首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
One of the major factors limiting biomass productivity in algae is the low thermodynamic efficiency of photosynthesis. The greatest thermodynamic inefficiencies in photosynthesis occur during the conversion of light into chemical energy. At full sunlight the light‐harvesting antenna captures photons at a rate nearly 10 times faster than the rate‐limiting step in photosynthetic electron transport. Excess captured energy is dissipated by non‐productive pathways including the production of reactive oxygen species. Substantial improvements in photosynthetic efficiency have been achieved by reducing the optical cross‐section of the light‐harvesting antenna by selectively reducing chlorophyll b levels and peripheral light‐harvesting complex subunits. Smaller light‐harvesting antenna, however, may not exhibit optimal photosynthetic performance in low or fluctuating light environments. We describe a translational control system to dynamically adjust light‐harvesting antenna sizes for enhanced photosynthetic performance. By expressing a chlorophyllide a oxygenase (CAO) gene having a 5′ mRNA extension encoding a Nab1 translational repressor binding site in a CAO knockout line it was possible to continuously alter chlorophyll b levels and correspondingly light‐harvesting antenna sizes by light‐activated Nab1 repression of CAO expression as a function of growth light intensity. Significantly, algae having light‐regulated antenna sizes had substantially higher photosynthetic rates and two‐fold greater biomass productivity than the parental wild‐type strains as well as near wild‐type ability to carry out state transitions and non‐photochemical quenching. These results have broad implications for enhanced algae and plant biomass productivity.  相似文献   

2.
In photosynthesis, light energy is absorbed by light‐harvesting complexes and used to drive photochemistry. However, a fraction of absorbed light is lost to non‐photochemical quenching (NPQ) that reflects several important photosynthetic processes to dissipate excess energy. Currently, estimates of NPQ and its individual components (qE, qI, qZ and qT) are measured from pulse‐amplitude‐modulation (PAM) measurements of chlorophyll fluorescence yield and require measurements of the maximal yield of fluorescence in fully dark‐adapted material (Fm), when NPQ is assumed to be negligible. Unfortunately, this approach requires extensive dark acclimation, often precluding widespread or high‐throughput use, particularly under field conditions or in imaging applications, while introducing artefacts when Fm is measured in the presence of residual photodamaged centres. To address these limitations, we derived and characterized a new set of parameters, NPQ(T), and its components that can be (1) measured in a few seconds, allowing for high‐throughput and field applications; (2) does not require full relaxation of quenching processes and thus can be applied to photoinhibited materials; (3) can distinguish between NPQ and chloroplast movements; and (4) can be used to image NPQ in plants with large leaf movements. We discuss the applications benefits and caveats of both approaches.  相似文献   

3.
In Arabidopsis, the chloroplast NADH‐dehydrogenase‐like (NDH) complex is sandwiched between two copies of photosystem I (PSI) supercomplex, consisting of a PSI core and four light‐harvesting complex I (LHCI) proteins (PSI‐LHCI) to form the NDH–PSI supercomplex. Two minor LHCI proteins, Lhca5 and Lhca6, contribute to the interaction of each PSI–LHCI copy with the NDH complex. Here, large‐pore blue‐native gel electrophoresis revealed that, in addition to this complex, there were at least two types of higher‐order association of more LHCI copies with the NDH complex. In single‐particle images, this higher‐order association of PSI–LHCI preferentially occurs at the left side of the NDH complex when viewed from the stromal side, placing subcomplex A at the top (Yadav et al., Biochim. Biophys. Acta ‐ Bioenerg., 1858, 2017, 12). The association was impaired in the lhca6 mutant but not in the lhca5 mutant, suggesting that the left copy of PSI–LHCI was linked to the NDH complex via Lhca6. From an analysis of subunit compositions of the NDH–PSI supercomplex in lhca5 and lhca6 mutants, we propose that Lhca6 substitutes for Lhca2 in the left copy of PSI–LHCI, whereas Lhca5 substitutes for Lhca4 in the right copy. In the lhca2 mutant, Lhca3 was specifically stabilized in the NDH–PSI supercomplex through heterodimer formation with Lhca6. In the left copy of PSI–LHCI, subcomplex B, Lhca6 and NdhD likely formed the core of the supercomplex interaction. In contrast, a larger protein complex, including at least subcomplexes B and L and NdhB, was needed to form the contact site with Lhca5 in the right copy of PSI–LHCI.  相似文献   

4.
  • The re‐composition of deforested environments requires the prior acclimation of seedlings to full sun in nurseries. Seedlings can overcome excess light either through the acclimation of pre‐existing fully expanded leaves or through the development of new leaves that are acclimated to the new light environment. Here, we compared the acclimation capacity of mature (MatL, fully expanded at the time of transfer) and newly expanded (NewL, expanded after the light shift) leaves of Guazuma ulmifolia Lam. (Malvaceae) seedlings to high light.
  • The seedlings were initially grown under shade and then transferred to full sunlight. MatL and NewL were used for chlorophyll fluorescence and gas exchange analyses, pigment extraction and morpho‐anatomical measurements.
  • After the transfer of seedlings to full sun, the MatL persisted and acclimated to some extent to the new light condition, since they underwent alterations in some morpho‐physiological traits and maintained a functional electron transport chain and positive net photosynthesis rate. However, long‐term exposure to high light led to chronic photoinhibition in MatL, which could be related to the limited plasticity of leaf morpho‐anatomical attributes. However, the NewL showed a high capacity to use the absorbed energy in photochemistry and dissipate excess energy harmlessly, attributes that were favoured by the high structural plasticity exhibited by these leaves.
  • Both the maintenance of mature, photosynthetically active leaves and the production of new leaves with a high capacity to cope with excess energy were important for acclimation of G. ulmifolia seedlings.
  相似文献   

5.
6.
Low-temperature (77 K) steady-state fluorescence emission spectroscopy and dynamic light scattering were applied to the main chlorophyll a/b protein light harvesting complex of photosystem II (LHC II) in different aggregation states to elucidate the mechanism of fluorescence quenching within LHC II oligomers. Evidences presented that LHC II oligomers are heterogeneous and consist of large and small particles with different fluorescence yield. At intermediate detergent concentrations the mean size of the small particles is similar to that of trimers, while the size of large particles is comparable to that of aggregated trimers without added detergent. It is suggested that in small particles and trimers the emitter is monomeric chlorophyll, whereas in large aggregates there is also another emitter, which is a poorly fluorescing chlorophyll associate. A model, describing populations of antenna chlorophyll molecules in small and large aggregates in their ground and first singlet excited states, is considered. The model enables us to obtain the ratio of the singlet excited-state lifetimes in small and large particles, the relative amount of chlorophyll molecules in large particles, and the amount of quenchers as a function of the degree of aggregation. These dependencies reveal that the quenching of the chl a fluorescence upon aggregation is due to the formation of large aggregates and the increasing of the amount of chlorophyll molecules forming these aggregates. As a consequence, the amount of quenchers, located in large aggregates, is increased, and their singlet excited-state lifetimes steeply decrease.  相似文献   

7.
The biological conversion of light energy into chemical energy is performed by a flexible photosynthetic machinery located in the thylakoid membranes. Photosystems I and II (PSI and PSII) are the two complexes able to harvest light. PSI is the last complex of the electron transport chain and is composed of multiple subunits: the proteins building the catalytic core complex that are well conserved between oxygenic photosynthetic organisms, and, in green organisms, the membrane light‐harvesting complexes (Lhc) necessary to increase light absorption. In plants, four Lhca proteins (Lhca1–4) make up the antenna system of PSI, which can be further extended to optimize photosynthesis by reversible binding of LHCII, the main antenna complex of photosystem II. Here, we used biochemistry and electron microscopy in Arabidopsis to reveal a previously unknown supercomplex of PSI with LHCII that contains an additional Lhca1–a4 dimer bound on the PsaB–PsaI–PsaH side of the complex. This finding contradicts recent structural studies suggesting that the presence of an Lhca dimer at this position is an exclusive feature of algal PSI. We discuss the features of the additional Lhca dimer in the large plant PSI–LHCII supercomplex and the differences with the algal PSI. Our work provides further insights into the intricate structural plasticity of photosystems.  相似文献   

8.
缺铁使大豆叶片激发能的耗散增加   总被引:12,自引:2,他引:12  
缺铁叶片的光合速率大幅度下降。这种降低可能不是色素含量降低的结果 ;而且缺铁对PSII复合物的活性影响很小 ;较高的PQ还原程度显示缺铁叶片PSII受体侧电子传递受阻 ,这可能是导致光合速率下降的主要因素。强光下缺铁叶片的天线转化效率比正常叶片低 ,用于光化学反应的激发能很少。缺铁导致大豆叶片激发能耗散增加。通过抑制剂处理和叶黄素组分的分析 ,可以认为在耗散过剩激发能的过程中 ,缺铁叶片充分启动了叶黄素循环  相似文献   

9.
Leaf chloroplast movement is thought to optimize light capture and to minimize photodamage. To better understand the impact of chloroplast movement on photosynthesis, we developed a technique based on the imaging of reflectance from leaf surfaces that enables continuous, high‐sensitivity, non‐invasive measurements of chloroplast movement in multiple intact plants under white actinic light. We validated the method by measuring photorelocation responses in Arabidopsis chloroplast division mutants with drastically enlarged chloroplasts, and in phototropin mutants with impaired photorelocation but normal chloroplast morphology, under different light regimes. Additionally, we expanded our platform to permit simultaneous image‐based measurements of chlorophyll fluorescence and chloroplast movement. We show that chloroplast division mutants with enlarged, less‐mobile chloroplasts exhibit greater photosystem II photodamage than is observed in the wild type, particularly under fluctuating high levels of light. Comparison between division mutants and the severe photorelocation mutant phot1‐5 phot2‐1 showed that these effects are not entirely attributable to diminished photorelocation responses, as previously hypothesized, implying that altered chloroplast morphology affects other photosynthetic processes. Our dual‐imaging platform also allowed us to develop a straightforward approach to correct non‐photochemical quenching (NPQ) calculations for interference from chloroplast movement. This correction method should be generally useful when fluorescence and reflectance are measured in the same experiments. The corrected data indicate that the energy‐dependent (qE) and photoinhibitory (qI) components of NPQ contribute differentially to the NPQ phenotypes of the chloroplast division and photorelocation mutants. This imaging technology thus provides a platform for analyzing the contributions of chloroplast movement, chloroplast morphology and other phenotypic attributes to the overall photosynthetic performance of higher plants.  相似文献   

10.
We characterized a set of Arabidopsis mutants deficient in specific light-harvesting proteins, using freeze-fracture electron microscopy to probe the organization of complexes in the membrane and confocal fluorescence recovery after photobleaching to probe the dynamics of thylakoid membranes within intact chloroplasts. The same methods were used to characterize mutants lacking or over-expressing PsbS, a protein related to light-harvesting complexes that appears to play a role in regulation of photosynthetic light harvesting. We found that changes in the complement of light-harvesting complexes and PsbS have striking effects on the photosystem II macrostructure, and that these effects correlate with changes in the mobility of chlorophyll proteins within the thylakoid membrane. The mobility of chlorophyll proteins was found to correlate with the extent of photoprotective non-photochemical quenching, consistent with the idea that non-photochemical quenching involves extensive re-organization of complexes in the membrane. We suggest that a key feature of the physiological function of PsbS is to decrease the formation of ordered semi-crystalline arrays of photosystem II in the low-light state. Thus the presence of PsbS leads to an increase in the fluidity of the membrane, accelerating the re-organization of the photosystem II macrostructure that is necessary for induction of non-photochemical quenching.  相似文献   

11.
Chlorophyll fluorescence has been often used as an intrinsic optical molecular probe to study photosynthesis. In this study, the origin of bands at 437 and 475.5 nm in the chlorophyll fluorescence excitation spectrum for emission at 685 nm in Arabidopsis chloroplasts was investigated using various optical analysis methods. The results revealed that this fluorescence excitation spectrum was related to the absorption characteristics of pigment molecules in PSII complexes. Moreover, the excitation band centred at 475.5 nm had a blue shift, but the excitation band at 437 nm changed relatively less due to induction of non‐photochemical quenching (NPQ). Furthermore, fluorescence emission spectra showed that this blue shift occurred when excitation energy transfer from both chlorophyll b (Chl b) and carotenoids (Cars) to chlorophyll a (Chl a) was blocked. These results demonstrate that the excitation band at 437 nm was mainly contributed by Chl a, while the excitation band at 475.5 nm was mainly contributed by Chl b and Cars. The chlorophyll fluorescence excitation spectrum, therefore, could serve as a useful tool to describe specific characteristics of light absorption and energy transfer between light‐harvesting pigments. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
持续常温弱光(25℃/18℃,l00umol m-2 s-1)、低温弱光(12℃/12℃,100 umol m-2 s-1和7℃/7℃,l00μmolm-2s-1)均导致黄瓜生长减慢或停滞、叶绿素含量、气孔导度和净光合速率、光合电子传递速率下降以及胞间CO2浓度上升.常温弱光和12℃弱光处理对光系统II的最大光化学效率Fv/Fm无显著影响,而7℃弱光处理导致Fv/Fm的可逆性下降.常温弱光和7℃、12℃弱光处理均导致了光化学反应速率的降低以及天线热耗散和反应中心过剩能量的增加.在胁迫后,12℃弱光0比7℃弱光更有利于植株光合功能的恢复.  相似文献   

13.
濒危植物银杉幼树对生长光强的季节性光合响应   总被引:29,自引:1,他引:29  
银杉(Cathayaargyrophylla)是我国松科中特有的单种属植物,被认为处于濒危状态。在对银杉群落多年调查研究的基础上,针对银杉幼树生长过程对光强的需求特性,我们开展了银杉幼树对光的适应性研究。试验在人工培育的银杉苗圃地,采用遮荫的方法设置不同的光环境处理(100%、45%和3%自然光强),利用气体交换技术和叶绿素荧光技术测定了3种光强下银杉叶片光合生理指标的变化,探讨了不同光环境下银杉幼树光合能力在夏季和冬季的变化及其对生长光强的响应等。结果表明:在夏季银杉生长旺盛时期,遮荫导致叶片最大光合速率(Pnmax)、羧化效率(CE)下降,但不同叶龄叶片的下降幅度不同。随生长光强的下降,银杉幼树的光补偿点(LCP)和光饱和点(LSP)有所降低,但全晴天时,低光强(3%自然光强)条件下实际的光辐射量高于当年生叶片光补偿点的累积时间约6h,而且与光饱和的区域相差极大,造成全天碳同化量低,同化物累积少,严重影响了银杉幼树的正常生长。在不同处理中全光强条件下银杉幼树长势最好,45%光强条件下幼树生长减慢。冬季银杉最大光合速率(Pnmax)、羧化效率(CE)值均低于夏季,光补偿点(LCP)和光饱和点(LSP)也较夏季降低。全光照条件下无论是当年生叶片和一年生叶片,在冬季均出现了轻微光抑制现象,适度遮荫有利于银杉抵御冬季光抑制。无论在遮荫或不遮荫条件下,冬季银杉叶片将所吸收的相对过剩光能通过非辐射途径耗散出去,表现出一种光保护策略。  相似文献   

14.
A detailed quantitative study was conducted on state 1-state 2 transition and its reversal in broken chloroplasts by modulated fluorimetry. The characteristics of the transition obtained supported other previous in-vitro findings. More importantly, a very close quantitative similarity was obtained under suitable conditions to previous in-vivo studies, particularly in approaching a constancy of Fm/F0 during the transition and the equality of the fractional change of these fluorescence parameters with the calculated light distribution fraction to PS II. This confirms that in broken chloroplasts too, the state transitions involve reciprocal changes in the absorption cross-sections of PS II and PS I.Abbreviations AMP-PNP adenylylimidodiphosphate - LHC II light harvesting chlorophyll a/b-protein complex - MeV methylviologen  相似文献   

15.
Miniaturized pulse‐amplitude modulated photosynthesis yield analysers are primarily designed for measuring effective quantum yield (ΔF/Fm′) of photosystem II under momentary ambient light conditions in the field. Although this provides important ecophysiological information, it is often necessary to learn more about the potential intrinsic capacities of leaves by measuring light‐response curves. Thus, instruments provide light‐curve programmes, where light intensities are increased in short intervals and instant light‐response curves are recorded within a few minutes. This method can be criticized because photosynthesis will most likely not be in steady state. This technical report shows that with the appropriate precautions instant light curves can nevertheless provide reliable information about cardinal points of photosynthesis. First, the geometry of the light source of the instrument in relation to the quantum sensor must be considered and quantum sensor readings must be corrected. Second, the measurements of the light‐response curves must be compared with readings of effective quantum yield of photosystem II under ambient light conditions where photosynthesis is in steady state. This may show that in the critical range of the light curves either both measurements perfectly coincide or are offset against each other by a constant value (examples are given here). In the first case results of light curves can be taken at face values, and in the second case a simple correction can be applied. With these precautions and careful interpretations instant light‐response curves can be an enormous advantage in ecophysiological field work.  相似文献   

16.
Functions of α‐ and β‐branch carotenoids in whole‐plant acclimation to photo‐oxidative stress were studied in Arabidopsis thaliana wild‐type (wt) and carotenoid mutants, lut ein deficient (lut2, lut5), n on‐p hotochemical q uenching1 (npq1) and s uppressor of z eaxanthin‐l ess1 (szl1) npq1 double mutant. Photo‐oxidative stress was applied by exposing plants to sunflecks. The sunflecks caused reduction of chlorophyll content in all plants, but more severely in those having high α‐ to β‐branch carotenoid composition (α/β‐ratio) (lut5, szl1npq1). While this did not alter carotenoid composition in wt or lut2, which accumulates only β‐branch carotenoids, increased xanthophyll levels were found in the mutants with high α/β‐ratios (lut5, szl1npq1) or without xanthophyll‐cycle operation (npq1, szl1npq1). The PsbS protein content increased in all sunfleck plants but lut2. These changes were accompanied by no change (npq1, szl1npq1) or enhanced capacity (wt, lut5) of NPQ. Leaf mass per area increased in lut2, but decreased in wt and lut5 that showed increased NPQ. The sunflecks decelerated primary root growth in wt and npq1 having normal α/β‐ratios, but suppressed lateral root formation in lut5 and szl1npq1 having high α/β‐ratios. The results highlight the importance of proper regulation of the α‐ and β‐branch carotenoid pathways for whole‐plant acclimation, not only leaf photoprotection, under photo‐oxidative stress.  相似文献   

17.
珊瑚树和大豆叶片叶绿素荧光的非光化学猝灭   总被引:2,自引:0,他引:2  
用PAM2000 型荧光仪和754 型分光光度计观测了珊瑚树和大豆叶片叶绿素荧光的非光化学猝灭快、中和慢3 个组分(qNf,qNm 与qNs) 和505 nm 光吸收的日变化。主要结果如下:(1) 中午,珊瑚树叶片的qNs 比qNf 大得多,而大豆叶片的这两个参数却几乎处于同一水平。它们的qNm 虽然也随光强变化,但与qNs 和qNf 相比,除早晨和傍晚以外全天的水平都是最低的。(2) 珊瑚树叶片的初始荧光水平(Fo) 中午最低,而大豆叶片的Fo 中午最高。(3) 饱和光照射引起的珊瑚树叶片505 nm 光吸收的增加比大豆叶片大得多。(4) 珊瑚树叶片505 nm 光吸收的日变化方式与qNs 的相类似。(5) 叶黄素循环的抑制剂DTT对珊瑚树叶片qNs 的抑制(57 % ) 比对大豆叶片qNs 的抑制(23 % ) 严重。  相似文献   

18.
Synechococcus sp. PCC 7942 (Anacystis nidulans R2) contains two forms of the Photosystem II reaction centre protein D1, which differ in 25 of 360 amino acids. D1: 1 predominates under low light but is transiently replaced by D1:2 upon shifts to higher light. Mutant cells containing only D1:1 have lower photochemical energy capture efficiency and decreased resistance to photoinhibition, compared to cells containing D1:2. We show that when dark-adapted or under low to moderate light, cells with D1:1 have higher non-photochemical quenching of PS II fluorescence (higher qN) than do cells with D1:2. This is reflected in the 77 K chlorophyll emission spectra, with lower Photosystem II fluorescence at 697–698 nm in cells containing D1:1 than in cells with D1:2. This difference in quenching of Photosystem II fluorescence occurs upon excitation of both chlorophyll at 435 nm and phycobilisomes at 570 nm. Measurement of time-resolved room temperature fluorescence shows that Photosystem II fluorescence related to charge stabilization is quenched more rapidly in cells containing D1:1 than in those with D1:2. Cells containing D1:1 appear generally shifted towards State II, with PS II down-regulated, while cells with D1:2 tend towards State I. In these cyanobacteria electron transport away from PS II remains non-saturated even under photoinhibitory levels of light. Therefore, the higher activity of D1:2 Photosystem II centres may allow more rapid photochemical dissipation of excess energy into the electron transport chain. D1:1 confers capacity for extreme State II which may be of benefit under low and variable light.Abbreviations D1 the atrazine-binding 32 kDa protein of the PS II reaction centre core - D1:1 the D1 protein constitutively expressed during acclimated growth in Synechococcus sp. PCC 7942 - D1:2 an alternate form of the D1 protein induced under excess excitation in Synechococcus sp. PCC 7942 - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethyl urea - Fo minimal fluorescence in the dark-adapted state - Fo minimal fluorescence in a light-adapted state - FM maximum fluorescence with all quenching mechanisms at a minimum, measured in presence of DCMU - FM maximal fluorescence in a light-adapted state, measured with a saturating flash - FMdark maximal fluorescence in the dark-adapted state - FV variable fluorescence in a light-adapted state (FM-Fo) - PAM pulse amplitude modulated fluorometer - qN non-photochemical quenching of PS II fluorescence - qN (dark) qN in the dark adapted state - qP photochemical quenching of fluorescence  相似文献   

19.
Phosphorylation dynamics of LHCSR3 were investigated in Chlamydomonas reinhardtii by quantitative proteomics and genetic engineering. LHCSR3 protein expression and phosphorylation were induced in high light. Our data revealed synergistic and dynamic N‐terminal LHCSR3 phosphorylation. Phosphorylated and nonphosphorylated LHCSR3 associated with PSII‐LHCII supercomplexes. The phosphorylation status of LHCB4 was closely linked to the phosphorylation of multiple sites at the N‐terminus of LHCSR3, indicating that LHCSR3 phosphorylation may operate as a molecular switch modulating LHCB4 phosphorylation, which in turn is important for PSII‐LHCII disassembly. Notably, LHCSR3 phosphorylation diminished under prolonged high light, which coincided with onset of CEF. Hierarchical clustering of significantly altered proteins revealed similar expression profiles of LHCSR3, CRX, and FNR. This finding indicated the existence of a functional link between LHCSR3 protein abundance and phosphorylation, photosynthetic electron flow, and the oxidative stress response.  相似文献   

20.
Two blue emitters based on fluorene‐bridged quinazoline and quinoxaline derivatives were prepared via the Suzuki reaction. Their photoluminescent properties were investigated. Furthermore, theoretical studies on these materials using the density functional theory calculation were conducted. To explore their electroluminescent properties, multilayered organic light‐emitting diodes were fabricated with the following device structure: indium–tin–oxide (180 nm)/4,4′‐bis(N‐(1‐naphthyl)‐N‐phenylamino)biphenyl (50 nm)/blue emitting materials ( 1 and 2 ) (30 nm)/bathophenanthroline (35 nm)/8‐hydroxy‐quinolinato lithium (2 nm)/Al (100 nm). Two devices showed efficient blue emission with the external quantum efficiencies of 1.58% and 1.30%, respectively, at 20 mA/cm2, and Commission Internationale dÉclairage coordinates of (0.18, 0.24) and (0.19, 0.27) at 6.0 V. These results suggest that the self‐aggregation properties of emitters would have considerable effects on their photoluminescent and electroluminescent properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号