首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The Golgi apparatus: balancing new with old   总被引:4,自引:3,他引:1  
Most models put forward to explain cellular processes do not stand the test of time. The 'lucky' few that are able to survive extensive experimental tests and peer critique may eventually become dogmas or paradigms. When this happens, the amount of experimental data required to overturn the paradigm is extensive. To some, such inertia may seem prohibitive to scientific progress but rather, in our opinion, this helps to maintain a degree of coherence. It is needed so that experiments and interpretations may be conducted within relatively safe boundaries. In the field of protein transport in the secretory pathway, we have enjoyed a relatively stable and productive period for quite some time (more than 30 years!). It is only very recently that the field has entered into a phase where all bets seem to be off. As in any paradigm shift, the accumulation of experimental observations inconsistent with the old dogma eventually reached a critical point. As we 'reluctantly' dispense with the long-standing paradigm of forward vesicular transport, we face a time that is bound to be trying as well as exciting .  相似文献   

2.
Golgi Microtubule-Associated Protein (GMAP)-210 is a peripheral coiled-coil protein associated with the cis -Golgi network that interacts with microtubule minus ends. GMAP-210 overexpression has previously been shown to perturb the microtubule network and to induce a dramatic enlargement and fragmentation of the Golgi apparatus (Infante C, Ramos-Morales F, Fedriani C, Bornens M, Rios RM. J Cell Biol 1999; 145: 83–98). We now report that overexpressing GMAP-210 blocks the anterograde transport of both a soluble form of alkaline phosphatase and the hemagglutinin protein of influenza virus, an integral membrane protein, between the endoplasmic reticulum and the cis /medial (mannosidase II-positive) Golgi compartment. Retrograde transport of the Shiga toxin B-subunit is also blocked between the Golgi apparatus and the endoplasmic reticulum. As a consequence, the B-subunit accumulates in compartments positive for GMAP-210. Ultrastructural analysis revealed that, under these conditions, the Golgi complex is totally disassembled and Golgi proteins as well as proteins of the intermediate compartment are found in vesicle clusters distributed throughout the cell. The role of GMAP-210 on membrane processes at the interface between the endoplasmic reticulum and the Golgi apparatus is discussed in the light of the property of this protein to bind CGN membranes and microtubules.  相似文献   

3.
Retrograde transport from the Golgi to the ER is an essential process. Resident ER proteins that escape the ER and proteins that cycle between the Golgi and the ER must be retrieved. The interdependence of anterograde and retrograde vesicle trafficking makes the dissection of both processes difficult in vivo. We have developed an in vitro system that measures the retrieval of a soluble reporter protein, the precursor of the yeast pheromone α-factor fused to a retrieval signal (HDEL) at its COOH terminus (Dean, N., and H.R.B Pelham. 1990. J. Cell Biol. 111:369–377). Retrieval depends on the HDEL sequence; the α-factor precursor, naturally lacking this sequence, is not retrieved. A full cycle of anterograde and retrograde transport requires a simple set of purified cytosolic proteins, including Sec18p, the Lma1p complex, Uso1p, coatomer, and Arf1p. Among the membrane-bound v-SNAP receptor (v-SNARE) proteins, Bos1p is required only for forward transport, Sec22p only for retrograde trafficking, and Bet1p is implicated in both avenues of transport. Putative retrograde carriers (COPI vesicles) generated from Golgi-enriched membranes contain v-SNAREs as well as Emp47p as cargo.  相似文献   

4.
In Saccharomyces cerevisiae, Golgi elements are present in the bud very early in the cell cycle. We have analyzed this Golgi inheritance process using fluorescence microscopy and genetics. In rapidly growing cells, late Golgi elements show an actin-dependent concentration at sites of polarized growth. Late Golgi elements are apparently transported into the bud along actin cables and are also retained in the bud by a mechanism that may involve actin. A visual screen for mutants defective in the inheritance of late Golgi elements yielded multiple alleles of CDC1. Mutations in CDC1 severely depolarize the actin cytoskeleton, and these mutations prevent late Golgi elements from being retained in the bud. The efficient localization of late Golgi elements to the bud requires the type V myosin Myo2p, further suggesting that actin plays a role in Golgi inheritance. Surprisingly, early and late Golgi elements are inherited by different pathways, with early Golgi elements localizing to the bud in a Cdc1p- and Myo2p-independent manner. We propose that early Golgi elements arise from ER membranes that are present in the bud. These two pathways of Golgi inheritance in S. cerevisiae resemble Golgi inheritance pathways in vertebrate cells.  相似文献   

5.
The Golgi apparatus is an organelle that has been extensively studied in the model eukaryote, yeast. Its morphology varies among yeast species; the Golgi exists as a system of dispersed cisternae in the case of the budding yeast Saccharomyces cerevisiae, whereas the Golgi cisternae in Pichia pastoris and Schizosaccharomyces pombe are organized into stacks. In spite of the different organization, the mechanism of trafficking through the Golgi apparatus is believed to be similar, involving cisternal maturation, in which the resident Golgi proteins are transported backwards while secretory cargo proteins can stay in the cisternae. Questions remain regarding the organization of the yeast Golgi, the regulatory mechanisms that underlie cisternal maturation of the Golgi and transport machinery of cargo proteins through this organelle. Studies using different yeast species have provided hints to these mechanisms.   相似文献   

6.
We investigated the relative distributional persistence of Golgi 'matrix' proteins and glycosyltransferases to an endoplasmic reticulum exit block induced by expression of a GDP-restricted Sar1p. HeLa cells were microinjected with plasmid encoding the GDP-restricted mutant (T39N) of Sar1p to block endoplasmic reticulum exit and then scored for the distribution of GM130 (Golgi m atrix protein of 130  kDa), a cis located golgin; p27, a member of the p24 family of proteins; giantin, a protein that interacts indirectly with GM130; and the Golgi glycosyltransferase, N-acetylgalactosaminyltransferase-2 (GalNAcT2). All of these proteins lost their compact, juxtanuclear distribution and displayed characteristics of endoplasmic reticulum/cytoplasmic accumulation with the same dependence on plasmid concentration. The kinetics of redistribution of GM130 and GalNAcT2 were identical. Expression of Sar1pT39N displaced the COPII coat protein Sec13p from endoplasmic reticulum exit sites consistent with disruption of these sites. This occurred without disturbing the overall distribution of endoplasmic reticulum membrane. Furthermore, the reassembly of a juxtanuclear Golgi matrix as assayed by the distribution of GM130 following washout of the Golgi disrupting drug, brefeldin A, was blocked by microinjected Sar1pT39N plasmids. We conclude that the persistence, i.e. stability and maintenance, of Golgi matrix distribution and its reassembly following drug disruption are exquisitely dependent on Sar1p activity.  相似文献   

7.
植物表达分泌蛋白的运输及定位   总被引:1,自引:0,他引:1  
分泌途径主要由内膜系统构成,内质网和高尔基体对于分泌蛋白的运输及定位具有重要作用。分泌蛋白的运输包括顺行途径和逆行途径。蛋白质通过质流和受体介导的途径运输到小泡中。在植物中,分泌蛋白的运输主要通过小泡和相连的小管来完成。分子伴侣和质量控制不仅能优化新合成蛋白的折叠和组装,而且去除了有折叠缺陷的蛋白。分泌蛋白的定位需要特定的信号肽,而高尔基体固有蛋白以依赖跨膜长度的方式,沿着分泌途径的细胞器分布。本文对植物表达分泌蛋白的分泌途径及定位、相关的分子伴侣和质量控制进行了综述。  相似文献   

8.
Arf GTPases are known to be key regulators of vesicle budding in various steps of membrane traffic in yeast and animal cells. We cloned the Arabidopsis Arf1 homologue, AtArf1, and examined its function. AtArf1 complements yeast arf1 arf2 mutants and its GFP-fusion is localized to the Golgi apparatus in plant cells like its animal counterpart. The expression of dominant negative mutants of AtArf1 in tobacco and Arabidopsis cultured cells affected the localization of co-expressed GFP-tagged proteins in a variety of ways. AtArf1 Q71L and AtArf1 T31N, GTP- and GDP-fixed mutants, respectively, changed the localization of a cis-Golgi marker, AtErd2-GFP, from the Golgi apparatus to the endoplasmic reticulum but not that of GFP-AtRer1B or GFP-AtSed5. GFP-AtRer1B and GFP-AtSed5 were accumulated in aberrant structures of the Golgi by AtArf1 Q71L. A soluble vacuolar protein, sporamin-GFP, was also located to the ER by AtArf1 Q71L. These results indicate that AtArf1 play roles in the vesicular transport between the ER and the Golgi and in the maintenance of the normal Golgi organization in plant cells.  相似文献   

9.
Cu/Zn‐superoxide dismutase is misfolded in familial and sporadic amyotrophic lateral sclerosis, but it is not clear how this triggers endoplasmic reticulum (ER) stress or other pathogenic processes. Here, we demonstrate that mutant SOD1 (mSOD1) is predominantly found in the cytoplasm in neuronal cells. Furthermore, we show that mSOD1 inhibits secretory protein transport from the ER to Golgi apparatus. ER‐Golgi transport is linked to ER stress, Golgi fragmentation and axonal transport and we also show that inhibition of ER‐Golgi trafficking preceded ER stress, Golgi fragmentation, protein aggregation and apoptosis in cells expressing mSOD1. Restoration of ER‐Golgi transport by over‐expression of coatomer coat protein II subunit Sar1 protected against inclusion formation and apoptosis, thus linking dysfunction in ER‐Golgi transport to cellular pathology. These findings thus link several cellular events in amyotrophic lateral sclerosis into a single mechanism occurring early in mSOD1 expressing cells.

  相似文献   


10.
We have examined the fate of Golgi membranes during mitotic inheritance in animal cells using four-dimensional fluorescence microscopy, serial section reconstruction of electron micrographs, and peroxidase cytochemistry to track the fate of a Golgi enzyme fused to horseradish peroxidase. All three approaches show that partitioning of Golgi membranes is mediated by Golgi clusters that persist throughout mitosis, together with shed vesicles that are often found associated with spindle microtubules. We have been unable to find evidence that Golgi membranes fuse during the later phases of mitosis with the endoplasmic reticulum (ER) as a strategy for Golgi partitioning (Zaal, K.J., C.L. Smith, R.S. Polishchuk, N. Altan, N.B. Cole, J. Ellenberg, K. Hirschberg, J.F. Presley, T.H. Roberts, E. Siggia, et al. 1999. Cell. 99:589-601) and suggest that these results, in part, are the consequence of slow or abortive folding of GFP-Golgi chimeras in the ER. Furthermore, we show that accurate partitioning is accomplished early in mitosis, by a process of cytoplasmic redistribution of Golgi fragments and vesicles yielding a balance of Golgi membranes on either side of the metaphase plate before cell division.  相似文献   

11.
The enrichment of phosphatidylinositol‐4‐phosphate (PI(4)P) at the trans Golgi network (TGN) is instrumental for proper protein and lipid sorting, yet how the restricted distribution of PI(4)P is achieved remains unknown. Here, we show that lipid phosphatase Suppressor of actin mutations 1 (SAC1) is crucial for the spatial regulation of Golgi PI(4)P. Ultrastructural analysis revealed that SAC1 is predominantly located at cisternal Golgi membranes but is absent from the TGN, thus confining PI(4)P to the TGN. RNAi‐mediated knockdown of SAC1 caused changes in Golgi morphology and mislocalization of Golgi enzymes. Enzymes involved in glycan processing such as mannosidase‐II (Man‐II) and N‐acetylglucosamine transferase‐I (GnT‐I) redistributed to aberrant intracellular structures and to the cell surface in SAC1 knockdown cells. SAC1 depletion also induced a unique pattern of Golgi‐specific defects in N‐and O‐linked glycosylation. These results indicate that SAC1 organizes PI(4)P distribution between the Golgi complex and the TGN, which is instrumental for resident enzyme partitioning and Golgi morphology.  相似文献   

12.
G. Emery  J. Gruenberg  M. Rojo 《Protoplasma》1999,207(1-2):24-30
Summary The p24 family of small transmembrane proteins was discovered recently in yeast and mammalian cells, and some of its members have been implicated in biosynthetic protein transport. The p24 proteins are proposed to act on transport vesicles as receptors for coat and/or cargo, but their precise function(s) remain controversial. Here, we describe this protein family, and we review the available experimental data concerning their localization and function. Finally, we hypothesize about a possible role of p24 proteins in organelle morphogenesis.Abbreviations CGN cis-Golgi network - COP coat protein - ER endoplasmic reticulum - VSV-G vesicular stomatitis virus glycoprotein G  相似文献   

13.
The interface between the endoplasmic reticulum (ER) and the Golgi apparatus is a critical junction in the secretory pathway mediating the transport of both soluble and membrane cargo between the two organelles. Such transport can be bidirectional and is mediated by coated membranes. In this review, we consider the organization and dynamics of this interface in plant cells, the putative structure of which has caused some controversy in the literature, and we speculate on the stages of Golgi biogenesis from the ER and the role of the Golgi and ER on each other's motility.  相似文献   

14.
The morphology and subcellular positioning of the Golgi complex depend on both microtubule and actin cytoskeletons. In contrast to microtubules, the role of actin cytoskeleton in the secretory pathway in mammalian cells has not been clearly established. Using cytochalasin D, we have previously shown that microfilaments are not involved in the endoplasmic reticulum–Golgi membrane dynamics. However, it has been reported that, unlike botulinum C2 toxin and latrunculins, cytochalasin D does not produce net depolymerization of actin filaments. Therefore, we have reassessed the functional role of actin microfilaments in the early steps of the biosynthetic pathway using C2 toxin and latrunculin B. The anterograde endoplasmic reticulum-to-Golgi transport monitored with the vesicular stomatitis virus-G protein remained unaltered in cells treated with cytochalasin D, latrunculin B or C2 toxin. Conversely, the brefeldin A-induced Golgi membrane fusion into the endoplasmic reticulum, the Golgi-to-endoplasmic reticulum transport of a Shiga toxin mutant form, and the subcellular distribution of the KDEL receptor were all impaired when actin microfilaments were depolymerized by latrunculin B or C2 toxin. These findings, together with the fact that COPI-coated and uncoated vesicles contain β/γ-actin isoforms, indicate that actin microfilaments are involved in the endoplasmic reticulum/Golgi interface, facilitating the retrograde Golgi-to-endoplasmic reticulum membrane transport, which could be mediated by the orchestrated movement of transport intermediates along microtubule and microfilament tracks.  相似文献   

15.
N-WASP and Arp2/3, the components of the actin nucleation/polymerization signaling pathway governed by Cdc42, are located in Golgi membranes and regulate ER/Golgi interface protein transport. In the present study, we examined whether RhoA and Rac1, like Cdc42, are also involved in this early secretory pathway. Unlike Cdc42, RhoA and Rac1 were not observed in the Golgi complex of different clonal cell lines nor were they present in isolated Golgi membranes. Expression of constitutively active or inactive mutants of RhoA or Rac1 proteins in HeLa cells did not alter either the disassembly or the assembly of the Golgi complex following the addition or withdrawal of BFA, respectively, the ER-to-Golgi VSV-G transport or the Sar1(dn)-induced ER accumulation of Golgi proteins. Moreover, unlike Cdc42-expressing cells, the 15 degrees C-induced subcellular redistribution of the KDEL receptor remained unaltered. Only cells that constitutively express the activated Cdc42 mutant (Cdc42Q61L), or that were microinjected with activated Cdc42Q61L protein, exhibited a significant change in Golgi complex morphology. Collectively, our results demonstrate that RhoA and Rac1 are not located in the Golgi complex, nor do they directly or indirectly regulate membrane trafficking at the ER/Golgi interface. This finding, in turn, confirms that Cdc42 is the only Rho GTPase to have a specific function on the Golgi complex.  相似文献   

16.
KRN5500 is a semisynthetic spicamycin analogue consisting of a seven-carbon amino sugar linked to a C14 unsaturated fatty acid through glycine and to the amino group of adenine. The drug inhibits cell growth potently and has antitumor activity in in vivo models. The mechanism of the antiproliferative effect of KRN5500 remains to be elucidated. We have found that acute exposure of drug-sensitive HT-29 colon adenocarcinoma cells to the drug results initially in swelling of the Golgi apparatus. Continuous exposure to the drug resulted in the emergence of a resistant population of cells characterized by numerous intracellular vacuoles. These KRN5500-resistant tumor cells exhibited increased staining with the Golgi stain NBD C6–ceramide and the ER–Golgi fluorescent dye BODIPY–brefeldin A, which, unlike the parental drug-sensitive cells, was dispersed throughout the cytoplasm. Marker enzymes associated with the ER (glucose 6-phosphatase) and cis-Golgi (GalNAc transferase) were elevated >2-fold and nearly 4-fold, respectively, in drug-resistant cell lines while the trans-Golgi marker enzyme, galactosyltransferase, was not. The additional findings that the KRN5500-resistant cells have a >2-fold elevation in ERGIC-53, a cis-Golgi marker protein of the ER–Golgi intermediate compartment (ERGIC), as well as increased 58K, a 58-kDa microtubule-binding protein with formiminotransferase cyclodeaminase activity, and tubulin indicate that the cellular secretory pathway is a primary determinant of sensitivity to KRN5500, as resistance to this agent corresponds with accumulation of several components relatable to ER and cis-Golgi function. Further support for this conclusion is provided by studies which demonstrate that KRN5500 alters the distribution of newly synthesized carcinoembryonic antigen within the secretory pathway, including arrest of this N-glycosylated protein in the Golgi of LS-174T colon carcinoma cells.  相似文献   

17.
We have cloned a member of the reticulon (RTN) family of Arabidopsis thaliana (RTNLB13). When fused to yellow fluorescent protein (YFP) and expressed in tobacco leaf epidermal cells, RTNLB13 is localized in the endoplasmic reticulum (ER). Coexpression of a soluble ER luminal marker reveals that YFP-tagged, myc-tagged or untagged RTNLB13 induces severe morphological changes to the lumen of the ER. We show, using fluorescence recovery after photobleaching (FRAP) analysis, that RTNLB13 overexpression greatly reduces diffusion of soluble proteins within the ER lumen, possibly by introducing constrictions into the membrane. In spite of this severe phenotype, Golgi shape, number and dynamics appear unperturbed and secretion of a reporter protein remains unaffected.  相似文献   

18.
Depletion of p115 with small interfering RNA caused fragmentation of the Golgi apparatus, resulting in dispersed distribution of stacked short cisternae and a vesicular structure (mini-stacked Golgi). The mini-stacked Golgi with cis- and trans-organization is functional in protein transport and glycosylation, although secretion is considerably retarded in p115 knockdown cells. The fragmented Golgi was further disrupted by treatment with breferdin A and reassembled into the mini-stacked Golgi by removal of the drug, as observed in control cells. In addition, p115 knockdown cells maintained retrograde transport from the Golgi to the endoplasmic reticulum, although the rate was not as efficient as in control cells. While no alternation of microtubule networks was found in p115 knockdown cells, the fragmented Golgi resembled those in cells treated with anti-microtubule drugs. The results suggest that p115 is involved in vesicular transport between endoplasmic reticulum and the Golgi, along with microtubule networks.  相似文献   

19.
ER to Golgi transport: Requirement for p115 at a pre-Golgi VTC stage   总被引:1,自引:0,他引:1  
The membrane transport factor p115 functions in the secretory pathway of mammalian cells. Using biochemical and morphological approaches, we show that p115 participates in the assembly and maintenance of normal Golgi structure and is required for ER to Golgi traffic at a pre-Golgi stage. Injection of antibodies against p115 into intact WIF-B cells caused Golgi disruption and inhibited Golgi complex reassembly after BFA treatment and wash-out. Addition of anti-p115 antibodies or depletion of p115 from a VSVtsO45 based semi-intact cell transport assay inhibited transport. The inhibition occurred after VSV glycoprotein (VSV-G) exit from the ER but before its delivery to the Golgi complex, and resulted in VSV-G protein accumulating in peripheral vesicular tubular clusters (VTCs). The p115-requiring step of transport followed the rab1-requiring step and preceded the Ca(2+)-requiring step. Unexpectedly, mannosidase I redistributed from the Golgi complex to colocalize with VSV-G protein arrested in pre-Golgi VTCs by p115 depletion. Redistribution of mannosidase I was also observed in cells incubated at 15 degrees C. Our data show that p115 is essential for the translocation of pre-Golgi VTCs from peripheral sites to the Golgi stack. This defines a previously uncharacterized function for p115 at the VTC stage of ER to Golgi traffic.  相似文献   

20.
Summary Routine electron microscopy and a zinc iodide-osmium tetroxide technique (ZIO), recently found to be specific for synaptic vesicles, were used to study the origin of synaptic vesicles during postnatal development in the lumbosacral enlargement of the albino rat. In immature nervous tissue, a large number of vesicles, indistinguishable from synaptic vesicles (S vesicles), were found in the Golgi apparatus and in different portions of the axon where they were often intermingled with elements of the smooth endoplasmic reticulum (SER). Ten to twenty percent of these S vesicles within the Golgi apparatus as well as the majority of these vesicles in all parts of the axon were positive to ZIO. Much of the SER in axons was also positive. The number of vesicles and elements of the SER showed some decrease in the non-terminal portion of axons on day 21 and even more of a decrease in adult neurons. These data suggest that synaptic vesicles are produced in the Golgi apparatus and SER in immature neurons. The decrease in S vesicles and SER in adult neurons suggests a drop in synaptic vesicle production after synaptogenesis has ended. In addition, the material that has been studied shows that ZIO staining is not limited to synaptic vesicles during development since oligodendroglia and endothelial cells are also stained during this period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号