首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 0 毫秒
1.
2.
新生肽链折叠过程中容易出现错误折叠与聚沉,从而导致折叠病等病理现象. 分子伴侣具有辅助其他蛋白质正确折叠,保护蛋白质分子结构的功能.本文选用人肌肌酸激酶为靶蛋白,研究了肽基脯氨酰顺反异构酶人亲环素18(human cyclophilin 18,hCyp18)对人肌肌酸激酶去折叠的作用,发现hCyp18能够抑制人肌肌酸激酶在热变性与化学变性过程中的失活与构象变化,并抑制人肌肌酸激酶在化学变性过程中的聚沉,因此推断hCyp18具有针对人肌肌酸激酶的分子伴侣功能.本文同时研究了hCyp18与人肌肌酸激酶的结合作用,对hCyp18的作用机制进行了初步探讨.  相似文献   

3.
Cyclophilin A (CyPA) was identified as one of the calreticulin (CR)-binding proteins in a yeast two-hybrid screen utilizing simian cDNA expression-library. The simian CyPA protein had 96% identity with that of human, differing only at eight amino acid residues. We further established CyPA–CR interaction by incubation of glutathione transferase-fused CyPA (GST-CyPA) and CR proteins with CV-1 cyto-lysates, followed by CR and CyPA-specific immuno-blot analysis. The immunosuppressive drug cyclosporin A, a CyPA ligand, did not inhibit CyPA–CR interaction. Our results established a new property of CyPA binding activity to CR. Since CR is a Ca2+-binding protein, CR–CyPA interactions may be important in signaling pathways for induction of Ca2+-dependent cellular processes.  相似文献   

4.
Refolding of b*C40A/C82A/P27A is comprised of several kinetically detectable folding phases. The slowest phase in refolding originates from trans-->cis isomerization of the Tyr47-Pro48 peptide bond being in cis conformation in the native state. This refolding phase can be accelerated by the peptidyl-prolyl cis/trans isomerase human cytosolic cyclophilin (Cyp18) with a kcat/K(M) of 254,000 M(-1) s(-1). The fast refolding phase is not influenced by the enzyme.  相似文献   

5.
Photoactive yellow protein (PYP), a blue-light photoreceptor for Ectothiorhodospira halophila, has provided a unique system for studying protein folding that is coupled with a photocycle. Upon receptor activation by blue light, PYP proceeds through a photocycle that includes a partially folded signaling state. The last-step photocycle is a thermal recovery reaction from the signaling state to the native state. Bi-exponential kinetics had been observed for the last-step photocycle; however, the slow phase of the bi-exponential kinetics has not been extensively studied. Here we analyzed both fast and slow phases of the last-step photocycle in PYP. From the analysis of the denaturant dependence of the fast and slow phases, we found that the last-step photocycle proceeds through parallel channels of the folding pathway. The burial of the solvent-accessible area was responsible for the transition state of the fast phase, while structural rearrangement from the compact state to the native state was responsible for the transition state of the slow phase. The photocycle of PYP was linked to the thermodynamic cycle that includes both unfolding and refolding of the fast- and slow-phase intermediates. In order to test the hypothesis of proline-limited folding for the slow phase, we constructed two proline mutants: P54A and P68A. We found that only a single phase of the last-step photocycle was observed in P54A. This suggests that there is a low energy barrier between trans to cis conformation in P54 in the light-induced state of PYP, and the resulting cis conformation of P54 generates a slow-phase kinetic trap during the photocycle-coupled folding pathway of PYP.  相似文献   

6.
The undisputed role of His64 in proton transfer during catalysis by carbonic anhydrases in the α class has raised questions concerning the details of its mechanism. The highly conserved residues Tyr7, Asn62, and Asn67 in the active-site cavity function to fine tune the properties of proton transfer by human carbonic anhydrase II (HCA II). For example, hydrophobic residues at these positions favor an inward orientation of His64 and a low pKa for its imidazole side chain. It appears that the predominant manner in which this fine tuning is achieved in rate constants for proton transfer is through the difference in pKa between His64 and the zinc-bound solvent molecule. Other properties of the active-site cavity, such as inward and outward conformers of His64, appear associated with the change in ΔpKa; however, there is no strong evidence to date that the inward and outward orientations of His64 are in themselves requirements for facile proton transfer in carbonic anhydrase.  相似文献   

7.
The essential role of enzymes in biological processes has continually ignited sparks of interest in their mechanism of action. Fully understanding the mechanism of enzymes has broad implications in protein engineering and drug design. The more than five order of magnitude speed-up in the rate of peptidyl–prolyl cistrans isomerisation by cyclophilin A (CypA) has been the target of intense research. CypA serves as a tractable model system, because it reversibly catalyses the rotation around peptidyl–prolyl bonds without any bond breakage or formation. Here, we discuss the results of recent computational approaches used to study the mechanism of CypA. We highlight the critical role of enzyme and substrate conformational dynamics in the developing interactions as the substrate approaches the transition state that results in an astonishing enhancement of isomerisation rate. The rate of isomerisation is affected by the intricate coupling between the dynamics of the substrate, enzyme and solvent. CypA binds its substrates via conformational selection, where rearrangements of key active site residues are necessary for substrate recognition. The conformational plasticity of the active site allows the enzyme to accommodate the most favourable interactions with the transition state that can be exploited for structure-based drug design.  相似文献   

8.
Agarwal PK 《Proteins》2004,56(3):449-463
A network of protein vibrations has recently been identified in the enzyme cyclophilin A (CypA) that is associated with its peptidyl-prolyl cis/trans isomerization activity of small peptide substrates. It has been suggested that this network may have a role in promoting the catalytic step during the isomerization reaction. This work presents the results from the characterization of this network during the isomerization of the Gly89-Pro90 peptide bond in the N-terminal domain of the capsid protein (CA(N)) from human immunodeficiency virus type 1 (HIV-1), which is a naturally occurring, biologically relevant protein substrate for CypA. A variety of computational and theoretical studies are utilized to investigate the protein dynamics of the CypA-CA(N) complex, at multiple time scales, during the isomerization step. The results provide insights into the detailed mechanism of isomerization and confirm the presence of previously reported network of protein vibrations coupled to the reaction. Conserved CypA residues at the complex interface and at positions distal to the interface form parts of this network. There is HIV-1 related medical interest in CypA; incorporation of CypA, complexed with the capsid protein, into the virion is required for the infectious activity of HIV-1. Interaction energy and dynamical cross-correlation calculations are used for a detailed investigation of the protein-protein interactions in the CypA-CA(N) complex. The results show that CA(N) residues His87-Ala-Gly-Pro-Ile-Ala92 form the majority of the interactions with CypA residues. New protein-protein interactions distal to the active site (CypA Arg148-CA(N) Gln95 and CypA Arg148-CA(N) Asn121) are also identified.  相似文献   

9.
A conserved cis proline residue located in the active site of Thermotoga maritima acetyl esterase (TmAcE) from the carbohydrate esterase family 7 (CE7) has been substituted by alanine. The residue was known to play a crucial role in determining the catalytic properties of the enzyme. To elucidate the structural role of the residue, the crystal structure of the Pro228Ala variant (TmAcEP228A) was determined at 2.1 Å resolution. The replacement does not affect the overall secondary, tertiary, and quaternary structures and moderately decreases the thermal stability. However, the wild type cis conformation of the 227–228 peptide bond adopts a trans conformation in the variant. Other conformational changes in the tertiary structure are restricted to residues 222–226, preceding this peptide bond and are located away from the active site. Overall, the results suggest that the conserved proline residue is responsible for the cis conformation of the peptide and shapes the geometry of the active site. Elimination of the pyrrolidine ring results in the loss of van der Waals and hydrophobic interactions with both the alcohol and acyl moeities of the ester substrate, leading to significant impairment of the activity and perturbation of substrate specificity. Furthermore, a cis‐to‐trans conformational change arising out of residue changes at this position may be associated with the evolution of divergent activity, specificity, and stability properties of members constituting the CE7 family. Proteins 2017; 85:694–708. © 2016 Wiley Periodicals, Inc.  相似文献   

10.
11.
We report that Pro74 in human stefin B is critical for fibril formation and that proline isomerization plays an important role. The stefin B P74S mutant did not fibrillate over the time of observation at 25 °C, and it exhibited a prolonged lag phase at 30 °C and 37 °C. The peptidyl prolyl cis/trans isomerase cyclophilin A, when added to the wild-type protein, exerted two effects: it prolonged the lag phase and increased the yield and length of the fibrils. Addition of the inactive cyclophilin A R55A variant still resulted in a prolonged lag phase but did not mediate the increase of the final fibril yield. These results demonstrate that peptidyl prolyl cis/trans isomerism is rate-limiting in stefin B fibril formation.  相似文献   

12.
13.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号