首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 665 毫秒
1.
We describe the isolation of six polymorphic microsatellites for Cicada barbara (Stål), four of which are also polymorphic for the closely related Cicada orni L. Cicadas from several sites in the Iberian Peninsula, North Africa (C. barbara) and Greece (C. orni) were genotyped at these loci. Polymorphism is higher than that previously obtained with allozymes for these species. One locus allows species diagnosis (nonoverlapping allele size ranges) between C. barbara and C. orni and the others have some exclusive alleles for each species.  相似文献   

2.
Many insect species rely on their sense of audition to find a mate, to localize prey or to escape from a predator. Cicadas are particularly known for their loud call and the conspicuous tympanal hearing system located in their abdomen. The vibration pattern of the tympanal membrane (TM) has been investigated recently revealing mechanical properties specific to species and sex. Although TM size and shape is likely to affect these patterns, the geometry of the cicada ear has never been examined per se. Focusing on three Mediterranean cicada species, namely Cicadatra atra, Cicada orni and Lyristes plebejus, we investigated the structure of TM shape variation at two levels, within and across species. Applying an elliptic Fourier analysis to the outlines of both male and female TMs, we estimated sexual dimorphism and species effects. Cicadatra atra showed a large TM compared with its small size, probably as a result of selective constraints related to the role of the TM in sound production. Sexual dimorphism seemed to be greater than interspecific variation, indicating that constraints operating on sex might be more selective than those acting on species identification. In addition, C. orni appeared to be significantly different from the two other species. This morphological peculiarity could be related to the unique vibrational pattern of its membrane. This would establish for the first time a direct link between the shape and mechanism of a hearing organ. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 101 , 922–934.  相似文献   

3.
The yellowmouth barracuda, Sphyraena viridensis, is a Mediterranean native species whose exact distribution is uncertain due to a long‐term taxonomic confusion with Sphyraena sphyraena. Records of this species in the Mediterranean Sea have recently increased, and a northwards expansion of its distribution has been suggested. Three mtDNA regions, namely cytochrome oxidase I, cytochrome b and the control region, were analysed in S. viridensis samples from Italian coastal regions to provide molecular markers useful in species identification, in phylogenetic analysis and in detecting the distribution of genetic variability of the yellowmouth barracuda in this area. The data clearly distinguish S. viridensis from S. sphyraena and the other four (one native and three Lessepsian) Mediterranean Sphyraena species and identify two clearly distinct lineages that diverged during the Pleistocene but are currently panmictic in the investigated area. Both lineages retain signatures of historical population expansion. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 113 , 635–641.  相似文献   

4.
Carcinus aestuarii Nardo, 1847 is a widespread coastal crab species throughout the Mediterranean Sea with a pelagic larval phase. This species tolerates a wide range of environmental conditions and typically inhabits fragmented habitats, such as embayments, lagoons and estuaries. It is therefore a good candidate species for studying and testing different phylogeographical hypotheses in the Mediterranean Sea. By contrast to its Atlantic sister species, Carcinus maenas, studies on the population genetic structure of C. aestuarii in its native range are still scarce. In the present study, specimens from along the European Mediterranean Sea were collected and DNA‐sequenced and analyses were applied to discriminate between present day and historical factors influencing the population genetic structure of this species. The results obtained demonstrate the existence of two genetically distinct geographical groups, corresponding to the eastern and western Mediterranean, with further subdivision within the East Mediterranean Basin. A strong asymmetric gene flow was recorded toward the Eastern Basin, which may play a crucial role in shaping the present day biogeographical patterns of this species and potentially other sympatric ones with pelagic larvae. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 109 , 771–790.  相似文献   

5.
The polytene chromosomes of 3347 larvae of the Simulium tuberosum group in Asia were analysed, representing the largest ever cytogenetic study of black flies in the Oriental Region. Band‐by‐band comparisons, relative to the established standard chromosome map for the subgenus Simulium, revealed 17 cytogenetically distinct taxa in Thailand, plus an 18th in China. Six of these taxa correspond to morphologically described species (S. doipuiense, S. rufibasis, S. setsukoae, S. tani, S. yuphae and S. weji). Recognition of the 18 taxa is based largely on unique inversions, either fixed or sex linked, primarily in the long arm of chromosome III. The greatest cytological diversity was discovered in the S. tani lineage, with ten cytoforms. This marked chromosomal diversification within S. tani is based largely on two inversions that have assumed different roles over evolutionary time, variously functioning in different combinations as fixed inversions, sex‐linked inversions and autosomal polymorphisms. Shared unique chromosomal features, relative to the subgeneric standard chromosome map, allowed evolutionary relationships among the cytotaxa to be inferred. Fluctuations in climate during the Pleistocene might have promoted differentiation of the Southeast Asian S. tuberosum group in isolated refugia such as mountains. © 2009 The Linnean Society of London, Zoological Journal of the Linnean Society, 2009, 155 , 289–315.  相似文献   

6.
Within the Atlantic–Mediterranean region, the ‘sand gobies’ are abundant and widespread, and play an important role in marine, brackish, and freshwater ecosystems. They include the smallest European freshwater fish, Economidichthys trichonis, which is threatened by habitat loss and pollution, as are several other sand gobies. Key to good conservation management is an accurate account of the number of evolutionary significant units. Nevertheless, many taxonomic and evolutionary questions remain unresolved within the clade, and molecular studies are lacking, especially in the Balkans. Using partial 12S and 16S mitochondrial ribosomal DNA sequences of 96 specimens of at least eight nominal species (both freshwater and marine populations), we assess species relationships and compare molecular and morphological data. The results obtained do not support the monophyly of Economidichthys, suggesting the perianal organ to be a shared adaptation to hole‐brooding rather than a synapomorphy, and urge for a taxonomic revision of Knipowitschia. The recently described Knipowitschia montenegrina seems to belong to a separate South‐East Adriatic lineage. Knipowitschia milleri, an alleged endemic of the Acheron River, and Knipowitschia cf. panizzae, are shown to be very closely related to other western Greek Knipowitschia populations, and appear conspecific. A distinct Macedonian–Thessalian lineage is formed by Knipowitschia thessala, whereas Knipowitschia caucasica appears as an eastern lineage, with populations in Thrace and the Aegean. The present study combines the phylogeny of a goby radiation with insights on the historical biogeography of the eastern Mediterranean, and identifies evolutionary units meriting conservation attention. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 105 , 73–91.  相似文献   

7.
Habitat fragmentation is a major force that will influence the evolution of a species and its distribution range. Pomatoschistus minutus, the sand goby, has a North Atlantic–Mediterranean distribution and shows various level of habitat fragmentation along its geographic repartition. The use of mitochondrial sequences of the cytochrome b (cyt b) gene and two co‐dominant sets of nuclear markers (introns and microsatellites) allowed us to describe the relationships between P. minutus populations belonging to several different geographical regions of Europe and to assess the structure of populations inhabiting the Golfe du Lion, along the French Mediterranean coast. The present study confirms that the taxon located in the Adriatic Sea (Venice) should be considered as a distinct species, separated approximately 1.75 Mya. The comparison of P. minutus between the Atlantic and western Mediterranean coasts using polymorphic co‐dominant markers revealed that they belong to two demographically independent units, and thus could be considered as well as distinct species, more recently separated (0.3 Mya). The Pleistocene glaciations seem therefore to have played an important role in the diversification of this complex. Finally, at a regional scale in the Golfe du Lion, P. minutus appears to form a single huge homogeneous population. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 102 , 175–198.  相似文献   

8.
The present study reports a case where the survey of morphological and mitochondrial DNA variation among populations of a species complex of leaf beetle, the Gonioctena variabilis complex, has lead to the identification of a hybrid zone between two species of the complex in Southern Spain. The complex is divided into four species distributed around the western Mediterranean region. The four species, G. variabilis, Gonioctena aegrota, Gonioctena gobanzi, and Gonioctena pseudogobanzi, are traditionally determined by differences in the morphology of the male genitalia (aedeagus). To gain insight into the history of the speciation process within this species complex, we sampled populations in Portugal, Spain, Southern France, and Northern Italy. We sequenced a portion of the mitochondrial control region of each individual collected. A haplotype network of these sequences was found to comprise four distinct groups of sequence types, separated by a relatively large number of mutations. Moreover, in most of the samples for which morphological and molecular variation is available, there is a one‐to‐one correspondence between haplotype group, defined by mitochondrial sequence variation, and morphological groups defined on the basis of the aedeagus, showing evidence of four historically independent evolutionary units. This supports the use of the aedeagus morphology as a taxonomically informative trait in this species complex and a recent taxonomic revision upgrading four formerly subspecies, corresponding to the evolutionary units identified in the present study, to species status. However, some of the individuals from our samples in Southern Spain, morphologically identified as G. aegrota, were found to possess mitochondrial sequences typical of G. pseudogobanzi. The opposite case was also found. This suggests the presence of a zone of contact and hybridization between G. aegrota and G. pseudogobanzi. The location of this hybrid zone appears to be unusual. We identify historical scenarios that may explain our observations. © 2008 The Linnean Society of London, Biological Journal of the Linnean Society, 2008, 94 , 105–114.  相似文献   

9.
This study reports the value of leaf cuticle characteristics in the identification and classification of Iberian Mediterranean species of the genus Pinus (P. nigra subsp. salzmannii, P. pinaster, P. pinea and P. halepensis), with the aim of using these characters to identify isolated cuticles and stomata in palynology slides. Preparations were made of the cuticles of pine needles belonging to one natural Iberian population of each of the above species. A number of epidermal morphological characteristics were then recorded with the aim of distinguishing these species from one another. The structure of the stomatal complex (the shape and arrangement of the subsidiary cells) was different in each species. The aperture of the epistomatal chamber was significantly smaller in P. pinea than in the other species examined, and the variables recorded for the thickening of the guard cells provided relationships that clearly distinguished all four taxa. The width and length of the stomata and the upper woody lamellae, the central distance between the external limits of the medial lamellae borders and the length of the stem were the most useful variables in this respect. The present results contribute to the ongoing discussion regarding the taxonomic classification of the members of Pinus, and provide valuable clues for the identification of Iberian Mediterranean pine species from small pine needle fragments or isolated stomata. After validation of the present results for multiple populations, these results could also be used to help identify fossil leaf macroremains and the scattered/isolated stomata commonly observed in palaeopalynological samples. © 2009 The Linnean Society of London, Botanical Journal of the Linnean Society, 2009, 161 , 436–448.  相似文献   

10.
11.
Pilot whales (Globicephala spp.) provide an interesting example of recently diverged oceanic species with a complex evolutionary history. The two species have wide but largely non‐overlapping ranges. Globicephala melas (long‐finned pilot whale; LFPW) has an antitropical distribution and is found in the cold‐temperate waters of the North Atlantic and Southern Hemisphere, whereas Globicephala macrorhynchus (short‐finned pilot whale; SFPW) has a circumglobal distribution and is found mainly in the tropics and subtropics. To investigate pilot whale evolution and biogeography, we analysed worldwide population structure using mitochondrial DNA (mtDNA) control region sequences (up to 620 bp) from a variety of sources (LFPW = 643; SFPW = 150), including strandings in New Zealand and Tasmania, and whale‐meat products purchased on the markets of Japan and Korea. Phylogenetic reconstructions failed to support a reciprocal monophyly of the two species, despite six diagnostic substitutions, possibly because of incomplete lineage sorting or inadequate phylogenetic information. Both species had low haplotype and nucleotide diversity compared to other abundant widespread cetaceans (LFPW, π = 0.35%; SFPW, π = 0.87%) but showed strong mtDNA differentiation between oceanic basins. Strong levels of structuring were also found at the regional level. In LFPW, phylogeographic patterns were suggestive either of a recent demographic expansion or selective sweep acting on the mtDNA. For SFPW, the waters around Japan appear to represent a centre of diversity, with two genetically‐distinct forms, as well as a third population of unknown origin. The presence of multiple unique haplotypes among SFPW from South Japan, together with previously documented morphological and ecological differences, suggests that the southern form represents a distinct subspecies and/or evolutionary significant unit. © 2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2009, 98 , 729–744.  相似文献   

12.
The karyotypes of 16 populations belonging to eight species of Polygonatum from China were analysed. The chromosome numbers and karyotypes of P. omeiense, P. adnatum and P. hirtellum and the diploidy of P. tessellatum are reported for the first time. The basic chromosome numbers were x = 11, 13, 14 and 15. Based on Stebbins' karyotypic classification, the four karyotypes were recognized as 2B, 3B, 2C and 3C. Considering the arm ratio and individual chromosome size, it was concluded that the possible evolutionary trend of the karyotypes in Polygonatum was from 2B to 3C. The results show that: (1) satellite heterozygosity occurs in many species of this genus; (2) mixoploidy and B chromosomes occur in some species; and (c) karyotypes are different in different species and even in different populations of the same species. © 2009 The Linnean Society of London, Botanical Journal of the Linnean Society, 2009, 159 , 245–254.  相似文献   

13.
The hydrozoan family Aglaopheniidae (Cnidaria) is widespread worldwide and contains some of the most easily recognizable hydroids because of their large colony size and characteristic microscopic structure. The systematics of the group has, however, been controversial and dedicated molecular analyses are lacking. We therefore analysed existing and new 16S rRNA sequences of Aglaopheniidae, in a total of 98 16S sequences corresponding to 25 putative species (25 nominal and three undescribed) from seven genera. The monophyly of the subfamilies Gymnangiinae and Aglaopheniinae, and tribes Aglaopheniini and Cladocarpini were not verified with 16S sequence data. The genera Gymnangium and Aglaophenia can only be considered valid if both Gymnangium gracicaule and Aglaophenia latecarinata are removed from their respective genera. The phenotypically similar Cladocarpus and Streptocaulus are probably monophyletic and clearly distinct genetically. The genus Lytocarpia may be polyphyletic. The nominal species Aglaophenia pluma, Aglaophenia tubiformis, and Aglaophenia octodonta are probably conspecific, as are also the species Aglaophenia acacia and Aglaophenia elongata. The 16S data revealed the existence of two potentially unnamed species of Aglaophenia respectively from the Azores and Madeira. The phylogeographical structure of the taxa with the greatest representation of haplotypes from the north‐east Atlantic and Mediterranean, revealed the influence of Mediterranean waters in Madeira and the Azores, and gene flow between deep waters of the Mediterranean and Atlantic. The last glaciations in Europe may have caused genetic bottlenecks but also high intraspecific haplotype diversity. Finally, Macrorhynchia philippina was detected in samples from Madeira and possibly represents an invasive species. © 2012 The Linnean Society of London, Zoological Journal of the Linnean Society, 2012, 164 , 717–727.  相似文献   

14.
Comparative phylogeography is a powerful method for testing hypotheses of evolutionary diversification in ecological communities. Caribbean lizards of the genus Anolis are a species‐rich group and a well‐known example of adaptive radiation. In 1983, Ernest Williams suggested that species of Anolis that belong to the same ‘climate type’ (taxa that occur sympatrically in either xeric, mesic or very wet habitats) probably evolved under similar ecological conditions, and thus have experienced a parallel evolutionary history. This hypothesis implies that the phylogeographical patterns of such species can be expected to be concordant, a prediction that has not been tested. We conducted a comparative phylogeographical and population genetic study of Anolis poncensis and Anolis cooki, two sympatric lizards restricted to the aridlands of southwestern Puerto Rico, to determine whether there are similarities in the genetic architecture of the two anoles that may have resulted from a parallel response to the same historical events, or whether each taxon displays a distinct pattern of geographical distribution of intraspecific genealogical lineages. Our dataset consisted of approximately 2120 base pairs of the ND2 and cytochrome b genes from specimens from the known extant populations of the two species. The average haplotype diversity in A. poncensis (0.36) was considerably lower than that in A. cooki (0.62), whereas the average nucleotide diversity in A. cooki was ten times higher than that in A. poncensis. Both anoles showed pronounced phylogeographical structure, with no shared haplotypes among populations. The gene genealogy of A. poncensis recovered three strongly supported clades: the westernmost population, the easternmost deme and the three intermediate populations. In A. cooki, the populations from the western part of the species' range formed a well‐supported group, to the exclusion of the eastern demes. Pairwise FST values revealed significant genetic differentiation among all conspecific populations of both anoles. Coalescent simulations indicated that A. poncensis could have evolved under a scenario of simple population fragmentation during the Pleistocene, but that A. cooki did not. The estimate of the effective population size of A. cooki was an order of magnitude larger than that of A. poncensis. Because time to the most recent common ancestor is dependent on effective population size, this tenfold difference implies that the time to the most recent common ancestor of A. cooki is much longer than that of A. poncensis, which indicates that A. cooki diversified earlier than A. poncensis. Collectively, these findings suggest that, although A. poncensis and A. cooki are syntopic throughout much of their current distribution, intraspecific diversification in the two species has not proceeded in parallel, which does not support the hypothesis that Anolis lizards that occupy the same climate‐type region possess spatially and temporally congruent genetic architectures. © 2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2009, 96 , 617–634.  相似文献   

15.
The family Galatheidae is among the most diverse families of anomuran decapod crustaceans, and the South‐West Pacific is a biodiversity hot spot for these squat lobsters. Attempts to clarify the taxonomic and evolutionary relationships of the Galatheidae on the basis of morphological and molecular data have revealed the existence of several cryptic species, differentiated only by subtle morphological characters. Despite these efforts, however, relationships among genera are poorly understood, and the family is in need of a detailed systematic review. In this study, we assess material collected in different surveys conducted in the Solomon Islands, as well as comparative material from the Fiji Islands, by examining both the morphology of the specimens and two mitochondrial markers (cytochrome oxidase subunit I, COI, and 16S rRNA). These two sources of data revealed the existence of eight new species of squat lobster, four of which were ascribed to the genus Munida, two to the genus Paramunida, one to the genus Plesionida, and the last species was ascribed to the genus Agononida. These eight species are described along with phylogenetic relationships at the genus level. Our findings support the taxonomic status of the new species, yet the phylogenetic relationships are not yet fully resolved. Further molecular analysis of a larger data set of species, and more conserved genes, will help clarify the systematics of this group. © 2009 The Linnean Society of London, Zoological Journal of the Linnean Society, 2009, 156 , 465–493.  相似文献   

16.
The Italian endemic genus Salamandrina has been historically regarded as monotypic but, recently, studies based on both mitochondrial and nuclear markers have indicated the existence of two distinct species of spectacled salamanders: Salamandrina perspicillata, in central and northern Italy, and Salamandrina terdigitata, in southern Italy. We analyzed nucleotide variation at mitochondrial and nuclear genes [cytochrome b, 12S and 16S rRNA, recombination activating gene (RAG 1)] in 223 individuals from 56 locations, aiming to investigate their genetic structure and recent evolutionary histories. Phylogenetic and phylogeographical analyses revealed the existence of three and two genetically distinct groups of populations in northern and southern salamander, respectively. Historical demographic analyses led to the inference of range expansion for both species in the late Pleistocene. During the last glacial stage, each salamander survived in a single refugium, namely the southern in Calabria and the northern in central Italy. At the end of this period, both lineages expanded northward and established secondary contact. Spatial distribution of RAG 1 haplotype variation revealed two differentiated population groups corresponding to the major mitochondrial (mt)DNA clades. Nuclear pattern of introgressive hybridization was more extensive than the highly limited introgression of mtDNA markers. From a conservation standpoint, southern Latium and Calabria proved to be the major genetic diversity reservoirs, thus deserving particular conservation efforts. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 104 , 903–922.  相似文献   

17.
18.
Recent phylogeographical studies have re‐evaluated the role of refugia in central and northern Europe for glacial persistence and postglacial assembly of temperate biota. Yet, on a regional scale within Mediterranean peninsulas, putative ‘northern’ refugia's contribution to the current structure of biodiversity still needs to be fully appreciated. To this end, we investigated the phylogeographical structure and the evolutionary history of the Italian smooth newt, Lissotriton vulgaris meridionalis, through phylogeographical, molecular dating and historical demographic analyses. We found ten differentiated mitochondrial lineages with a clear geographical association, mainly distributed in northern Italy. The most ancient divergence among these lineages was estimated at the Early Pleistocene and was followed by a series of splits throughout the Middle Pleistocene. No haplogroup turned out to be derived from another one, each one occupying terminal positions within the phylogenetic network topologies. These results suggest an unprecedented scenario involving long‐term survival of distinct evolutionary lineages in multiple northern Mediterranean refugia. This scenario mirrors on a smaller geographical scale what has been previously observed in the literature concerning northern European environments; it also sheds more light on how northern Italy has contributed to temperate species' long‐term survival and to the assembly of regional biota. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 113 , 590–603.  相似文献   

19.
The Corsica–Sardinia archipelago is a hotspot of Mediterranean biodiversity. Although tempo and mode of arrival of species to this archipelago and phylogenetic relationships with continental species have been investigated in many taxa, very little is known about the current genetic structure and evolutionary history subsequent to arrival. In the present study, we investigated genetic variation within and among populations of the Tyrrhenian treefrog Hyla sarda, a species endemic to the Corsica–Sardinia microplate and the surrounding islands, by means of allozyme electrophoresis. Low genetic divergence (mean Dnei = 0.01) and no appreciable differences in the levels and distribution of genetic variability (HE: 0.06–0.09) were observed among all but one populations (Elba). Historical demographic and isolation‐by‐distance analyses indicated that this diffused genetic homogeneity could be the result of recent demographic expansion. Along with paleoenvironmental data, such expansion could have occurred during the last glacial phase, when wide and persistent land bridges connected the main islands and a widening of lowland areas occurred. This scenario is unprecedented among Corsica–Sardinia species. Together with the lack of concordance even among the few previously studied species, this suggests either that species had largely independent responses to paleoenvironmental changes, or that most of the history of assembly of the Corsica–Sardinia biota is yet to be written. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 103 , 159–167.  相似文献   

20.
In this study, we evaluated the genetic diversity of the Petunia integrifolia species group using a phylogeographical approach, and attempted to understand better its diversification and taxonomy. Plants from five morphological groups were collected, covering a large part of the geographical distribution of most of the species. Two major clades were found in the phylogenetic tree, and an additional lineage, corresponding to P. inflata, was found in the haplotype network obtained for plastid markers. All three lineages are clearly delimited geographically, but, with the exception of P. inflata, the morphological groups were not genetically distinct. Our results suggest that a population expansion after a size reduction resulted in the establishment of two distinct and allopatric groups c. 0.5 Mya, one group occurring in a geologically ancient area, and the other occurring in areas that were under the influence of a series of marine transgressions/regressions at the end of the Pleistocene. These two clades are evolutionarily significant units with significantly different allele frequencies in their nuclear genome and reciprocal monophyly in maternal, uniparentally inherited markers. All our results suggest that the morphology‐based taxonomy in this group does not reflect its evolutionary history, and revision of its species limits should incorporate the distribution of the genetic diversity. © 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2014, 174 , 199–213.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号