two drugs that change the desensitization kinetics of the AMPA receptor. In agreement with physiological observations, the apparent affinity of cyclothiazide for GluR2 flip (EC50 = 7 µM) was higher than that for receptors made of flop subunits (49–130 µM). In contrast, BDP-37, a member of the benzamide family of drugs, exhibited a lower potency for GluR2 flip (58 µM) than for any of the flop isoforms (18–40 µM). These results predict that the action of centrally active AMPA-receptor modulators varies across brain regions depending on their flip/flop composition.  相似文献   

2.
Pei W  Huang Z  Niu L 《Biochemistry》2007,46(7):2027-2036
Ample evidence from earlier studies of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, GluR3 included, suggests that alternative splicing not only enriches AMPA receptor diversity but also, more importantly, creates receptor variants that are functionally different. However, it is not known whether alternative splicing affects the receptor channel opening that occurs in the microsecond time domain. Using a laser-pulse photolysis technique combined with whole-cell recording, we characterized the channel opening rate process for two alternatively spliced variants of GluR3, i.e., GluR3flip and GluR3flop. We show that the alternative splicing that generates flip and flop variants of GluR3 receptors regulates the channel opening process by controlling the rate of channel closing but not the rate of channel opening or the glutamate binding affinity. Specifically, the flop variant closes its channel almost 4-fold faster than the flip variant. We therefore propose that the function of the flip-flop sequence module in the channel opening process of AMPA receptors is to stabilize the open channel conformation, presumably by its pivotal structural location. Furthermore, a comparison of the flip isoform among all AMPA receptor subunits, based on the magnitude of the channel opening rate constant, suggests that GluR3 is kinetically more similar to GluR2 and GluR4 than to GluR1.  相似文献   

3.
AMPA receptor subunits expressed by single Purkinje cells.   总被引:27,自引:0,他引:27  
Several subunits of the glutamate receptor of the AMPA subtype have been cloned recently. These subunits, named GluR1, GluR2, GluR3, and GluR4, exist as two splicing variants (flip and flop). We have determined the subset of AMPA receptor subunits expressed by single cerebellar Purkinje cells in culture. This was achieved by combining whole-cell patch-clamp recordings and a molecular analysis, based on the polymerase chain reaction, of the messenger RNAs harvested into the patch pipette at the end of each recording. We found that each single cell expresses the messenger RNAs encoding the following five subunits: the flip and flop versions of GluR1 and GluR2 as well as GluR3flip, GluR2 being the most abundant. In addition, GluR3flop and GluR4flip were scarcely expressed in half of these neurons, and GluR4flop was never detected.  相似文献   

4.
Valentine ER  Palmer AG 《Biochemistry》2005,44(9):3410-3417
Chemical shift changes and internal motions on microsecond-to-millisecond time scales of the S1S2 ligand-binding domain of the GluR2 ionotropic glutamate receptor have been studied by NMR spectroscopy in the presence of the agonists glutamic acid (glutamate), quisqualic acid (quisqualate), and alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA). Although the crystal structures of the three agonist-bound forms of GluR2 S1S2 ligand-binding domain are very similar, chemical shift changes imply that AMPA-bound GluR2 S1S2 is conformationally distinct from glutamate- and quisqualate-bound forms of GluR2 S1S2. NMR spin relaxation measurements for backbone amide (15)N nuclei reveal that GluR2 S1S2 exhibits reduced chemical exchange line broadening, resulting from microsecond-to-millisecond conformational dynamics, in AMPA-bound compared to glutamate- and quisqualate-bound states. The largest changes in line broadening are observed for two regions of GluR2 S1S2: Val683 and the segment around Lys716-Cys718. The differences in binding affinity of these agonists do not explain the differences in microsecond-to-millisecond conformational dynamics because quisqualate and AMPA bind with similar affinities that are 10-fold greater than the affinity of glutamate. Differences in conformational mobility may reflect differences in the binding mode of AMPA in the GluR2 S1S2 active site compared to the other two ligands. The sites of conformational mobility in GluR2 S1S2 imply that subtle differences exist between the agonists glutamate, quisqualate, and AMPA in modulating glutamate receptor function.  相似文献   

5.
The biochemical and functional characteristics of the AMPA subtype of the glutamate receptors expressed by pyramidal and non-pyramidal neurons of the neocortex have been studied in acute slices by means of single-cell RT-PCR and fast applications of glutamate on outside-out patches. Our results suggest that the predominant expression of the flop splice variants of the GluR1-4 AMPA subunits contributes to the faster desensitization of these receptors in non-pyramidal neurons compared to pyramidal cells where flip variants of GluR1-4 are dominant. Alternative splicing of AMPA receptors may therefore play an important role in regulating synaptic function in a cell-type specific manner.  相似文献   

6.
Mayer ML 《Neuron》2005,45(4):539-552
Little is known about the molecular mechanisms underlying differences in the ligand binding properties of AMPA, kainate, and NMDA subtype glutamate receptors. Crystal structures of the GluR5 and GluR6 kainate receptor ligand binding cores in complexes with glutamate, 2S,4R-4-methylglutamate, kainate, and quisqualate have now been solved. The structures reveal that the ligand binding cavities are 40% (GluR5) and 16% (GluR6) larger than for GluR2. The binding of AMPA- and GluR5-selective agonists to GluR6 is prevented by steric occlusion, which also interferes with the high-affinity binding of 2S,4R-4-methylglutamate to AMPA receptors. Strikingly, the extent of domain closure produced by the GluR6 partial agonist kainate is only 3 degrees less than for glutamate and 11 degrees greater than for the GluR2 kainate complex. This, together with extensive interdomain contacts between domains 1 and 2 of GluR5 and GluR6, absent from AMPA receptors, likely contributes to the high stability of GluR5 and GluR6 kainate complexes.  相似文献   

7.
Abstract: Brainstem nuclei serve a diverse array of functions in many of which ionotropic glutamate receptors are known to be involved. However, little detailed information is available on the expression of different glutamate receptor subunits in specific nuclei. We used RT‐PCR in mice to analyze the glutamate receptor subunit composition of the pre‐Bötzinger complex, the hypoglossal nucleus, the nucleus of the solitary tract, and the inferior olive. Analyzing 15 receptor subunits and five variants, we found all four α‐amino‐3‐hydroxy‐5‐methyl‐4‐propionic acid (AMPA) and six NMDA receptor (NR) subunits as well as three of five kainate (KA) receptors (GluR5, GluR6, and KA1) to be expressed in all nuclei. However, some distinct differences were observed: The inferior olive preferentially expresses flop variants of AMPA receptors, GluR7 is more abundant in the pre‐Bötzinger complex than in the other nuclei, and NR2C is most prominent in the nucleus of the solitary tract. In single hypoglossal motoneurons and interneurons of the pre‐Bötzinger complex investigation of GluR2 editing revealed strong expression of the GluR2‐R editing variant, suggesting low Ca2+ permeability of AMPA receptors. Thus, Ca2+ ‐permeable AMPA receptors are unlikely to be the cause for the reported selective vulnerability of hypoglossal motoneurons during excitotoxic events.  相似文献   

8.
Previous studies show that chronic hyperammonemia impairs learning ability of rats by impairing the glutamate-nitric oxide (NO)-cyclic guanosine mono-phosphate (cGMP) pathway in cerebellum. Three types of glutamate receptors cooperate in modulating the NO-cGMP pathway: metabotropic glutamate receptor 5 (mGluR5), (RS)-α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-d-aspartic acid (NMDA) receptors. The aim of this work was to assess whether hyperammonemia alters the modulation of this pathway by mGluR5 and AMPA receptors in cerebellum in vivo. The results support that in control rats: (1) low AMPA concentrations (0.1mM) activate nearly completely Ca(2+)-permeable (glutamate receptor subunit 2 (GluR2)-lacking) AMPA receptors and the NO-cGMP pathway; (2) higher AMPA concentrations (0.3 mM) also activate Ca(2+)-impermeable (GluR2-containing) AMPA receptors, leading to activation of NMDA receptors and of NO-cGMP pathway. Moreover, the data support that chronic hyperammonemia: (1) reduces glutamate release and activation of the glutamate-NO-cGMP pathway by activation of mGluR5; (2) strongly reduces the direct activation by AMPA receptors of the NO-cGMP pathway, likely due to reduced entry of Ca(2+) through GluR2-lacking, high affinity AMPA receptors; (3) strongly increases the indirect activation of the NO-cGMP pathway by high affinity AMPA receptors, likely due to increased entry of Na(+) through GluR2-lacking AMPA receptors and NMDA receptors activation; (4) reduces the indirect activation of the NO-cGMP pathway by low affinity AMPA receptors, likely due to reduced activation of NMDA receptors.  相似文献   

9.
Li G  Sheng Z  Huang Z  Niu L 《Biochemistry》2005,44(15):5835-5841
AMPA-type ionotropic glutamate receptors mediate the majority of fast excitatory neurotransmission in the mammalian central nervous system and are essential for brain functions, such as memory and learning. Dysfunction of these receptors has been implicated in a variety of neurological diseases. Using a laser-pulse photolysis technique, we investigated the channel opening mechanism for GluRD(flip) or GluR4(flip) (i.e., the flip isoform of GluRD), an AMPA receptor subunit. The minimal kinetic mechanism for channel opening is consistent with binding of two glutamate molecules per receptor complex. The GluRD(flip) channel opens with a rate constant of (6.83 +/- 0.74) x 10(4) s(-1) and closes with a rate constant of (3.35 +/- 0.17) x 10(3) s(-1). On the basis of these rate constants, the channel opening probability is calculated to be 0.95 +/- 0.12. Furthermore, the shortest rise time (20-80% of the receptor current response to glutamate) is predicted to be 20 micros, which is approximately 8 times shorter than the previous estimate. These findings suggest that the kinetic property of GluRD(flip) is similar to that of GluR2Q(flip), another fast-activating AMPA receptor subunit.  相似文献   

10.
Crovato TE  Egebjerg J 《FEBS letters》2005,579(19):4138-4144
The properties of the glutamate receptor subunits 1-4 (GluR1-4) are influenced by the alternative splicing of two homologous and mutually exclusive exons flip and flop. The flip form is most abundant during early development, while the flop form is dominant in adults. From transfections with a GluR2 mini-gene we show that flip is the preferred splice form in all tested cell lines, but coexpression of the SR-proteins ASF/SF2 and SC35 increases the flop to flip splice ratio. The increased flop incorporation depends on ASF/SF2- and SC35-dependent enhancer elements located in the flop exon, which stimulate the splicing between the flop exon and the preceding exon 13.  相似文献   

11.
Li G  Pei W  Niu L 《Biochemistry》2003,42(42):12358-12366
AMPA receptors mediate fast excitatory neurotransmission in the central nervous system. GluR2 is an AMPA receptor subunit that controls some key heteromeric AMPA receptor properties, such as calcium permeability. The kinetic properties of GluR2, relevant to the time scale of its channel opening, however, are poorly understood. Here, to measure the channel-opening kinetics, we use a laser-pulse photolysis technique, which permits glutamate to be liberated photolytically from gamma-O-(alpha-carboxy-2-nitrobenzyl)glutamate (caged glutamate) with a time constant of approximately 30 micros. We show that GluR2Q(flip), an unedited and Ca(2+) permeable isoform, is by far the fastest ligand-gated channel with the channel-opening and -closing rate constants being (8.0 +/- 0.49) x 10(4) and (2.6 +/- 0.20) x 10(3) s(-1), respectively. Therefore, the shortest rise time (20-80% of the receptor current response) or the fastest observed time by which the GluR2Q(flip) channel can open is predicted to be 17 micros. The minimal kinetic mechanism for the channel opening is further consistent with the binding of two glutamate molecules with the channel-opening probability of 0.96. These results suggest that GluR2 is a temporally, highly efficient receptor to transduce the binding of chemical signals (i.e., glutamate) into an electrical impulse.  相似文献   

12.
2-Amino-3-[3-hydroxy-5-(2-thiazolyl)-4-isoxazolyl]propionic acid (1) is a potent AMPA receptor agonist with moderate affinity for native kainic acid (KA) receptors, whereas (S)-E-4-(2,2-dimethylpropylidene)glutamic acid (3) show high affinity for the GluR5 subtype of KA receptors and much lower affinity for the GluR2 subtype of AMPA receptors. As an attempt to develop new pharmacological tools for studies of GluR5 receptors, (S)-E-4-(2-thiazolylmethylene)glutamic acid (4a) was designed as a structural hybrid between 1 and 3. 4a was shown to be a potent GluR5 agonist and a high affinity ligand and to indiscriminately bind to the AMPA receptor subtypes GluR1-4 with lower affinities. Compounds 4b-h, in which the 2-thiazolyl substituent of 4a was replaced by other heterocyclic rings, which have previously been incorporated as 5-substituents in AMPA analogues, as exemplified by 1 were also synthesized. Compounds 4b-h were either inactive (4e,f) or weaker than 4a as affinity ligands for GluR1-4 and GluR5 with relative potencies comparable with those of the corresponding AMPA analogues as AMPA receptor agonists. Compounds 4a-h may be useful tools for the progressing pharmacophore mapping of the GluR5 agonist binding site.  相似文献   

13.
Armstrong N  Gouaux E 《Neuron》2000,28(1):165-181
Crystal structures of the GluR2 ligand binding core (S1S2) have been determined in the apo state and in the presence of the antagonist DNQX, the partial agonist kainate, and the full agonists AMPA and glutamate. The domains of the S1S2 ligand binding core are expanded in the apo state and contract upon ligand binding with the extent of domain separation decreasing in the order of apo > DNQX > kainate > glutamate approximately equal to AMPA. These results suggest that agonist-induced domain closure gates the transmembrane channel and the extent of receptor activation depends upon the degree of domain closure. AMPA and glutamate also promote a 180 degrees flip of a trans peptide bond in the ligand binding site. The crystal packing of the ligand binding cores suggests modes for subunit-subunit contact in the intact receptor and mechanisms by which allosteric effectors modulate receptor activity.  相似文献   

14.
Fast excitatory synaptic responses in basolateral amygdala (BLA) neurons are mainly mediated by ionotropic glutamate receptors of the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) subtype. AMPA receptors containing an edited GluR2 subunit are calcium impermeable, whereas those that lack this subunit are calcium permeable and also inwardly rectifying. Here, we sought to determine the extent to which synapses in the rat BLA have AMPA receptors with GluR2 subunits. We assessed GluR2 protein expression in the BLA by immunocytochemistry with a GluR2 subunit-specific antiserum at the light and electron microscopic level; for comparison, a parallel examination was carried out in the hippocampus. We also recorded from amygdala brain slices to examine the voltage-dependent properties of AMPA receptor- mediated evoked synaptic currents in BLA principal neurons. At the light microscopic level, GluR2 immunoreactivity was localized to the perikarya and proximal dendrites of BLA neurons; dense labeling was also present over the pyramidal cell layer of hippocampal subfields CA1 and CA3. In electron micrographs from the BLA, most of the synapses were asymmetrical with pronounced postsynaptic densities (PSD). They contained clear, spherical vesicles apposed to the PSD and were predominantly onto spines (86%), indicating that they are mainly with BLA principal neurons. Only 11% of morphological synapses in the BLA were onto postsynaptic elements that showed GluR2 immunoreactivity, in contrast to hippocampal subfields CA1 and CA3 in which 76% and 71% of postsynaptic elements were labeled (p < 0.001). Synaptic staining in the BLA and hippocampus, when it occurred, was exclusively postsynaptic, and particularly heavy over the PSD. In whole-cell voltage clamp recordings, 72% of BLA principal neurons exhibited AMPA receptor-mediated synaptic currents evoked by external capsule stimulation that were inwardly rectifying. Although BLA principal neurons express perikaryal and proximal dendritic GluR2 immunoreactivity, few synapses onto these neurons express GluR2, and a preponderance of principal neurons have inwardly rectifying AMPA-mediated synaptic currents, suggesting that targeting of GluR2 to synapses is restricted. Many BLA synaptic AMPA receptors are likely to be calcium permeable and could play roles in synaptic plasticity, epileptogenesis and excitoxicity.  相似文献   

15.
AMPA receptor-mediated neurotoxicity is currently the most plausible hypothesis for the etiology of amyotrophic lateral sclerosis (ALS). The mechanism initiating this type of neuronal death is believed to be exaggerated Ca2+-influx through AMPA receptors, which is critically determined by the presence or absence of the glutamate receptor subunit 2 (GluR2) in the assembly. We have provided the first quantitative measurements of the expression profile of AMPA receptor subunits mRNAs in human single neurons by means of quantitative RT-PCR with a laser microdissector. Among the AMPA subunits, GluR2 shared the vast majority throughout the neuronal subsets and tissues examined. Furthermore, both the expression level and the proportion of GluR2 mRNA in motoneurons were the lowest among all neuronal subsets examined, whereas those in motoneurons of ALS did not differ from the control group, implying that selective reduction of the GluR2 subunit cannot be a mechanism of AMPA receptor-mediated neurotoxicity in ALS. However, the low relative abundance of GluR2 might provide spinal motoneurons with conditions that are easily affected by changes of AMPA receptor properties including deficient GluR2 mRNA editing in ALS.  相似文献   

16.
Fast excitatory transmission in the mammalian central nervous system is mediated by AMPA‐type glutamate receptors. The tetrameric AMPA receptor complexes are composed of four subunits, GluR1–4. The GluR4 subunit is highly expressed in the cerebellum and the early postnatal hippocampus and is thought to be involved in synaptic plasticity and the development of functional neural circuitry through the recruitment of other AMPA receptor subunits. Previously, we reported an association of the human GluR4 gene (GRIA4) with schizophrenia. To examine the role of the GluR4 subunit in the higher brain function, we generated GluR4 knockout mice and conducted electrophysiological and behavioural analyses. The mutant mice showed normal long‐term potentiation (LTP) in the CA1 region of the hippocampus. The GluR4 knockout mice showed mildly improved spatial working memory in the T‐maze test. Although the retention of spatial reference memory was intact in the mutant mice, the acquisition of spatial reference memory was impaired in the Barnes circular maze test. The GluR4 knockout mice showed impaired prepulse inhibition. These results suggest the involvement of the GluR4 subunit in cognitive function.  相似文献   

17.
Abstract: The surface expression of the α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)-type glutamate receptor (GluR) subunits GluR1, GluR2, and GluR4 was studied in cultures of stably transfected baby hamster kidney (BHK)-570 cells. Two methods were used to quantify surface expression: cross-linking with the membrane-impermeant reagent bis(sulfosuccinimidyl)suberate (BS3) and labeling of surface receptors with the membrane-impermeant biotinylating reagent sulfosuccinimidyl 2-(biotinamido)ethyl-1,3-dithiopropionate (NHS-ss-biotin) followed by precipitation with neutravidin beads. Western blot analyses of control versus treated cultures revealed that, for all three GluR subunits examined, 25–40% of the total GluR population is located in the plasma membrane of the BHK-570 cells. This finding was corroborated by analyses of the surface expression of [3H]AMPA binding sites in the GluR-expressing BHK-570 cells performed via the biotinylation/precipitation method; these studies revealed that 30–40% of the total binding site population is found in the plasma membrane. Analyses of combinations of the subunits, both GluR1 + GluR2 and GluR2 + GluR4, revealed that heteromeric combinations of the subunits are not trafficked to the surface more efficiently than homomeric receptors. For each of the three subunits, western blots revealed two distinct bands; removal of surface receptors reduced immunoreactivity for the upper band of each subunit by >90%, whereas immunoreactivity for the lower band was reduced by only 10–20%. Treatment of extracts from the various cell lines with glycopeptidase F resulted in the collapse of the two bands into a single band of lower molecular weight, suggesting that the two original bands represent differentially glycosylated forms of the same polypeptides. These data indicate that the majority of the stably expressed GluR subunits in these cell lines are incompletely glycosylated and that complete glycosylation is associated with trafficking of the GluR subunits to the cell surface.  相似文献   

18.
Glutamate receptor phosphorylation has been implicated in several forms of modulation of synaptic transmission. It has been reported that protein kinase A (PKA) can phosphorylate the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptor subunit GluR4 on Ser842, both in vitro and in vivo. Here, we studied the regulation of GluR4 phosphorylation and intracellular trafficking by PKA and by metabotropic receptors coupled to adenylyl cyclase (AC), in cultured chick retinal amacrine-like neurones, which are enriched in GluR4. The regulation of AMPA receptor activity by PKA and by metabotropic AC-coupled receptors was also investigated by measuring the [Ca2+]i response to kainate in Na(+)-free medium. Stimulation of AC with forskolin (FSK), or using the selective agonist of dopamine D1 receptors (+/-)-1-phenyl-2,3,4,5-tetrahydro-(1H)-3-benzazepine-7,8-diol (SKF38393), increased the [Ca2+]i response to kainate, GluR4 phosphorylation at Ser842 and GluR4 surface expression. Pre-incubation of the cells with (2S,2'R,3'R)-2-(2',3'-dicarboxycyclopropyl)glycine (DCG-IV), an agonist of group II metabotropic glutamate receptors (mGluR), which are coupled to inhibition of AC, inhibited the effect of FSK and of SKF38393 on AMPA receptor activity, GluR4 phosphorylation and expression at the plasma membrane. These results indicate that there is a functional cross-talk between dopamine D1 receptors and group II mGluR in the regulation of GluR4 phosphorylation and AMPA receptor activity. Our data show that GluR4 phosphorylation at Ser842 by PKA, and its recruitment to the plasma membrane upon phosphorylation, is regulated by metabotropic receptors.  相似文献   

19.
20.
Ionotropic glutamate receptors (iGluRs) mediate fast synaptic transmission between cells of the central nervous system and are involved in various aspects of normal brain function. iGluRs are implicated in several brain disorders, e.g. in the high-frequency discharge of impulses during an epileptic seizure. (RS)-NS1209 functions as a competitive antagonist at 2-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)propionate receptors, and shows robust preclinical anticonvulsant and neuroprotective effects. This study explores 2-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)propionate receptor binding and selectivity of this novel class of antagonists. We present here the first X-ray structure of a mixed GluR2 ligand-binding core dimer, with the high-affinity antagonist (S)-8-methyl-5-(4-(N,N-dimethylsulfamoyl)phenyl)-6,7,8,9,-tetrahydro-1H-pyrrolo[3,2-h]-isoquinoline-2,3-dione-3-O-(4-hydroxybutyrate-2-yl)oxime [(S)-NS1209] in one protomer and the endogenous ligand (S)-glutamate in the other. (S)-NS1209 stabilises an even more open conformation of the D1 and D2 domains of the ligand-binding core than that of the apo structure due to steric hindrance. This is the first time ligand-induced hyperextension of the binding domains has been observed. (S)-NS1209 adopts a novel binding mode, including hydrogen bonding to Tyr450 and Gly451 of D1. Parts of (S)-NS1209 occupy new areas of the GluR2 ligand-binding cleft, and bind near residues that are not conserved among receptor subtypes. The affinities of (RS)-NS1209 at the GluR2 ligand-binding core as well as at GluR1-6 and mutated GluR1 and GluR3 receptors have been measured. Two distinct binding affinities were observed at the GluR3 and GluR4 receptors. In a functional in vitro assay, no difference in potency was observed between GluR2(Q)(o) and GluR3(o) receptors. The thermodynamics of binding of the antagonists (S)-NS1209, DNQX and (S)-ATPO to the GluR2 ligand-binding core have been determined by displacement isothermal titration calorimetry. The displacement of (S)-glutamate by all antagonists was shown to be driven by enthalpy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号