首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The preovulatory hydration of teleost oocytes is a unique process among vertebrates. The hydration mechanism is most pronounced in marine acanthomorph teleosts that spawn pelagic (floating) eggs; however, the molecular pathway for water influx remains poorly understood. Recently, we revealed that whole-genome duplication (WGD) resulted in teleosts harboring the largest repertoire of molecular water channels in the vertebrate lineage and that a duplicated aquaporin-1 paralog is implicated in the oocyte hydration process. However, the origin and function of the aquaporin-1 paralogs remain equivocal. By integrating the molecular phylogeny with synteny and structural analyses, we show here that the teleost aqp1aa and -1ab paralogs (previously annotated as aqp1a and -1b, respectively) arose by tandem duplication rather than WGD and that the Aqp1ab C-terminus is the most rapidly evolving subdomain within the vertebrate aquaporin superfamily. The functional role of Aqp1ab was investigated in Atlantic halibut, a marine acanthomorph teleost that spawns one of the largest pelagic eggs known. We demonstrate that Aqp1ab is required for full hydration of oocytes undergoing meiotic maturation. We further show that the rapid structural divergence of the C-terminal regulatory domain causes ex vivo loss of function of halibut Aqp1ab when expressed in amphibian oocytes but not in zebrafish or native oocytes. However, by using chimeric constructs of halibut Aqp1aa and -1ab and antisera specifically raised against the C-terminus of Aqp1ab, we found that this cytoplasmic domain regulates in vivo trafficking to the microvillar portion of the oocyte plasma membrane when intraoocytic osmotic pressure is at a maximum. Interestingly, by coinjecting polyA(+) mRNA from postvitellogenic halibut follicles, ex vivo intracellular trafficking of Aqp1ab is rescued in amphibian oocytes. These data reveal that the physiological role of Aqp1ab during meiosis resumption is conserved in teleosts, but the remarkable degeneracy of the cytoplasmic domain has resulted in alternative regulation of the trafficking mechanism.  相似文献   

2.
Growth in oocytes of many marine teleosts can be attributed to a combination of yolk accumulation during the vitellogenic phase of development and water uptake during meiotic maturation. In the salt marsh fish, Fundulus heteroclitus , hydration associated with maturation gives rise to a greater than two-fold increase in oocyte volume. It has been proposed that a concurrent proteolysis of specific yolk proteins may be the mechanism driving this water uptake. To test this hypothesis, we used various in vitro culture techniques to block or significantly reduce oocyte hydration while allowing meiotic maturation to continue, then examined yolk proteins by SDS-polyacrylamide gel electrophoresis. We were able to dissociate yolk proteolysis from both hydration and nuclear maturation stimulated by a maturation-inducing steroid, 17α-hydroxy- 20β-dihydroprogesterone. It therefore appears that the proteolysis of specific yolk proteins observed in maturing oocytes of marine teleosts is an independent developmental event, and is not directly involved in the hydration mechanism.  相似文献   

3.
During final maturation the oocytes of many marine teleosts swell four to five times their original size due to uptake of water. The involvement of active inorganic ion transport and Na+,K(+)-ATPase in oocyte hydration in Atlantic croaker (Micropogonias undulatus) and spotted seatrout (Cynoscion nebulosus), marine teleosts which spawn pelagic eggs, was investigated by examining changes in the inorganic ion content of ovarian follicles containing mainly oocytes, by performing in vitro incubations of the follicles with ion channel blockers, and by assaying membrane preparations of ovaries containing hydrating and non-hydrating oocytes for Na+,K(+)-ATPase activity and content. There were marked increases in the contents of K+, Mg++, and Ca++, but not Na+, in oocytes of M. undulatus and C. nebulosus during hydration. Incubation of follicle-enclosed oocytes in K(+)-free medium or with ouabain or amiloride, inhibitors of Na+,K(+)-ATPase and Na+ channels, respectively, blocked gonadotropin-induced oocyte hydration in M. undulatus. In addition, Na+,K(+)-ATPase activity increased threefold and the concentration of the enzyme increased 50% in ovarian tissue during oocyte hydration. These results strongly suggest a major role for active ion regulation by a ouabain-sensitive Na+,K(+)-ATPase system in oocyte hydration in two species of sciaenid fishes.  相似文献   

4.
In teleost oocytes, yolk proteins (YPs) derived from the yolk precursors vitellogenins are partially cleaved into free amino acids and small peptides during meiotic maturation before ovulation. This process increases the osmotic pressure of the oocyte that drives its hydration, which is essential for the production of buoyant eggs by marine teleosts (pelagophil species). However, this mechanism also occurs in marine species that produce benthic eggs (benthophil), such as the killifish (Fundulus heteroclitus), in which oocyte hydration is driven by K+. Both in pelagophil and benthophil teleosts, the enzymatic machinery underlying the maturation-associated proteolysis of YPs is poorly understood. In this study, lysosomal cysteine proteinases potentially involved in YP processing, cathepsins L, B, and F (CatL, CatB, and CatF, respectively), were immunolocalized in acidic yolk globules of vitellogenic oocytes from the killifish. During oocyte maturation in vitro induced with the maturation-inducing steroid (MIS), CatF disappeared from yolk organelles and CatL became inactivated, whereas CatB proenzyme was processed into active enzyme. Consequently, CatB enzyme activity and hydrolysis of major YPs were enhanced. Follicle-enclosed oocytes incubated with the MIS in the presence of bafilomycin A1, a specific inhibitor of vacuolar-type H+-ATPase, underwent maturation in vitro, but acidification of yolk globules, activation of CatB, and proteolysis of YPs were prevented. In addition, MIS plus bafilomycin A1-treated oocytes accumulated less K+ than those stimulated with MIS alone; hence, oocyte hydration was reduced. These results suggest that CatB is the major protease involved in yolk processing during the maturation of killifish oocytes, whose activation requires acidic conditions maintained by a vacuolar-type H+-ATPase. Also, the data indicate a link between ion translocation and YP proteolysis, suggesting that both events may be equally important physiological mechanisms for oocyte hydration in benthophil teleosts.  相似文献   

5.
Oocytes of the black sea bass, Centropristes striata, were enlarged in volume more than three-fold over a 24-hr period during oocyte maturation, both in vivo and in vitro. At the same time, the opaque oocytes clarified while the crystalline yolk inclusions lost their ordered structure, fused with one another, and formed a continuous electron-lucent mass. The oocyte size increase was due almost entirely to water uptake, which was accompanied by the accumulation of Na+, K+, and free amino acids (FAAs). The absolute amounts of each of these small molecular weight osmotic effectors increased 2x, 4x, and over 10x, respectively, indicating that the generation of FAAs is the major cause of water uptake during maturation. Amino acid analyses indicated that the amounts of all amino acids except taurine increased, so that selective amino acids were not produced during maturation. The increase in FAAs was accompanied by the loss of certain high-molecular-weight yolk proteins and the generation of many smaller peptides. Oocytes stimulated to undergo maturation in the presence of bafilomycin A1, a specific inhibitor of the vacuolar ATPase-dependent proton pump, clarified and underwent maturation but did not increase significantly in size. Cytological examination revealed that yolk crystals fused and became homogeneous but maintained their electron density. No evidence of proteolysis was found in bafilomycin A1-treated oocytes and the generation of FAAs together with hydration was inhibited in a dose-dependent manner (I50 = 3 nM bafilomycin A1). Taken together, we postulate that the pronounced oocyte hydration in marine teleosts that spawn pelagic (floating) eggs is accomplished by a two-step process whereby (i) K+ influx promotes yolk crystal disassembly and yolk sphere fusion and (ii) acidification of the yolk spheres activates yolk proteolysis and concomitant hydration. Bafilomycin A1 inhibits only the second step so that many of the events of oocyte maturation, including germinal vesicle breakdown, occur in its presence but oocyte hydration is suppressed.  相似文献   

6.
Skoblina MN 《Ontogenez》2008,39(1):39-46
A review of the data on the presence, localization, and supposed role of aquaporin water channels in oocytes of Xenopus laevis, oogenesis and maturation of teleosts Sparus auratus and Oncorhynchus mykiss, oogenesis and oocyte maturation of rats and mice, and spermatogenesis of several mammalians.  相似文献   

7.
Yolk proteins of prematuration occytes and postmaturation eggs were compared by SDS gel electrophoresis in several teleosts, including freshwater species that produce demersal eggs, estuarine and marine species with demersal eggs, and marine species with pelagic eggs. In certain teleosts distinct changes in yolk protein banding patterns during oocyte maturation are suggestive of extensive secondary proteolysis of yolk proteins at this time; proteolysis is most pronounced in marine fishes with pelagic eggs. In many teleosts the oocyte swells by hydration during maturation; this hydration is also most pronounced in marine fishes with pelagic eggs. The extent of yolk proteolysis is well correlated with the extent of oocyte hydration during maturation.  相似文献   

8.
In marine fish, meiosis resumption is associated with a remarkable hydration of the oocyte, which contributes to the survival and dispersal of eggs and early embryos in the ocean. The accumulation of ions and the increase in free amino acids generated from the cleavage of yolk proteins (YPs) provide the osmotic mechanism for water influx into the oocyte, in which is involved the recently identified, fish specific aquaporin-1o (AQP1o). However, the timing when these processes occur during oocyte maturation, and the regulatory pathways involved, remain unknown. Here, we show that gilthead sea bream AQP1o (SaAQP1o) is synthesized at early vitellogenesis and transported towards the oocyte cortex throughout oocyte growth. During oocyte maturation, shortly after germinal vesicle breakdown and before complete hydrolysis of YPs and maximum K(+) accumulation is reached, SaAQP1o is further translocated into the oocyte plasma membrane. Inhibitors of yolk proteolysis and SaAQP1o water permeability reduce sea bream oocyte hydration that normally accompanies meiotic maturation in vitro by 80% and 20%, respectively. Thus, yolk hydrolysis appears to play a major role to create the osmotic driving force, while SaAQP1o possibly facilitates water influx into the oocyte. These results provide further evidence for the role of AQP1o mediating water uptake into fish oocytes, and support a novel model of fish oocyte hydration, whereby the accumulation of osmotic effectors and AQP1o intracellular trafficking are two highly regulated mechanisms.  相似文献   

9.
A review of the data on the presence, localization, and supposed role of aquaporin water channels in oocytes of Xenopus laevis, oogenesis and maturation of teleosts Sparus auratus and Oncorhynchus mykiss, oogenesis and oocyte maturation of rats and mice, and spermatogenesis of several mammalians.  相似文献   

10.
Various Coomassie blue-staining yolk proteins (YPs) present in oocytes and eggs of Fundulus heteroclitus, a teleost that produces low hydrated, demersal eggs (benthophil species), were subjected to N-terminal microsequencing. Four YPs were N-terminally blocked, while five yielded sequence information. Of the latter, four corresponded to internal sequences of vitellogenin 1 (Vg1), whereas a fifth band corresponded to the N-terminal sequence of Vg2. Phosphorylated YPs (phosvitins and phosvettes) derived from the polyserine domain of Vg were not successfully sequenced. The major N-terminally blocked 122-and 103-kDa YPs both represented the lipovitellin heavy chain of Vg1 (LvH1), and thus most of the oocyte YPs were derived from Vg1. During oocyte maturation in vivo and in vitro, the LvH1 122 is degraded, concomitant with an increased enzymatic activity of cathepsin B, while the 45-kDa YP is converted to a 42-kDa YP. The LvH1 122 was found to contain a consensus site for proteolytic degradation (PEST) near its C-terminus, which is missing from its stable, but truncated twin sequence, LvH1 103. We suggest that this site becomes exposed to cathepsin B during the hydration process that accompanies oocyte maturation and renders the LvH1 122 susceptible to proteolysis. PEST sites are found in Vg sequences from other benthophil fish, whereas, interestingly, they are missing in marine teleosts that spawn highly hydrated, pelagic eggs (pelagophil species), displaying a different pattern of Vg incorporation into YPs and LvH1 and LvH2 processing to that found in F. heteroclitus. Thus, different models of Vg/YP precursor/product relationship and further processing during oocyte maturation and hydration are proposed for pelagophil and benthophil teleosts.  相似文献   

11.
Full-length cDNAs encoding three forms of vitellogenin (Vg) were obtained from a liver cDNA library of estrogen-treated red seabream, Pagrus major. Two of the three Vg sequences had high homology with type-A and -B Vgs (VgA and VgB) of other teleosts. The third red seabream Vg was classified as a type-C or phosvitinless (Pvl) Vg due to its lack of a phosvitin (Pv) domain. Two Vg preparations (610 and 340 kDa) from blood serum of estradiol-treated fish were biochemically characterized. Analyses of precursor-product relationships by examination of N-terminal amino acid sequences verified cleavage of the 610 kDa Vg into a 540 kDa lipovitellin (Lv) and a 32 kDa beta'-component. Each of these yolk preparations comprising both VgA- and VgB-derived polypeptides. The 340 kDa Vg, which was immunologically verified to be a PvlVg, was accumulated by vitellogenic oocytes with no alterations to its native molecular mass. During oocyte maturation, the VgA- and VgB-derived yolk proteins were differentially processed, presumably to generate a pool of free amino acids for oocyte hydration or for allocation of specific types of nutrients, amino acids, and proteins, to the developing embryo. Conversely, the 340 kDa Vg-derived yolk protein is unlikely to contribute to oocyte hydration or diffusible nutrients since the molecule underwent only minor proteolytic nicking during oogenesis. The present study elucidates for the first time specific functions of three different forms of Vg and their product yolk proteins in a higher taxonomic group of marine teleosts that spawn pelagic eggs.  相似文献   

12.
In the process of cloning vitellogenin (Vtg) cDNAs from haddock (Melanogrammus aeglefinus), two related, but distinct, mRNAs were identified. Full-length cDNA sequences were determined for both Vtg types (Had1 and Had2), and the deduced amino acid sequences were found to be 54% identical to each other and 48-58% identical to other teleost Vtgs. To investigate the expression of the two Vtg mRNAs, proteins from prehydrated oocytes and fertilized eggs were separated on SDS-polyacrylamide gels. Only a single lipovitellin I band was detected in each sample, and the egg lipovitellin I was smaller (97 vs. 110 kDa) than the oocyte protein, indicative of proteolytic processing during oocyte hydration. Mass spectrometric (MALDI-TOFMS and tandem mass spectrometry) analyses of tryptic fragments from the haddock oocyte and egg lipovitellin I revealed that the lipovitellin I from prehydrated oocytes contained tryptic fragments that matched the sequences of both types of Vtg, suggesting that there were two proteins in this band, while the egg lipovitellin I contained tryptic fragments that only matched the Had1 cDNA sequence, indicating that the Had2 lipovitellin had been degraded during hydration. Physiological data from haddock oocytes and eggs demonstrate that, as in other marine fish that spawn pelagic eggs, the free amino acid content increases during oocyte hydration and apparently contributes to hydration by driving the osmotic uptake of water. The correlation of the disappearance of one lipovitellin I with the increase of free amino acids in the oocyte suggests that this protein is a major source of the free amino acids for oocyte hydration.  相似文献   

13.
The maturation process of fish oocytes involves both protein biosynthesis within the oocytes and uptake from the plasma. To follow the changes in the proteins repertoires of fish oocytes during maturation, we performed a large-scale proteomics analysis using one and two-dimensional electrophoresis, multi-dimensional protein identification technology (MudPIT) and tandem mass-spectrometry. A large number of proteins were identified and a map of the vitellogenin derived yolk proteins; lipovitellin and phosvitin, was established (the vitellogenin map), reflecting the posttranslational processing of the different vitellogenins gene-products and their accumulation. Such protein patterns are potentially useful for molecular staging and for quality-control of maturing oocytes. Furthermore, proteomics analyses of single oocytes were used to demonstrate molecular variability between morphologically similar oocytes of same or different fish specimens. Proteins of interest detected in this study include proteins that may serve as maternal factors, such as TCP1, serpin A1 and importin alpha1. The large similarity between the proteins repertoires of fish oocytes and other species, such as mammals and insects, demonstrate the evolutionary conservation of oocyte maturation across diverse species gap.  相似文献   

14.
Stimulation of ovulation of the common frog Rana temporaria oocytes with homologous pituitary extract caused an increase in their volume. Factors that are known to inhibit hydration in teleostean oocytes (potassium-free Ringer solution and inhibitor of Na+,K+-ATPase—ouabain), as well as aquaporin inhibitors (mercuric chloride and methylmethanethiosulphonate) inhibited also homologous pituitary extract-induced volume increase in follicle-enclosed oocytes and led to reduced percentage of ovulated oocytes. Volume of denuded oocytes remained unchanged in the course of maturation when exposed to progesterone or other treatments. The data obtained suggest that stimulation of oocyte ovulation in the common frog caused an increase in their hydration that is necessary for their ovulation but this did not occur in denuded cells.  相似文献   

15.
On the basis of the modern literature data we analyzed the influence of the level of salt concentration and ion composition in a fish habitat during the processes of reproduction. The results of studies of the mechanisms of the reaction of fish to gamete hypo- and hyperosmotic stimulus in the external aqueous environment, as well as the role of mineral and organic osmolytes in the adaptation of mature eggs of fishes in the external environment, depend on the hydrochemical and hydrological conditions of the spawning grounds. The paper provides information about the features of the endocrine regulation of oocyte maturation in fish spawning in different hydrological conditions and the importance of humoral factors in the pathological process of the maturation of fish oocytes. The main scientific and practical aspects of the formation of the phys mechanisms that regulate the water-salt balance is the early ontogeny of fishes are discussed.  相似文献   

16.
The permeability to water and cryoprotectants of the plasma membrane is crucial to the successful cryopreservation of embryos. Previously, we have shown in mouse morulae that water and glycerol move across the plasma membrane by facilitated diffusion, and we have suggested that aquaporin 3 plays an important role in their movement. In the present study, we clarify the contribution of aquaporin 3 to the movement of water and various cryoprotectants in mouse morulae by measuring the Arrhenius activation energies for permeability to cryoprotectants and water, through artificial expression of aquaporin 3 using Aqp3 cRNA in mouse oocytes, and by suppressing the expression of aquaporin 3 in morulae by injecting double-stranded RNA of Aqp3 at the one-cell zygote stage. The results show that aquaporin 3 plays an important role in the facilitated diffusion of water, glycerol, and ethylene glycol, but not of acetamide and dimethylsulfoxide. On the other hand, in a propylene glycol solution, aquaporin 3 in morulae transported neither propylene glycol nor water by facilitated diffusion, probably because of strong water-solute interactions. These results provide important information for understanding the permeability of the plasma membrane of the mouse embryo.  相似文献   

17.
Thomas P  Zhu Y  Pace M 《Steroids》2002,67(6):511-517
The endocrine control of oocyte maturation in fish has proven to be a valuable model for investigating rapid, nongenomic steroid actions at the cell surface. Considerable progress has been made over the last decade in identifying and characterizing progestin membrane receptors mediating these actions in fish, in understanding the hormonal regulation and physiological roles of these receptors in oocyte maturation, in elucidating the signal transduction pathways they activate, and in determining their nature. Recent advances on these topics are briefly reviewed. New data demonstrating the involvement of pertussis toxin-sensitive inhibitory G-proteins in induction of oocyte maturation by the maturation-inducing steroid (MIS) in teleosts is also presented. In addition, the cloning strategy to isolate the MIS receptor gene from spotted seatrout ovaries and the characteristics of a novel gene and protein discovered by this approach are discussed. Current evidence suggests this G-protein-coupled receptor-like protein is the long sought after MIS receptor mediating meiotic maturation of teleost oocytes.  相似文献   

18.
The mediation of fluid homeostasis by multiple classes of aquaporins has been suggested to be essential during spermatogenesis and spermiation. In the marine teleost gilthead seabream (Sparus aurata), seven distinct aquaporins, Aqp0a, -1aa, -1ab, -7, -8b, -9b and -10b, are differentially expressed in the somatic and germ cell lineages of the spermiating testis, but the endocrine regulation of these channels during germ cell development is unknown. In this study, we investigated the in vivo developmental expression of aquaporins in the seabream testis together with plasma androgen concentrations. We then examined the in vitro regulatory effects of recombinant piscine gonadotropins, follicle-stimulating (rFsh) and luteinizing (rLh) hormones, and sex steroids on aquaporin mRNA levels during the spermatogenic cycle. During the resting phase, when plasma levels of androgens were low, the testis exclusively contained proliferating spermatogonia expressing Aqp1ab, whereas Aqp10b and -9b were localized in Sertoli and Leydig cells, respectively. At the onset of spermatogenesis and during spermiation, the increase of androgen plasma levels correlated with the additional appearance of Aqp0a and -7 in Sertoli cells, Aqp0a in spermatogonia and spermatocytes, Aqp1ab, -7 and -10b from spermatogonia to spermatozoa, and Aqp1aa and -8b in spermatids and spermatozoa. Short-term in vitro incubation of testis explants indicated that most aquaporins in Sertoli cells and early germ cells were upregulated by rFsh and/or rLh through androgen-dependent pathways, although Aqp1ab in proliferating spermatogonia was also activated by estrogens. However, expression of Aqp9b in Leydig cells, and of Aqp1aa and -7 in spermatocytes and spermatids, was also directly stimulated by rLh. These results reveal a complex gonadotropic control of aquaporin expression during seabream germ cell development, apparently involving both androgen-dependent and independent pathways, which may assure the fine tuning of aquaporin-mediated fluid secretion and absorption mechanisms in the seabream testis.  相似文献   

19.
Viviparous teleosts exhibit two patterns of embryonic nutrition: lecithotrophy (when nutrients are derived from yolk that is deposited in the oocyte during oogenesis) and matrotrophy (when nutrients are derived from the maternal blood stream during gestation). Nutrients contained in oocytes of matrotrophic species are not sufficient to support embryonic development until term. The smallest oocytes formed among the viviparous poeciliid fish occur in the least killifish, Heterandria formosa, these having diameters of only 400 μm. Accordingly, H. formosa presents the highest level of matrotrophy among poeciliids. This study provides histological details occurring during development of its microlecithal oocytes. Five stages occur during oogenesis: oogonial proliferation, chromatin nucleolus, primary growth (previtellogenesis), secondary growth (vitellogenesis), and oocyte maturation. H. formosa, as in all viviparous poeciliids, has intrafollicular fertilization and gestation. Therefore, there is no ovulation stage. The full‐grown oocyte of H. formosa contains a large oil globule, which occupies most of the cell volume. The oocyte periphery contains the germinal vesicle, and ooplasm that includes cortical alveoli, small oil droplets and only a few yolk globules. The follicular cell layer is initially composed of a single layer of squamous cells during early previtellogenesis, but these become columnar during early vitellogenesis. They are pseudostratified during late vitellogenesis and reduce their height becoming almost squamous in full‐grown oocytes. The microlecithal oocytes of H. formosa represent an extreme in fish oogenesis typified by scarce yolk deposition, a characteristic directly related to matrotrophy. J. Morphol., 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

20.
Ultrastructure of oogenesis in the bluefin tuna, Thunnus thynnus   总被引:1,自引:0,他引:1  
Ovarian ultrastructure of the Atlantic bluefin tuna (Thunnus thynnus) was investigated during the reproductive season with the aim of improving our understanding of the reproductive biology in this species. The bluefin, like the other tunas, has an asynchronous mode of ovarian development; therefore, all developmental stages of the oocyte can be found in mature ovaries. The process of oocyte development can be divided into five distinct stages (formation of oocytes from oogonia, primary growth, lipid stage, vitellogenesis, and maturation). Although histological and ultrastructural features of most these stages are similar among all studied teleosts, the transitional period between primary growth and vitellogenesis exhibits interspecific morphological differences that depend on the egg physiology. Although the most remarkable feature of this stage in many teleosts is the occurrence of cortical alveoli, in the bluefin tuna, as is common in marine fishes, the predominant cytoplasmic inclusions are lipid droplets. Nests of early meiotic oocytes derive from the germinal epithelium that borders the ovarian lumen. Each oocyte in the nest becomes surrounded by extensions of prefollicle cells derived from somatic epithelial cells and these form the follicle that is located in the stromal tissue. The primary growth stage is characterized by intense RNA synthesis and the differentiation of the vitelline envelope. Secondary growth commences with the accumulation of lipid droplets in the oocyte cytoplasm (lipid stage), which is then followed by massive uptake and processing of proteins into yolk platelets (vitellogenic stage). During the maturation stage the lipid inclusions coalesce into a single oil droplet, and hydrolysis of the yolk platelets leads to the formation of a homogeneous mass of fluid yolk in mature eggs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号