首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Obesity can be considered as a low‐grade inflammatory condition, strongly linked to adverse metabolic outcomes. Obesity‐associated adipose tissue inflammation is characterized by infiltration of macrophages and increased cytokine and chemokine production. The distribution of adipose tissue impacts the outcomes of obesity, with the accumulation of fat in visceral adipose tissue (VAT) and deep subcutaneous adipose tissue (SAT), but not superficial SAT, being linked to insulin resistance. We hypothesized that the inflammatory gene expression in deep SAT and VAT is higher than in superficial SAT. A total of 17 apparently healthy women (BMI: 29.3±5.5 kg/m2) were included in the study. Body fat (dual‐energy X‐ray absorptiometry) and distribution (computed tomography) were measured, and insulin sensitivity, blood lipids, and blood pressure were determined. Inflammation‐related differences in gene expression (real‐time PCR) from VAT, superficial and deep SAT biopsies were analyzed using univariate and multivariate data analyses. Using multivariate discrimination analysis, VAT appeared as a distinct depot in adipose tissue inflammation, while the SAT depots had a similar pattern, with respect to gene expression. A significantly elevated (P < 0.01) expression of the CC chemokine receptor 2 (CCR2) and macrophage migration inhibitory factor (MIF) in VAT contributed strongly to the discrimination. In conclusion, the human adipose tissue depots have unique inflammatory patterns, with CCR2 and MIF distinguishing between VAT and the SAT depots.  相似文献   

2.
Following menopause, body fat is redistributed from peripheral to central depots. This may be linked to the age related decrease in estrogen levels. We hypothesized that estrogen supplementation could counteract this fat redistribution through tissue‐specific modulation of glucocorticoid exposure. We measured fat depot masses and the expression and activity of the glucocorticoid‐activating enzyme 11β‐hydroxysteroid dehydrogenase type 1 (11βHSD1) in fat and liver of ovariectomized female rats treated with or without 17β‐estradiol. 11βHSD1 converts inert cortisone, or 11‐dehydrocorticosterone in rats into active cortisol and corticosterone. Estradiol‐treated rats gained less weight and had significantly lower visceral adipose tissue weight than nontreated rats (P < 0.01); subcutaneous adipose weight was unaltered. In addition, 11βHSD1 activity/expression was downregulated in liver and visceral, but not subcutaneous, fat of estradiol‐treated rats (P < 0.001 for both). This downregulation altered the balance of 11βHSD1 expression and activity between adipose tissue depots, with higher levels in subcutaneous than visceral adipose tissue of estradiol‐treated animals (P < 0.05 for both), opposite the pattern in ovariectomized rats not treated with estradiol (P < 0.001 for mRNA expression). Thus, estrogen modulates fat distribution, at least in part, through effects on tissue‐specific glucocorticoid metabolism, suggesting that estrogen replacement therapy could influence obesity related morbidity in postmenopausal women.  相似文献   

3.
Contradictory findings regarding the gene expression of the main lipogenic enzymes in human adipose tissue depots have been reported. In this cross‐sectional study, we aimed to evaluate the mRNA expression of fatty acid synthase (FAS) and acetyl‐CoA carboxilase (ACC) in omental and subcutaneous (SC) fat depots from subjects who varied widely in terms of body fat mass. FAS and ACC gene expression were evaluated by real time‐PCR in 188 samples of visceral adipose tissue which were obtained during elective surgical procedures in 119 women and 69 men. Decreased sex‐adjusted FAS (?59%) and ACC (?49%) mRNA were found in visceral adipose tissue from obese subjects, with and without diabetes mellitus type 2 (DM‐2), compared with lean subjects (both P < 0.0001). FAS mRNA was also decreased (?40%) in fat depots from overweight subjects (P < 0.05). Indeed, FAS mRNA was significantly and positively associated with ACC gene expression (r = 0.316, P < 0.0001) and negatively with BMI (r = ?0.274), waist circumference (r = ?0.437), systolic blood pressure (r = ?0.310), serum glucose (r = ?0.277), and fasting triglycerides (r = ?0.226), among others (all P < 0.0001). Similar associations were observed for ACC gene expression levels. In a representative subgroup of nonobese (n = 4) and obese women (n = 6), relative FAS gene expression levels significantly correlated (r = 0.657, P = 0.034; n = 10) with FAS protein values. FAS protein levels were also inversely correlated with blood glucose (r = ?0.640, P = 0.046) and fasting triglycerides (r = ?0.832, P = 0.010). In conclusion, the gene expression of the main lipogenic enzymes is downregulated in visceral adipose tissue from obese subjects.  相似文献   

4.
5.
Objectives: Fat in the lower body is not associated with the same risk of cardiovascular disease as fat in the upper body. Is this explained by differences in the physiological functioning of the two depots? This study had two objectives: 1) to determine whether fat mobilization and blood flow differ between gluteal and abdominal adipose tissues in humans, and 2) to develop a new technique to assess gluteal adipose tissue function directly. Research Methods and Procedures: We performed detailed in vivo studies of adipose tissue function involving the assessment of fat mobilization by measurement of adipose tissue blood flows, arterio‐venous differences of metabolites across each depot, and gene expression in tissue biopsies in a small‐scale physiological study. Results: Gluteal adipose tissue has a lower blood flow (67% lower, p < 0.05) and lower hormone‐sensitive lipase rate of action (87% lower, p < 0.05) than abdominal adipose tissue. Lipoprotein lipase rate of action and mRNA expression are not different between the depots. This is the first demonstration of a novel technique to directly investigate gluteal adipose tissue metabolism. Discussion: Direct assessment of fasting adipose tissue metabolism in defined depots show that the buttock is metabolically “silent” in terms of fatty acid release compared with the abdomen.  相似文献   

6.
Housekeeping genes frequently used in gene expression studies are highly regulated in human adipose tissue. To ensure a correct interpretation of results, it is critical to select appropriate reference genes. Subcutaneous (SC) and omental (OM) adipose tissue expression was analyzed from lean and obese subjects using whole genome complementary DNA (cDNA) microarrays to identify stably expressed genes and commercial TaqMan low density arrays (LDAs), with 16 common control genes. The best candidate gene from microarrays analysis was F‐box and leucine‐rich repeat protein‐10 (FBXL10) (fold‐change 10?3 P < 0.01), an ubiquitous nucleolar protein evolutionarily conserved. Hypoxanthine phosphoribosyltransferase 1 (HPRT1) and importin 8 (IPO8), were the best reference genes among the 16 genes in the LDAs with coefficient of variation (CV) of 4.51 and 4.55%, respectively. However, when the LDAs data were further analyzed by the geNorm and NormFinder softwares, IPO8, a nuclear protein mediating import of proteins, was the first and the third better reference gene, respectively. IPO8 and FBXL10 were further validated by real‐time PCR in additional OM and SC fat samples and primary cultured preadipocytes. According to their CV, IPO8 resulted more suitable than FBXL10 in both adipose tissue depots and SC preadipocytes, whereas FBXL10 performed better than IPO8 in OM cultured preadipocytes. Both genes expression levels did not change throughout adipogenesis. Thus, we provide clear evidence that IPO8 and FBXL10 are good candidates to use as reference genes in gene expression studies in human OM and SC adipose tissues as well as differentiated primary preadipocytes.  相似文献   

7.
8.
Abdominally obese individuals with the metabolic syndrome often have excess fat deposition both intra‐abdominally (IA) and in the liver, but the relative contribution of these two deposits to variation in components of the metabolic syndrome remains unclear. We determined the mutually independent quantitative contributions of IA and liver fat to components of the syndrome, fasting serum (fS) insulin, and liver enzymes and measures of hepatic insulin sensitivity in 356 subjects (mean age 42 years, mean BMI 29.7 kg/m2) in whom liver fat and abdominal fat volumes were measured. IA and liver fat contents were correlated (r = 0.65, P < 0.0001). In multivariate linear regression analyses including either liver or IA fat, liver fat or IA fat explained variation in fS‐triglyceride (TG) and high‐density lipoprotein (HDL) cholesterol, plasma glucose, insulin and liver enzyme concentrations, and hepatic insulin sensitivity independent of age, gender, subcutaneous (SC) fat, and/or lean body mass (LBM). Including both liver and IA fat, liver and IA fat both explained variation in TG, HDL cholesterol, insulin and hepatic insulin sensitivity independent of each other and of age, gender, SC fat, and LBM. Liver fat independently predicted glucose and liver enzymes. SC fat and age explained variation in blood pressure. In conclusion, both IA and liver fat independently of each other explain variation in serum TG, HDL cholesterol, insulin concentrations and hepatic insulin sensitivity, thus supporting that both fat depots are important predictors of these components of the metabolic syndrome.  相似文献   

9.
Objective: To determine the variation in preadipocyte isolation procedure and to assess the number and function of preadipocytes from subcutaneous and omental adipose tissue of obese individuals. Research Methods and Procedures: The preadipocyte number per gram of adipose tissue in the abdominal‐subcutaneous and abdominal‐omental adipose stores of 27 obese subjects with a BMI of 44 ± 10 kg/m2 and an age of 40 ± 9 years was determined. Results: The assessment of the preadipocyte number was found to be labor intensive and error prone. Our data indicated that the number of stromal vascular cells (SVCs), isolated from the adipose tissue by collagenase digestion, was dependent on the duration of collagenase treatment and the size and the origin of the biopsy. In addition, the fat accumulation and leptin production by differentiated SVCs were dependent on the number of adherent SVCs (aSVCs) in the culture plate and the presence of proteins derived from serum and peroxisome proliferator‐activated receptor ligands. Discussion: Using our standardized isolation and differentiation protocol, we found that the number of SVCs, aSVCs, leptin production, and fat accumulation still varied considerably among individuals. Interestingly, within individuals, the number of SVCs, aSVCs, and the leptin production by differentiating aSVCs from both the subcutaneous and the omental fat depots were associated, whereas fat accumulation was not. In obese to severely obese subjects, differences in BMI and age could not explain differences in SVCs, aSVCs, leptin production, and fat accumulation.  相似文献   

10.
11.
The role of adaptive immunity in obesity‐associated adipose tissue (AT) inflammation and insulin resistance (IR) is controversial. We employed flow cytometry and quantitative PCR to assess T‐cell recruitment and activation in epididymal AT (eAT) of C57BL/6 mice during 4–22 weeks of a high‐fat diet (HFD (60% energy)). By week 6, eAT mass and stromal vascular cell (SVC) number increased threefold in mice fed HFD, coincident with onset of IR. We observed no increase in the proportion of CD3+ SVCs or in gene expression of CD3, interferon‐γ (IFN‐γ), or regulated upon activation, normal T‐cell expressed and secreted (RANTES) during the first 16 weeks of HFD. In contrast, CD11c+ macrophages (MΦ) were enriched sixfold by week 8 (P < 0.01). SVC enrichment for T cells (predominantly CD4+ and CD8+) and elevated IFN‐γ and RANTES gene expression were detected by 20–22 weeks of HFD (P < 0.01), coincident with the resolution of eAT remodeling. HFD‐induced T‐cell priming earlier in the obesity time course is suggested by (i) elevated (fivefold) interleukin‐12 (IL‐12)p40 gene expression in eAT by week 12 (P ≤ 0.01) and (ii) greater IFN‐γ secretion from phorbol myristate acetate (PMA)/ionophore‐stimulated eAT explants at week 6 (onefold, P = 0.08) and week 12 (fivefold, P < 0.001). In conclusion, T‐cell enrichment and IFN‐γ gene induction occur subsequent to AT macrophage (ATMΦ) recruitment, onset of IR and resolution of eAT remodeling. However, enhanced priming for IFN‐γ production suggests the contribution of CD4+ and/or CD8+ effectors to cell‐mediated immune responses promoting HFD‐induced AT inflammation and IR.  相似文献   

12.
Different fat depots contribute differently to disease and function. These differences may be due to the regional variation in cell types and inherent properties of fat cell progenitors. To address the differences of cell types in the adipose tissue from different depots, the phenotypes of freshly isolated adipose tissue‐derived cells (ATDCs) from subcutaneous (SC) and omental (OM) adipose tissues were compared using flow cytometry. Our results showed that CD31?CD34+CD45?CD90CD105?CD146+ population, containing vascular smooth muscle cells and pericytes, was specifically defined in the SC adipose tissue while no such population was observed in OM adipose tissue. On the other hand, CD31?CD34+CD45?CD90?CD105?CD146? population, which is an undefined cell population, were found solely in OM adipose tissue. Overall, the SC adipose tissue contained more ATDCs than OM adipose tissue, while OM adipose tissue contained more blood‐derived cells. Regarding to the inherent properties of fat cell progenitors from the two depots, adipose‐derived stem cells (ADSCs) from SC had higher capacity to differentiate into both adipogenic and osteogenic lineages than those from OM, regardless of that the proliferation rates of ADSCs from both depots were similar. The higher differentiation capacity of ADSCs from SC adipose tissue suggests that SC tissue is more suitable cell source for regenerative medicine than OM adipose tissue. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
Herpes virus entry mediator (HVEM) is a member of the tumor necrosis factor (TNF) receptor superfamily (TNFRSF14), which serves as a receptor for herpes viruses and cytokines such as lymphotoxin‐α (LT‐α) and LIGHT (lymphotoxin‐like inducible protein that competes with glycoprotein D for herpes virus entry on T cells). We aimed to explore the associations of HVEM with human obesity. HVEM gene expression and protein levels were studied in total adipose tissue and in their fractions (isolated adipocytes and stromovascular cells (SVCs)) obtained from 81 subjects during elective surgical procedures. HVEM ?241GA and ?14AG gene polymorphisms were also studied and associated with obesity measures in 840 subjects. Visceral adipose tissue had significantly higher expression of HVEM than subcutaneous adipose tissue (P < 0.0001). Obese patients had significantly higher subcutaneous HVEM gene expression (P = 0.03) and protein levels (P = 0.01) than lean subjects. HVEM gene expression and protein levels were found in both isolated adipocytes and SVCs. These findings were confirmed in primary cultures from human preadipocytes, in which a significant increase in HVEM was observed during the differentiation process. HVEM ?241GA and ?14AG gene polymorphisms were associated with obesity, diastolic pressure, several inflammatory parameters (C‐reactive protein and interleukin 18 (IL‐18)), and circulating LIGHT concentrations. A sample of men with the G241A gene polymorphism also showed an increased serum titer of IgG antiherpes virus 1. These results provide evidences of an existing relationship between HVEM and obesity, which suggest that this TNF superfamily receptor could be involved in the pathogenesis of obesity and inflammation‐related activity.  相似文献   

14.
Obesity is associated with increased markers of oxidative stress. We examined whether oxidative stress is reduced within the first week after Roux‐en‐Y gastric bypass (RYGB) surgery and could be related to changes in adipose tissue depots. The reactive oxygen species (ROS) marker 8‐iso‐prostaglandin F2α (8‐iso‐PGF2α) and activity of antioxidant glutathione peroxidases (GPX) in plasma were compared before and ~1 week after RYGB. The effects of RYGB on subcutaneous adipose tissue and interstitial fluid 8‐iso‐PGF2α levels and subcutaneous adipose tissue expression of GPX‐3 were also assessed. Levels of 8‐iso‐PGF2α in subcutaneous and visceral adipose tissue were determined. Plasma 8‐iso‐PGF2α levels decreased (122 ± 75 to 56 ± 15 pg/ml, P = 0.001) and GPX activity increased (84 ± 18 to 108 ± 25 nmol/min/ml, P = 0.003) in the first week post‐RYGB. RYGB also resulted in reductions of 8‐iso‐PGF2α in subcutaneous adipose tissue (1,742 ± 931 to 1,132 ± 420 pg/g fat, P = 0.046) and interstitial fluid (348 ± 118 to 221 ± 83 pg/ml, P = 0.046) that were comparable to plasma (26–33%, P = 0.74). Adipose GPX‐3 expression was increased (6.7 ± 4.7‐fold, P = 0.004) in the first postoperative week. The improvements in oxidative stress occurred with minimal weight loss (2.4 ± 3.4%, P = 0.031) and elevations in plasma interleukin‐6 (18.0 ± 46.8 to 28.0 ± 58.9 pg/ml, P = 0.004). Subcutaneous and visceral adipose tissues express comparable 8‐iso‐PGF2α levels (1,204 ± 470 and 1,331 ± 264 pg/g fat, respectively; P = 0.34). These data suggest that RYGB affects adipose tissue leading to the restoration of adipose redox balance within the first postoperative week and that plasma 8‐iso‐PGF2α is primarily derived from subcutaneous adipose tissue.  相似文献   

15.
Objective: This study investigated ethnic and sex differences in the distribution of fat during childhood and adolescence. Design and Methods : A cross‐sectional sample (n = 382), aged 5–18 years, included African American males (n = 84), White males (n = 96), African American females (n = 118), and White females (n = 84). Measures for total body fat (TBF) mass and abdominal adipose tissue (total volume and L4‐L5 cross‐sectional area) for both subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) depots were assessed by dual‐energy X‐ray absorptiometry and magnetic resonance image, respectively. Analyses of covariance (ANCOVAs) were used to determine ethnic and sex differences in TBF (adjusted for age) and ethnic and sex differences in SAT and VAT (adjusted for both age and TBF). Results: Age‐adjusted TBF was greater in African Americans (P = 0.017) and females (P < 0.0001) compared with Whites and males, respectively. In age‐ and TBF‐adjusted ANCOVAs, no differences were found in the SAT. The VAT volume was, however, greater in Whites (P < 0.0001) and males (P < 0.0001) compared with African Americans and females, respectively. Similar patterns were observed in SAT and VAT area at L4‐L5. Conclusions: The demonstrated ethnic and sex differences are important confounders in the prevalence of obesity and in the assignment of disease risk in children and adolescents.  相似文献   

16.
The objective of this study was to determine whether systemic inflammatory and oxidative stress marker concentrations correlate with pericardial and intrathoracic fat volumes. Participants of the Framingham Offspring Study (n = 1,175, 53% women, mean age 59 ± 9 years) had pericardial and intrathoracic fat volumes assessed by multidetector computed tomography (MDCT) scans, and provided fasting blood and urine samples to measure concentrations of 14 inflammatory markers: C‐reactive protein (CRP), interleukin‐6, monocyte chemoattractant protein‐1 (MCP‐1), CD40 ligand, fibrinogen, intracellular adhesion molecule‐1, lipoprotein‐associated phospholipase A2 activity and mass, myeloperoxidase, osteoprotegerin, P‐selectin, tumor necrosis factor‐α, tumor necrosis factor receptor‐2, and urinary isoprostanes. Multivariable linear regression models were used to determine the association of log‐transformed inflammatory marker concentrations with fat volumes, using fat volume as the dependent variable. Due to smaller sample sizes, models were rerun after adding urinary isoprostanes (n = 961) and tumor necrosis factor‐α (n = 813) to the marker panel. Upon backward elimination, four of the biomarkers correlated positively with each fat depot: CRP (P < 0.0001 for each fat depot), interleukin‐6 (P < 0.05 for each fat depot), MCP‐1 (P < 0.01 for each fat depot), and urinary isoprostanes (P < 0.01 for pericardial fat; P < 0.001 for intrathoracic fat). Even after adjusting for BMI, waist circumference (WC), and abdominal visceral fat, CRP (P = 0.0001) and urinary isoprostanes (P = 0.02) demonstrated significant positive associations with intrathoracic fat, but not with pericardial fat. Multiple markers of inflammation and oxidative stress correlated with pericardial and intrathoracic fat volumes, extending the known association between regional adiposity and inflammation and oxidative stress.  相似文献   

17.
Objective: Accumulation of visceral fat is recognized as a predictor of obesity‐related metabolic disturbances. Factors that are predominantly expressed in this depot could mediate the link between visceral obesity and associated diseases. Research Methods and Procedures: Paired subcutaneous and omental adipose tissue biopsies were obtained from 10 obese men. Gene expression was analyzed by DNA microarrays in triplicate and by real‐time polymerase chain reaction. Serum C3 and C4 were analyzed by radial immunodiffusion assays in 91 subjects representing a cross section of the general population. Body composition was measured by computerized tomography. Results: Complement components C2, C3, C4, C7, and Factor B had higher expression in omental compared with subcutaneous adipose tissue (~2‐, 4‐, 17‐, 10‐, and 7‐fold, respectively). In addition, adipsin, which belongs to the alternative pathway, and the classical pathway components C1QB, C1R, and C1S were expressed in both depots. Analysis of tissue distribution showed high expression of C2, C3, and C4 in omental adipose tissue, and only liver had higher expression of these genes. Serum C3 levels correlated with both visceral and subcutaneous adipose tissue in both men (r = 0.65 and p < 0.001 and r = 0.52 and p < 0.001, respectively) and women (r = 0.34 and p = 0.023 and r = 0.49 and p < 0.001, respectively), whereas C4 levels correlated with only visceral fat in men (r = 0.36, p = 0.015) and with both depots in women (visceral: r = 0.58, p < 0.001; and subcutaneous: r = 0.51, p < 0.001). Discussion: Recent studies show that the metabolic syndrome is associated with chronically elevated levels of several immune markers, some of which may have metabolic effects. The high expression of complement genes in intra‐abdominal adipose tissue might suggest that the complement system is involved in the development of visceral adiposity and/or contributes to the metabolic complications associated with increased visceral fat mass.  相似文献   

18.
19.
Synthesis of triacylglycerol requires the glucose‐derived glycerol component, and glucose uptake has been viewed as the rate‐limiting step in glucose metabolism in adipocytes. Furthermore, adipose tissue contains all three isoforms of the glycolytic enzyme phosphofructokinase (PFK). We here report that mice deficient in the muscle isoform PFK‐M have greatly reduced fat stores. Mice with disrupted activity of the PFK‐M distal promoter were obtained from Lexicon Pharmaceuticals, developed from OmniBank OST#56064. Intra‐abdominal fat was measured by magnetic resonance imaging of the methylene proton signal. Lipogenesis from labeled glucose was measured in isolated adipocytes. Lipolysis (glycerol and free fatty acid release) was measured in perifused adipocytes. Intra‐abdominal fat in PFK‐M–deficient female mice (5–10 months old) was 17 ± 3% of that of wild‐type littermates (n = 4; P < 0.02). Epididymal fat weight in 15 animals (7–9.5 months) was 34 ± 4% of control littermate (P < 0.002), with 10–30% lower body weight. Basal and insulin‐stimulated lipogenesis in PFK‐M–deficient epididymal adipocytes was 40% of the rates in cells from heterozygous littermates (n = 3; P < 0.05). The rate of isoproterenol‐stimulated lipolysis in wild‐type adipocytes declined ~10% after 1 h and 50% after 2 h; in PFK‐M–deficient cells it declined much more rapidly, 50% in 1 h and 90% in 2 h, and lipolytic oscillations appeared to be damped (n = 4). These results indicate an important role for PFK‐M in adipose metabolism. This may be related to the ability of this isoform to generate glycolytic oscillations, because such oscillations may enhance the production of the triacylglycerol precursor α‐glycerophosphate.  相似文献   

20.
Skeletal muscle fat is greater in African ancestry individuals compared with whites, is associated with diabetes, and is a heritable polygenic trait. However, specific genetic factors contributing to skeletal muscle fat in humans remain to be defined. Muscle carnitine palmitoyltransferase‐1B (CPT1B) is a key enzyme in the regulation of skeletal muscle mitochondrial β‐oxidation of long‐chain fatty acids, and as such is a reasonable biological candidate gene for skeletal muscle fat accumulation. Therefore, we examined the association of three nonsynonymous coding variants in CPT1B (G531L, I66V, and S427C; a fourth, A320G, could not be genotyped) and quantitative computed tomography measured tibia skeletal muscle composition and BMI among 1,774 Afro‐Caribbean men aged ≥40, participants of the population‐based Tobago Health Study. For all variants, no significant differences were observed for BMI or total adipose tissue. Among individuals who were homozygous for the minor allele at G531L or I66V, intermuscular adipose tissue (IMAT) was 87% (P = 0.03) and 54% lower (P = 0.03), respectively. In contrast, subcutaneous adipose tissue (SAT) was 11% (P = 0.017) and 7% (P = 0.049) higher, respectively, than among individuals without these genotypes. These associations were independent of age, body size, and muscle area. Finally, no individuals with type 2 diabetes were found among those who were homozygous for the minor allele of either at G531L and I66V whereas 14–18% of men with the major alleles had type 2 diabetes (P = 0.03 and 0.007, respectively). Our results suggest a novel association between common nonsynonymous coding variants in CPT1B and ectopic skeletal muscle fat among middle‐aged and older African ancestry men.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号