首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. For predators, prey selection should maximise nutrition and minimise fitness costs. In the present study, it was investigated whether a generalist predator [Chrysoperla carnea (Stephens) lacewing larvae] rejected harmful, chemically‐defended prey [Brevicoryne brassicae (Linnaeus) aphids] when non‐defended prey [Myzus persicae (Sulzer) aphids] were available. 2. It was tested: (i) whether consuming different prey species affects predator mortality; (ii) whether naïve predators reject chemically‐defended prey while foraging when non‐defended prey are available; (iii) whether the relative abundance of each prey affects the predator's prey choice; and (iv) whether predators learn to avoid consuming chemically‐defended prey after exposure to both prey species. 3. Consumption of B. brassicae yielded greater C. carnea mortality than M. persicae consumption, but naïve C. carnea did not reject B. brassicae in favour of M. persicae during foraging. When presented at unequal abundances, naïve predators generally consumed each aphid species according to their initial relative abundance, although, predation of non‐defended prey was less than expected when defended prey were initially more abundant, indicating a high consumption of B. brassicae impeded M. persicae consumption. With experience, C. carnea maintained predation of both aphid species but consumed more M. persicae than B. brassicae, indicating a change in behaviour. 4. Although prey choice by C. carnea may change with experience of available prey, prey chemical defences do not appear to influence prey choice by naïve predators. This inability to avoid harmful prey could facilitate wider, indirect interactions. Myzus persicae may benefit where high consumption of B. brassicae hinders predators in the short term, and in the long term, increases predator mortality.  相似文献   

2.
Estimates of predation rates by large predators can provide valuable information on their potential impact on their ungulate prey populations. This is especially the case for pumas Puma concolor and its main prey, mule deer Odocoileus hemionus . However, only limited information on predation rates of pumas exist where mule deer are the only ungulate prey available. I used VHF telemetry data collected over 24-h monitoring sessions and once daily over consecutive days to derive two independent estimates of puma predation rates on mule deer where they were the only large prey available. For the 24-h data, I had 48 time blocks on female pumas with kittens, 43 blocks on females without kittens and 30 blocks on males. For the daily consecutive data, the average number of consecutive days followed was 51.5±4.2 days. There were data on five female pumas with kittens, five pregnant females and nine females without kittens. Predation rates over an average month of 30 days from the 24-h monitoring sessions were 2.0 mule deer per puma month for males (15.1 days per kill), 2.1 mule deer per puma month (14.3 days per kill) for females without kittens and 2.5 mule deer per puma month (12.0 days per kill) for pregnant females and females with kittens. For the consecutive daily data, females without kittens had an estimated predation rate of 2.1±0.14 mule deer per puma month (14.9±0.90 days per kill). Pregnant and females with kittens had predation rates of 2.7±0.18 and 2.6±0.21 mule deer per puma month, respectively (11.4±0.72 and 12.0±1.1 days per kill, respectively). Predation rates estimated in this study compared with those estimated by energetic demand for pumas in the study area but were lower than other field derived estimates. These data help increase our understanding of predation impacts of large predators on their prey.  相似文献   

3.
The use of space by predators in relation to their prey is a poorly understood aspect of predator-prey interactions. Classic theory suggests that predators should focus their efforts on areas of abundant prey, that is, prey hotspots, whereas game-theoretical models of predator and prey movement suggest that the distribution of predators should match that of their prey's resources. If, however, prey are spatially anchored to one location and these prey have particularly strong antipredator responses that make them difficult to capture with frequent attacks, then predators may be forced to adopt alternative movement strategies to hunt behaviorally responsive prey. We examined the movement patterns of bird-eating sharp-shinned hawks (Accipiter striatus) in an attempt to shed light on hotspot use by predators. Our results suggest that these hawks do not focus on prey hotspots such as bird feeders but instead maintain much spatial and temporal unpredictability in their movements. Hawks seldom revisited the same area, and the few frequently used areas were revisited in a manner consistent with unpredictable returns, giving prey little additional information about risk.  相似文献   

4.
《Acta Oecologica》2007,31(1):1-7
We studied in a laboratory experiment using stream tanks if two percid prey fish, the perch (Perca fluviatilis) and the ruffe (Gymnocephalus cernuus), can recognize and respond to increased predation risk using odors of two piscivores, the pike (Esox lucius) and the burbot (Lota lota). Burbot is night-active most of the year but pike hunts predominantly visually whenever there is enough light. Perch is a common day-active prey of pike and dark-active ruffe that of burbot. We predicted that besides recognizing the predator odors, the prey species would respond more strongly to odors of the predator which share the same activity pattern. Both perch and ruffe clearly responded to both predator fish odors. They decreased movements and erected the spiny dorsal fins. Fin erection showed clearly the black warning ornamentation in the fin and thus erected fin may function besides as mechanical defense also as warning ornament for an approaching predator. No rapid escape movements were generally observed. Both perch and ruffe responded more strongly to pike odor than to burbot. There were no clear differences in response between day and night. In conclusion, we were able to verify clear predator odor recognition by both prey fish. Both perch and ruffe responded to both predator odors and it seemed that pike forms a stronger threat for both prey species. Despite of diel activity differences both perch and ruffe used the same antipredatory strategies, but the day-active perch seemed to have a more flexible antipredatory behavior by responding more strongly to burbot threat during the night when burbot is active.  相似文献   

5.
《Journal of Asia》2020,23(4):1272-1278
The Zoophytophagous predator, Nesidiocoris tenuis (Reuter) (Hemiptera: Miridae) is one of the most important candidates for controlling Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) in tomato crops. This predator uses different signals including morphological plant traits, prey insects, and volatile substances produced by the infested plants and prey signals to find its suitable prey. These signals are different in each cultivar of a plant. We aimed to understand how N. tenuis finds its prey using volatiles from tomato plants damaged or infested with T. absoluta. The predator’s responses to various plant treatments on two cultivars of tomato plants were tested in a flight tunnel and a four-choice olfactometer. The volatile compounds released from the treatments were also collected and identified. The results of the olfactory experiments showed that the predators even in the absence of light chose the plants bearing their insect prey. This behavior was not the same in both cultivars, and N. tenuis had a tendency toward mechanically damaged of Early Urbana Y cultivar more than Cal JN3 cultivar. The differences in the amount of monoterpenes, sesquiterpenes, and eugenol between cultivars may play a role in the differential attraction of N. tenuis towards infested plants. The difference in the volatile compounds was evident in two cultivars, and this was consistent with our bioassay results. Therefore, the choice of appropriate cultivar and use of herbivore-infested plant volatiles are important for developing a control strategy against T. absoluta and attract its predators.  相似文献   

6.
The formation of "Russian doll" complexes consisting of [n]cycloparaphenylenes was predicted using quantum chemistry tools. The electronic structures of multiple inclusion complexes containing up to four macrocycles were explored at the M06-2X/6-31G* level of theory. The binding energy between the macrocycles increases from the center to the periphery of the complex and can be >60?kcal?mol(-1) for macrocycles containing 14 and 19 repeating units. It has been demonstrated that additional electrostatic interactions originating from the asymmetric electron density distribution observed when comparing the concave and convex macrocycle sides are responsible for the high binding energies in these Russian doll complexes. Oxidation or reduction of the Russian doll complexes creates polarons that are delocalized across the complexes. In the case of polaron cations, most of the polarons are localized at the macrocycle with the smallest ionization potential; for polaron anions, the negative charge is localized across the outer rings of the complex. Because anion polarons are more delocalized than cation polarons, the relaxation energies of the polaron anions were found to be smaller than those of the polaron cations.  相似文献   

7.
Behavioral games predators play among themselves may have profound effects on behavioral games predators play with their prey. We studied the behavioral game between predators and prey within the framework of social foraging among predators. We tested how conspecific interactions among predators (little egret) change the predator–prey behavioral game and foraging success. To do so, we examined foraging behavior of egrets alone and in pairs (male and female) in a specially designed aviary consisting of three equally spaced pools with identical initial prey (comet goldfish) densities. Each pool was comprised of a risky microhabitat, rich with food, and a safe microhabitat with no food, forcing the fish to trade off food and safety. When faced with two versus one egret, we found that fish significantly reduced activity in the risky habitat. Egrets in pairs suffered reduced foraging success (negative intraspecific density dependence) and responded to fish behavior and to their conspecific by changing their visiting regime at the different pools—having shorter, more frequent visits. The time egret spent on each visit allowed them to match their long-term capture success rate across the environment to their capture success rate in the pool, which satisfies one aspect of optimality. Overall, egrets in pairs allocated more time for foraging and changed their foraging tactics to focus more on fish under cover and fish ‘peeping’ out from their shelter. These results suggest that both prey and predator show behavioral flexibility and can adjust to changing conditions as needed in this foraging game.  相似文献   

8.
A prey immunomarking procedure (PIP) in combination with generic anti-rabbit and anti-chicken immunoglobulin G (IgG) enzyme-linked immunosorbent assays (ELISAs) are used frequently to study arthropod predation. This study was conducted to: (1) further standardize the PIP as a tool for predator gut analysis research, (2) investigate the most effective means for administering IgG marks to prey items, and (3) assess the possibility of the PIP yielding false positive reactions as a consequence of a predator obtaining a mark by incidental contact with, or by a failed predation attempt on, a protein-marked prey item. The pest Lygus hesperus Knight (Hemiptera: Miridae) was tagged with either an external rabbit IgG mark, an internal chicken IgG mark, or a double (external rabbit IgG and internal chicken IgG) mark treatment. Then, the variously marked prey items were fed to chewing and piercing-sucking type predators and their gut contents were examined for the presence of IgG remains. Data revealed that all three marking treatments were highly effective at tagging targeted prey. However, ELISA results showed that the prey items should only be marked internally to maximize the likelihood of detecting prey remains while minimizing the risk of obtaining false positive errors. The merits and limitations of using the generic PIP for predator gut analysis research are discussed.  相似文献   

9.
Arditi and Ginzburg (2012) propose ordinary differential equations (ODEs) with ratio-dependent functional responses as the new null model for predation, based on their earlier work on ratio-dependent food chains and a number of functional response measurements. Here, I discuss some of their claims, arguing for a flexible and problem-driven approach to predator–prey modeling. Models to understand population cycles and models to predict the effect of basal enrichment on food chains need not be the same. While ratio-dependent functional responses in ODE models might sometimes be useful as limit cases for food chains, they are not intrinsically more useful than prey-dependent models to understand the effect of a given predator on prey population dynamics—and sometimes less useful, given the small temporal scales considered in many models. “Instantism” is showed to be an invalid criticism when ODEs are interpreted as describing average trajectories of stochastic birth–death processes. Moreover, other modeling frameworks with strong ties to time series statistics, such as stochastic difference equations, should be promoted to improve the feedback loop between field and theoretical research. The main problems of current trophic ecology do not lie in a wrong null model, as ecologists have already several at their disposal. The loose connection of ODE models with empirical data and spatial/temporal scaling up of empirical measurements constitute more serious challenges to our understanding of trophic interactions and their consequences on ecosystem functioning.  相似文献   

10.
The influence of a resource subsidy on predator–prey interactions is examined using a mathematical model. The model arises from the study of a biological system involving arctic foxes (predator), lemmings (prey), and seal carcasses (subsidy). In one version of the model, the predator, prey and subsidy all occur in the same location; in a second version, the predator moves between two patches, one containing only the prey and the other containing only the subsidy. Criteria for feasibility and stability of the different equilibrium states are studied both analytically and numerically. At small subsidy input rates, there is a minimum prey carrying capacity needed to support both predator and prey. At intermediate subsidy input rates, the predator and prey can always coexist. At high subsidy input rates, the prey cannot persist even at high carrying capacities. As predator movement increases, the dynamic stability of the predator–prey-subsidy interactions also increases.  相似文献   

11.
It has been hypothesized that dabbling ducks (Anas spp.) time breeding to coincide with annual regional peaks in emerging dipterans, especially Chironomidae, which are important prey for newly hatched ducklings. However, this hypothesis has never been evaluated in a replicated lake-level study, including year effects in emergence patterns. We collected duck and invertebrate data from 12 lakes during the nesting seasons 1989–1994 in a watershed in southern Finland. The oligotrophic study lakes are typical of the boreal Holarctic, as are the three focal duck species: mallard Anas platyrhynchos L., widgeon Anas penelope L and teal Anas crecca L. Hatching of ducklings showed a clear peak in relation to ambient phenology (annual ice-out date of lakes), whereas chironomid emergence was more erratic and showed no clear peak at the lake level, although total watershed-level emergence was somewhat higher before and long after the duck hatching peak. Thus, we find no evidence that ducklings hatch in synchrony with abundance peaks of emerging chironomids. There was large within-year temporal variation in chironomid emergence among lakes, but this was not correlated with ambient temperature. The rank of individual lakes with respect to the abundance of emerging chironomids was consistent among as well as within years, a predictability that ought to make adaptive lake choice by ducks possible. On the lake level, there was a positive correlation between the total amount of emerging chironomids and brood use. We argue that emergence patterns of chironomids on typical boreal lakes are neither compressed nor predictable enough to be a major selective force on the timing of egg-laying and hatching in dabbling ducks. Despite spatial (among-lake) patterns of abundance of emerging chironomids being predictable within and among years, the observed pattern of brood use suggests that other factors, e.g. habitat structure, also affect lake choice.  相似文献   

12.
In large mammal communities, little is known about modification of interspecific interactions through habitat structure changes. We assessed the effects of African elephants (Loxodonta africana) on features of woody habitat structure that can affect predator–prey interactions. We then explored how this can influence where African lions (Panthera leo) kill their prey. Indeed, lions are stalk-and-ambush predators and habitat structure and concealment opportunities are assumed to influence their hunting success. During 2 years, in Hwange National Park, Zimbabwe, kill sites (n = 167) of GPS-collared lions were characterized (visibility distance for large mammals, distance to a potential ambush site and presence of elephant impacts). We compared characteristics of lion kill sites with characteristics of random sites (1) at a large scale (i.e. in areas intensively used by lions, n = 418) and (2) at the microhabitat scale (i.e. in the direct surrounding available habitat, < 150 m, n = 167). Elephant-impacted sites had a slightly higher visibility and a longer distance to a potential ambush site than non-impacted sites, but these relationships were characterized by a high variability. At large scale, kill sites were characterized by higher levels of elephant impacts compared to random sites. At microhabitat scale, compared to the direct nearby available habitat, kill sites were characterized by a reduced distance to a potential ambush site. We suggest a conceptual framework whereby the relative importance of habitat features and prey abundance could change upon the scale considered.  相似文献   

13.
Abstract The introduced and highly toxic cane toad (Bufo marinus) is rapidly spreading across northern Australia where it may affect populations of large terrestrial vertebrate predators. The ecological impact of cane toads will depend upon the diets, foraging modes and habitat use of native predators, and their feeding responses to cane toads. However, intraspecific niche partitioning may influence the degree of vulnerability of predators to toxic prey, as well as the time course of the impact of alien invaders on native species. We studied the diet of the northern death adder Acanthophis praelongus and their feeding responses to cane toads. In the laboratory, death adders from all size classes and sexes readily consumed frogs and cane toads. Diets of free ranging A. praelongus from the Adelaide River floodplain were more heterogeneous. Juvenile snakes ate mainly frogs (39% of prey items) and small scincid lizards (43%). Both sexes displayed an ontogenetic dietary shift from lizards to mammals, but adult males fed on frogs (49%) and mammals (39%) whereas adult females (which grew larger than males) fed mainly on mammals (91%) and occasionally, frogs (9%). Feeding rates and body condition of adult snakes varied temporally and tracked fluctuations in prey availability. These results suggest that cane toads may negatively affect populations of northern death adders in the Darwin region. However, we predict that different size and sex classes of A. praelongus will experience differential mortality rates over different timescales. The initial invasion of large toads may affect adult males, but juveniles may be unaffected until juvenile toads appear the following year, and major affects on adult female death adders may be delayed until annual rainfall fluctuations reduce the availability of alternative (rodent) prey.  相似文献   

14.
An answer to the question of how the archer fish hits an aerial insect, despite the refraction of light at the surface of the water has not yet been found. The aims of the present studies are to find out: (1) whether the fish applies a learned correction with the virtual image as a point of reference; (2) whether deprivation of practice in squirting affects performance. For the first aim the accuracy of squirts was measured in 30 subjects. Contrary to suggestions from the literature, elevation failures were prominent but the frequencies of over- and under-squirting did not differ, which does not support the idea that the fishes applied a learned correction for refraction by using feedback from the efficacy of squirts. For the second aim, five experimental subjects were deprived of practice, whereas six control subjects got daily practice, during 6 months. The only significant difference, found thereafter, was that during the first session experimental subjects aimed more often before squirting than control subjects did, but hitting was not affected. A number of subjects developed abnormal mandibles which inevitably led to squirting too high. Our findings do not support the hypothesis that the archer fish uses learned corrections for refraction.  相似文献   

15.
The between-plant movement of the predatory mite Phytoseiulus persimilis was studied in a greenhouse. The aims were to determine the distance moved by P. persimilis and the response of the predator to the location of a plant infested with two-spotted spider mite, Tetranychus urticae. In addition, we tested whether the predator exhibits random movement between plants or whether its dispersal is oriented. We found that a high proportion of the predators released on a central plant were able to reach plants at the periphery provided the plants were connected to the central plant with 'bridges'. The results further showed that P. persimilis does not disperse randomly to the surrounding plants. The distribution of immigrants was influenced by the position of an infested plant in the neighbourhood, but light/shadow effects in the greenhouse may also influence the choice of direction. The likely implications of the findings for biological control are discussed. © Rapid Science Ltd. 1998  相似文献   

16.
Predation often represents the prevailing process shaping aquatic ecosystems. As foraging and antipredatory behaviour frequently relate to vision, turbidity may often impair the interactions between the predator and its prey, depending on prey type and source and level of turbidity. We studied the effect of inorganic turbidity (0–30 NTU) on the effectiveness of fish feeding on two types of prey in different habitats: free-swimming cladoceran (Daphnia pulex) in open water and plant-associated cladoceran (Sida crystallina) attached to Nuphar lutea leaves. For the planktivore, we used vision-oriented perch (Perca fluviatilis) common in the littoral zone of temperate lakes. In our study, increasing inorganic turbidity did not appear to initiate any significant change in the feeding efficiency of perch on free-swimming Daphnia pulex. However, we saw a markedly different feeding efficiency when perch targeted plant-attached Sida crystallina. Our results substantiate that floating-leaved macrophytes in turbid lakes may provide a favourable habitat for plant-attached cladocerans.  相似文献   

17.
In a foraging game, predators must catch elusive prey while avoiding injury. Predators manage their hunting success with behavioral tools such as habitat selection, time allocation, and perhaps daring—the willingness to risk injury to increase hunting success. A predator’s level of daring should be state dependent: the hungrier it is, the more it should be willing to risk injury to better capture prey. We ask, in a foraging game, will a hungry predator be more willing to risk injury while hunting? We performed an experiment in an outdoor vivarium in which barn owls (Tyto alba) were allowed to hunt Allenby’s gerbils (Gerbillus andersoni allenbyi) from a choice of safe and risky patches. Owls were either well fed or hungry, representing the high and low state, respectively. We quantified the owls’ patch use behavior. We predicted that hungry owls would be more daring and allocate more time to the risky patches. Owls preferred to hunt in the safe patches. This indicates that owls manage risk of injury by avoiding the risky patches. Hungry owls doubled their attacks on gerbils, but directed the added effort mostly toward the safe patch and the safer, open areas in the risky patch. Thus, owls dared by performing a risky action—the attack maneuver—more times, but only in the safest places—the open areas. We conclude that daring can be used to manage risk of injury and owls implement it strategically, in ways we did not foresee, to minimize risk of injury while maximizing hunting success.  相似文献   

18.
The scarcity of experimental evidence for the persistence of predator–prey systems at the metapopulation level inspired us to develop a simple predator–prey experiment that could be used for testing several theoretical predictions concerning persistence and its causes. The experimental system used consisted of one or several islands with small bean plants, the phytophagous mite Tetranychus urticae and the predatory mite Phytoseiulus persimilis. In the first experiment, one large system was used consisting of 90 small bean plants, prey and predators. The system persisted for only 120 days. Second, a system was used consisting of eight islands with ten plants each where the islands were connected by bridges. Two replicate experiments showed persistence for at least 393 days. The difference between the first and the second experiments suggests that the longer persistence is caused by a limited migration between the eight islands. Despite efforts to start both replicates of the second experiment with similar initial conditions, the dynamics of both replicates varied substantially. In one replicate the prey and predator numbers showed a trend through time, whereas the numbers fluctuated around a fixed value in the other replicate. A time series analysis of the data of the prey and predators showed the presence of periodicity with a lag of 8.5 weeks in one replicate, whereas such cyclic behaviour was not found in the other replicate. The differences between the two replicates suggest that it is difficult to perform experiments where one replicate is perturbed and the other serves as an undisturbed control. We suggest using a longer time series, where a system is disturbed only during the second half of the experiment. The data from the first and second halves can subsequently be used to estimate the effect of the perturbation. The advantages and disadvantages of this method are discussed. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

19.
20.
There is growing evidence that birds are able to discriminate different types of nest intruders and adjust their nest defence behaviour according to intruder dangerousness and distance from the nest (the dynamic risk assessment hypothesis). Here, we tested whether birds’ decisions about nest defence may additionally be affected by an increasing familiarity with a particular nest predator. We tested nest defence responses of great reed warblers Acrocephalus arundinaceus to a nest predator, the little bittern Ixobrychus minutus. Great reed warbler nests located close (≤7 m) to synchronously breeding little bitterns were “neighbour”, other nests were “solitary”. Great reed warbler specific aggression towards a little bittern dummy was much lower (~5-times) at neighbour than solitary nests. In contrast, generalised responses to a control innocuous intruder (the turtle dove, Streptopelia turtur) were statistically identical at neighbour and solitary nests. These patterns are in line with dynamic risk assessment hypothesis. We hypothesise that decreased great reed warbler aggression at neighbour nests also represents a specific behavioural adaptation to nesting in association with the little bittern. Little bitterns breeding closer to great reed warblers showed decreased risks of failure due to predation. However, further research is needed to experimentally test the causal links behind these patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号