首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fast excitatory neurotransmission is mediated largely by ionotropic glutamate receptors (iGluRs), tetrameric, ligand‐gated ion channel proteins comprised of three subfamilies, AMPA, kainate and NMDA receptors, with each subfamily sharing a common, modular‐domain architecture. For all receptor subfamilies, active channels are exclusively formed by assemblages of subunits within the same subfamily, a molecular process principally encoded by the amino‐terminal domain (ATD). However, the molecular basis by which the ATD guides subfamily‐specific receptor assembly is not known. Here we show that AMPA receptor GluR1‐ and GluR2‐ATDs form tightly associated dimers and, by the analysis of crystal structures of the GluR2‐ATD, propose mechanisms by which the ATD guides subfamily‐specific receptor assembly.  相似文献   

2.
Previous studies suggest that alterations of brain glutamate synthesis and release occur in experimental thiamine deficiency. In order to assess the integrity of post-synaptic glutamatergic receptors in thiamine deficiency, binding sites for [3H]glutamate (displaced by NMDA), [3H]-kainate, and [3H]quisqualate (AMPA sites) were evaluated using Quantitative Receptor Autoradiography in rat brain following 14 days of treatment with the central thiamine antagonist pyrithiamine. Compared to pair-fed controls, brains of symptomatic thiamine-deficient animals contained significantly fewer NMDA-displaceable binding sites in cerebral cortex, medial septum and hippocampus. It has been suggested that NMDA-receptor mediated glutamate excitotoxicity plays a role in the pathogenesis of neuronal loss in thiamine deficiency. If such is the case, the selective loss of NMDA binding sites in cerebral cortex and hippocampus offers a possible explanation for the relative nonvulnerability of these brain regions to pyrithiamine-induced thiamine deficiency. [3H]quisqualate (AMPA) binding sites were unchanged in all brain regions of pyrithiamine-treated rats whereas [3H]kainate sites were significantly reduced in density in medial and lateral thalamus. The decline in these binding sites may be due to neuronal loss in pyrithiamine-induced thiamine deficiency. Alterations of glutamatergic synaptic function involving both NMDA and kainate receptor subclasses could contribute to the pathogenesis of neurological dysfunction in Wernicke's Encephalopathy in humans.  相似文献   

3.
X-ray structures of the GluR2 ligand-binding core in complex with (S)-Des-Me-AMPA and in the presence and absence of zinc ions have been determined. (S)-Des-Me-AMPA, which is devoid of a substituent in the 5-position of the isoxazolol ring, only has limited interactions with the partly hydrophobic pocket of the ligand-binding site, and adopts an AMPA-like binding mode. The structures, in comparison with other agonist complex structures, disclose the relative importance of the isoxazolol ring and of the substituent in the 5-position for the mode of binding. A relationship appears to exist between the extent of interaction of the ligand with the hydrophobic pocket and the affinity of the ligand.  相似文献   

4.
Summary 1. The structure and function of glutamate receptor subunits GluR2, GluR5, and GluR6 are changed by RNA editing. This reaction produces a base transition in the second transmembrane spanning region. The triplet CAG (coding for glutamine) is changed to CGG (coding for arginine). This transition has a pronounced effect on calcium fluxes through the respective ion channels, because calcium currents decrease with the rate of editing.2. In the present study the extent of RNA editing of the glutamate receptor subunit GluR5 was studied in different brain regions of control rats using a newly developed analysis system. This system is based on restriction analysis of the polymerase chain reaction (PCR) product, derived from reverse-transcribed mRNA as template, with the enzymeBbv1.Bbv1 recognizes the sequence of the nonedited receptor subunit around the edited base (sequence GCAGC) but not that of the edited subunit (sequence GCGGC; A edited to G).3. Total RNA was isolated from the cerebral cortex, striatum, hippocampus, thalamus, hypothalamus, cerebellum, pons/medulla oblongata, and white matter and reverse transcribed into cDNA. The region across the edited sequence was amplified by PCR using GluR5-specific primers and the cDNA as template. PCR products were cleaned by ethanol precipitation, incubated withBbv1, and electrophoresed on an agarose gel together with standards. Gels were photographed and the extent of GluR5 mRNA editing was quantified using an image analysis system. A calibration curve was obtained using PCR products amplified from plasmids with edited and nonedited GluR5 as inserts.4. In the brain of control rats the extent of RNA editing of the GluR5 subunit amounted to 62±6.0% of total (cortex), 43±5.3% (striatum), 52±5.3% (hippocampus), 91±6.3% (thalamus), 85±10.2% (hypothalamus), 82±6.5% (cerebellum), 88±6.8% (pons/medulla oblongata), and 41±2.7% (white matter).5. The extent of RNA editing varied, thus, considerably in different brain regions, being lowest in the white matter and striatum and highest in the thalamus and pons/medulla oblongate. RNA editing of glutamate receptor subunits may play an important role in the control of calcium fluxes through non-N-methyl-D-aspartate receptor channels in different physiological and/or pathological states of the brain.  相似文献   

5.
《Molecular cell》2021,81(15):3216-3226.e8
  1. Download : Download high-res image (344KB)
  2. Download : Download full-size image
  相似文献   

6.
The assembly of AMPA-type glutamate receptors (AMPARs) into distinct ion channel tetramers ultimately governs the nature of information transfer at excitatory synapses. How cells regulate the formation of diverse homo- and heteromeric AMPARs is unknown. Using a sensitive biophysical approach, we show that the extracellular, membrane-distal AMPAR N-terminal domains (NTDs) orchestrate selective routes of heteromeric assembly via a surprisingly wide spectrum of subunit-specific association affinities. Heteromerization is dominant, occurs at the level of the dimer, and results in a preferential incorporation of the functionally critical GluA2 subunit. Using a combination of structure-guided mutagenesis and electrophysiology, we further map evolutionarily variable hotspots in the NTD dimer interface, which modulate heteromerization capacity. This 'flexibility' of the NTD not only explains why heteromers predominate but also how GluA2-lacking, Ca(2+)-permeable homomers could form, which are induced under specific physiological and pathological conditions. Our findings reveal that distinct NTD properties set the stage for the biogenesis of functionally diverse pools of homo- and heteromeric AMPAR tetramers.  相似文献   

7.
Fourier transform infrared spectroscopy has been used to probe the agonist‐protein interactions in the ligand binding domain of the GluR6 subunit, one subunit of the kainate subtype of glutamate receptors. In order to study the changes in the interactions over a range of activations the investigations were performed using the wild type, N690S, and T661E mutations. These studies show that the strength of the interactions at the α‐amine group of the agonist, as probed by studying the environment of the nondisulphide bonded Cys 432, acts as a switch with weaker interactions at lower activations and stronger interactions at higher activations. The α‐carboxylate interactions of the agonist, however, are not significantly different over the wide range of activations, as measured by the maximum currents mediated by the receptors at saturating concentrations of agonists. Previous investigations of AMPA receptors show a similar dependence of the α‐amine interactions on activation indicating that the roles of the α‐amine interactions in mediating receptor activation are similar for both subtypes of receptors; however, in the case of the AMPA receptors a tug of war type of change was observed between the α‐amine and α‐carboxylate interactions and this is not observed in kainate receptors. This decoupling of the two interactions could arise due to the larger cleft observed in kainate receptors, which allows for a more flexible interaction for the α‐amine and α‐carboxylate groups of the agonists.  相似文献   

8.
The family of cytoplasmic polyadenylation element binding proteins CPEB1, CPEB2, CPEB3, and CPEB4 binds to the 3′‐untranslated region (3′‐UTR) of mRNA, and plays significant roles in mRNA metabolism and translation regulation. They have a common domain organization, involving two consecutive RNA recognition motif (RRM) domains followed by a zinc finger domain in the C‐terminal region. We solved the solution structure of the first RRM domain (RRM1) of human CPEB3, which revealed that CPEB3 RRM1 exhibits structural features distinct from those of the canonical RRM domain. Our structural data provide important information about the RNA binding ability of CPEB3 RRM1. Proteins 2014; 82:2879–2886. © 2014 Wiley Periodicals, Inc.  相似文献   

9.
10.
The hypothesis that depression is caused solely by a decrease in synaptic availability of monoaminergic neurotransmitters has been questioned over the past two decades. Based on accumulating data, it seems more plausible that cross-talk exists between neurotransmitters in the CNS, including the glutamatergic system. Glutamate, the major fast excitatory neurotransmitter in the CNS, is the natural agonist for the ionotropic glutamate receptors, a family of ligand-gated ion channels including NMDA (N-methyl-D-aspartate), AMPA (amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid), and kainate receptors. In this work, we show that five tricyclic antidepressants bind to the S1S2 domain of the GluR2 subunit of the AMPA receptor. A combination of fluorescence quenching, Stern-Volmer analyses, and protease protection assays differentiate the binding of each antidepressant. These analyses provide no evidence for the binding of the selective serotonin reuptake inhibitor, fluoxetine, to this domain. The data presented provides further support for a role of the glutamatergic system in antidepressant activity.  相似文献   

11.
We have previously described (RS)-2-amino-3-(3-carboxy-5-methyl-4-isoxazolyl)propionic acid (ACPA) as a potent agonist at the (RS)-2-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)propionic acid (AMPA) receptor subtype of (S)-glutamic acid (Glu) receptors. We now report the chromatographic resolution of ACPA and (RS)-2-amino-3-(3-carboxy-4-isoxazolyl)propionic acid (demethyl-ACPA) using a Sumichiral OA-5000 column. The configuration of the enantiomers of both compounds have been assigned based on X-ray crystallographic analyses, supported by circular dichroism spectra and elution orders on chiral HPLC columns. Furthermore, the enantiopharmacology of ACPA and demethyl-ACPA was investigated using radioligand binding and cortical wedge electrophysiological assay systems and cloned metabotropic Glu receptors. (S)-ACPA showed high affinity in AMPA binding (IC(50) = 0.025 microM), low affinity in kainic acid binding (IC(50) = 3.6 microM), and potent AMPA receptor agonist activity on cortical neurons (EC(50) = 0.25 microM), whereas (R)-ACPA was essentially inactive. Like (S)-ACPA, (S)-demethyl-ACPA displayed high AMPA receptor affinity (IC(50) = 0.039 microM), but was found to be a relatively weak AMPA receptor agonist (EC(50) = 12 microM). The stereoselectivity observed for demethyl-ACPA was high when based on AMPA receptor affinity (eudismic ratio = 250), but low when based on electrophysiological activity (eudismic ratio = 10). (R)-Demethyl-ACPA also possessed a weak NMDA receptor antagonist activity (IC(50) = 220 microM). Among the enantiomers tested, only (S)-demethyl-ACPA showed activity at metabotropic receptors, being a weak antagonist at the mGlu(2) receptor subtype (K(B) = 148 microM).  相似文献   

12.
NR3 subtype glutamate receptors have a unique developmental expression profile, but are the least well-characterized members of the NMDA receptor gene family, which have key roles in synaptic plasticity and brain development. Using ligand binding assays, crystallographic analysis, and all atom MD simulations, we investigate mechanisms underlying the binding by NR3A and NR3B of glycine and D-serine, which are candidate neurotransmitters for NMDA receptors containing NR3 subunits. The ligand binding domains of both NR3 subunits adopt a similar extent of domain closure as found in the corresponding NR1 complexes, but have a unique loop 1 structure distinct from that in all other glutamate receptor ion channels. Within their ligand binding pockets, NR3A and NR3B have strikingly different hydrogen bonding networks and solvent structures from those found in NR1, and fail to undergo a conformational rearrangement observed in NR1 upon binding the partial agonist ACPC. MD simulations revealed numerous interdomain contacts, which stabilize the agonist-bound closed-cleft conformation, and a novel twisting motion for the loop 1 helix that is unique in NR3 subunits.  相似文献   

13.
Glutamate-gated ion channels (ionotropic glutamate receptors, iGluRs) sense the extracellular milieu via an extensive extracellular portion, comprised of two clamshell-shaped segments. The distal, N-terminal domain (NTD) has allosteric potential in NMDA-type iGluRs, which has not been ascribed to the analogous domain in AMPA receptors (AMPARs). In this study, we present new structural data uncovering dynamic properties of the GluA2 and GluA3 AMPAR NTDs. GluA3 features a zipped-open dimer interface with unconstrained lower clamshell lobes, reminiscent of metabotropic GluRs (mGluRs). The resulting labile interface supports interprotomer rotations, which can be transmitted to downstream receptor segments. Normal mode analysis reveals two dominant mechanisms of AMPAR NTD motion: intraprotomer clamshell motions and interprotomer counter-rotations, as well as accessible interconversion between AMPAR and mGluR conformations. In addition, we detect electron density for a potential ligand in the GluA2 interlobe cleft, which may trigger lobe motions. Together, these data support a dynamic role for the AMPAR NTDs, which widens the allosteric landscape of the receptor and could provide a novel target for ligand development.  相似文献   

14.
Excitotoxicity mediated by alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors has been proposed to play a major role in the selective death of motor neurons in sporadic amyotrophic lateral sclerosis (ALS), and motor neurons are more vulnerable to AMPA receptor-mediated excitotoxicity than are other neuronal subclasses. On the basis of the above evidence, we aimed to develop a rat model of ALS by the long-term activation of AMPA receptors through continuous infusion of kainic acid (KA), an AMPA receptor agonist, into the spinal subarachnoid space. These rats displayed a progressive motor-selective behavioral deficit with delayed loss of spinal motor neurons, mimicking the clinicopathological characteristics of ALS. These changes were significantly ameliorated by co-infusion with 6-nitro-7-sulfamobenso(f)quinoxaline-2,3-dione (NBQX), but not with d(-)-2-amino-5-phosphonovaleric acid (APV), and were exacerbated by co-infusion with cyclothiazide, indicative of an AMPA receptor-mediated mechanism. Among the four AMPA receptor subunits, expression of GluR3 mRNA was selectively up-regulated in motor neurons but not in dorsal horn neurons of the KA-infused rats. The up-regulation of GluR3 mRNA in this model may cause a molecular change that induces the selective vulnerability of motor neurons to KA by increasing the proportion of GluR2-lacking (i.e. calcium-permeable) AMPA receptors. This rat model may be useful in investigating ALS etiology.  相似文献   

15.
J. Neurochem. (2012) 122, 891-899. ABSTRACT: Presynaptic kainate receptors (KARs) modulate the release of glutamate at synapses established between mossy fibers (MF) and CA3 pyramidal cells in the hippocampus. The activation of KAR by low, nanomolar, kainate concentrations facilitates glutamate release. KAR-mediated facilitation of glutamate release involves the activation of an adenylate cyclase/cyclic adenosine monophosphate/protein kinase A cascade at MF-CA3 synapses. Here, we studied the mechanisms by which KAR activation produces this facilitation of glutamate release in slices and synaptosomes. We find that the facilitation of glutamate release mediated by KAR activation requires an increase in Ca(2+) levels in the cytosol and the formation of a Ca(2+) -calmodulin complex to activate adenylate cyclase. The increase in cytosolic Ca(2+) underpinning this modulation is achieved, both, by Ca(2+) entering via Ca(2+) -permeable KARs and, by the mobilization of intraterminal Ca(2+) stores. Finally, we find that, congruent with the Ca(2+) -calmodulin support of KAR-mediated facilitation of glutamate release, induction of long-term potentiation at MF-CA3 synapses has an obligate requirement for Ca(2+) -calmodulin activity.  相似文献   

16.
Although it is well-known that AMPA receptors are involved in spatial learning and memory, published data on GluR3 and GluR4 are limited. Moreover, there is no information about GluR3 and GluR4 receptor complex levels in spatial memory training. It was therefore the aim of the study to determine the above-mentioned receptor levels following training in the Multiple T-Maze (MTM). Results from the MTM and hippocampal membrane proteins from C57BL/6J mice were taken from an own previous study and GluR3 and GluR4 receptor complexes were run on blue native gel electrophoresis followed by immunoblotting and quantification of bands. Subsequently, GluR3 and GluR4 were identified under denaturing conditions from two-dimensional gels by mass spectrometry (nano-LC-ESI-MS/MS). Hippocampal levels of GluR3 containing complexes (apparent molecular weight between 480 and 720) were decreased while GluR4 containing complexes (apparent molecular weight between 480 and 720) were increased. GluR4 complex levels in trained mice were correlating with latency and speed. Mass spectrometry unambiguously identified the two receptor subunits. The findings show that GluR3 and GluR4 may have different functions in the processes of spatial memory training in the MTM and indeed, different neurobiological functions of the two receptor subunits have been already reported. GluR3 and GluR4 receptor complex rather than subunit levels are paralleling training in the MTM and GluR4 complex levels were even linked to memory training, which may be of relevance for understanding molecular memory processes, interpretation of previous work or for design of future AMPA receptor studies.  相似文献   

17.
A Chinese hamster ovary cell line has been established which secretes the N-terminal domain of human mGlu1 receptor. The secreted protein has been modified to contain a C-terminal hexa-histidine tag and can be purified by metal-chelate chromatography to yield a protein with an apparent molecular weight of 130 kDa. Following treatment with dithiothreitol the apparent molecular weight is reduced to 75 kDa showing that the protein is a disulphide-bonded dimer. N-terminal protein sequencing of both the reduced and unreduced forms of the protein yielded identical sequences, confirming that they were derived from the same protein, and identifying the site of signal-peptide cleavage of the receptor as residue 32 in the predicted amino acid sequence. Endoglycosidase treatment of the secreted and intracellular forms of the protein showed that the latter was present as an endoglycosidase H-sensitive dimer, indicating that dimerization is taking place in the endoplasmic reticulum. Characterization of the binding of [3H]quisqualic acid showed that the protein was secreted at levels of up to 2.4 pmol/mL and the secreted protein has a Kd of 5.6 +/- 1.8 nm compared with 10 +/- 1 nm for baby hamster kidney (BHK)-mGlu1alpha receptor-expressing cell membranes. The secreted protein maintained a pharmacological profile similar to that of the native receptor and the binding of glutamate and quisqualate were unaffected by changes in Ca2+ concentration.  相似文献   

18.
Crovato TE  Egebjerg J 《FEBS letters》2005,579(19):4138-4144
The properties of the glutamate receptor subunits 1-4 (GluR1-4) are influenced by the alternative splicing of two homologous and mutually exclusive exons flip and flop. The flip form is most abundant during early development, while the flop form is dominant in adults. From transfections with a GluR2 mini-gene we show that flip is the preferred splice form in all tested cell lines, but coexpression of the SR-proteins ASF/SF2 and SC35 increases the flop to flip splice ratio. The increased flop incorporation depends on ASF/SF2- and SC35-dependent enhancer elements located in the flop exon, which stimulate the splicing between the flop exon and the preceding exon 13.  相似文献   

19.
Backbone 1H, 13C, and 15N chemical shifts are reported for complexes of a perdeuterated glutamate receptor ligand binding domain with kainate, willardiine, and 5-substituted fluoro-, bromo-, and iodowillardiine. These ligands are partial agonists that induce distinct current responses at post-synaptic neurons. The chemical shifts pave the way for numerous NMR studies to identify structural and dynamical determinants of receptor function.  相似文献   

20.
To better understand the structural basis for the binding of proteinase-transformed human alpha2-macroglobulin (alpha2M) to its receptor, we have used three-dimensional multinuclear NMR spectroscopy to determine the secondary structure of the receptor binding domain (RBD) of human alpha2M. Assignment of the backbone NMR resonances of RBD was made using 13C/15-N and 15N-enriched RBD expressed in Escherichia coli. The secondary structure of RBD was determined using 1H and 13C chemical shift indices and inter- and intrachain nuclear Overhauser enhancements. The secondary structure consists of eight strands in beta-conformation and one alpha-helix, which together comprise 44% of the protein. The beta-strands form three regions of antiparallel beta-sheet. The two lysines previously identified as being critical for receptor binding are located in (Lys1374), and immediately adjacent to (Lys1370) the alpha-helix, which also contains an (Arg1378). Secondary structure predictions of other alpha-macroglobulins show the conservation of this alpha-helix and suggest an important role for this helix and for basic residues within it for receptor binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号