首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pattern recognition receptors in eukaryotes initiate defence responses on detection of microbe‐associated molecular patterns shared by many microbe species. The Leu‐rich repeat receptor‐like kinases FLS2 and EFR recognize the bacterial epitopes flg22 and elf18, derived from flagellin and elongation factor‐Tu, respectively. We describe Arabidopsis ‘priority in sweet life’ (psl) mutants that show de‐repressed anthocyanin accumulation in the presence of elf18. EFR accumulation and signalling, but not of FLS2, are impaired in psl1, psl2, and stt3a plants. PSL1 and PSL2, respectively, encode calreticulin3 (CRT3) and UDP‐glucose:glycoprotein glycosyltransferase that act in concert with STT3A‐containing oligosaccharyltransferase complex in an N‐glycosylation pathway in the endoplasmic reticulum. However, EFR‐signalling function is impaired in weak psl1 alleles despite its normal accumulation, thereby uncoupling EFR abundance control from quality control. Furthermore, salicylic acid‐induced, but EFR‐independent defence is weakened in psl2 and stt3a plants, indicating the existence of another client protein than EFR for this immune response. Our findings suggest a critical and selective function of N‐glycosylation for different layers of plant immunity, likely through quality control of membrane‐localized regulators.  相似文献   

2.
Heat shock protein 40 (Hsp40) family proteins are known to bind to Hsp70 through their J-domain and regulate the function of Hsp70 by stimulating its adenosine triphosphatase activity. In the endoplasmic reticulum (ER), there are 5 Hsp40 family proteins known so far, 3 of which were recently identified. In this report, one of the novel Hsp40 cochaperones, ERdj3, was characterized in terms of its subcellular localization, stress response, and stress tolerance of cells. By using ERdj3-specific polyclonal antibody, endogenous ERdj3 protein was shown to reside in the ER as gene transfer–mediated exogenous ERdj3. Analysis of the expression level of endogenous ERdj3 protein revealed its moderate induction in response to various ER stressors, indicating its possible action as a stress protein in the ER. Subsequently, we analyzed whether this molecule was involved in ER stress tolerance of cells, as was the case with the ER-resident Hsp70 family protein BiP. Although overexpression of ERdj3 by gene transfection could not strengthen ER stress tolerance of neuroblastoma cells, reduction of ERdj3 expression by small interfering ribonucleic acid decreased the tolerance of cells, indicating that ERdj3 might have just a marginal role in the ER stress resistance of neuroblastoma cells. In contrast, overexpression of ERdj3 notably suppressed vero toxin–induced cell death. These data suggest that ERdj3 might have diverse roles in the ER, including that of the molecular cochaperone of BiP and an as yet unknown protective action against vero toxin.  相似文献   

3.
We demonstrate the existence of a large endoplasmic reticulum (ER)-localized multiprotein complex that is comprised of the molecular chaperones BiP; GRP94; CaBP1; protein disulfide isomerase (PDI); ERdj3, a recently identified ER Hsp40 cochaperone; cyclophilin B; ERp72; GRP170; UDP-glucosyltransferase; and SDF2-L1. This complex is associated with unassembled, incompletely folded immunoglobulin heavy chains. Except for ERdj3, and to a lesser extent PDI, this complex also forms in the absence of nascent protein synthesis and is found in a variety of cell types. Cross-linking studies reveal that the majority of these chaperones are included in the complex. Our data suggest that this subset of ER chaperones forms an ER network that can bind to unfolded protein substrates instead of existing as free pools that assembled onto substrate proteins. It is noticeable that most of the components of the calnexin/calreticulin system, which include some of the most abundant chaperones inside the ER, are either not detected in this complex or only very poorly represented. This study demonstrates an organization of ER chaperones and folding enzymes that has not been previously appreciated and suggests a spatial separation of the two chaperone systems that may account for the temporal interactions observed in other studies.  相似文献   

4.
DnaJ proteins often bind to unfolded substrates and recruit their Hsp70 partners. This induces a conformational change in the Hsp70 that stabilizes its binding to substrate. By some unknown mechanism, the DnaJ protein is released. We examined the requirements for the release of ERdj3, a mammalian ER DnaJ, from substrates and found that BiP promoted the release of ERdj3 only in the presence of ATP. Mutations in ERdj3 or BiP that disrupted their interaction interrupted the release of ERdj3. BiP mutants that were defective in any step of the ATPase cycle were also unable to release ERdj3. These results demonstrate that a functional interaction between ERdj3 and BiP, including both a direct interaction and the ability to stimulate BiP's ATPase activity are required to release ERdj3 from substrate and support a model where ERdj3 must recruit BiP and stimulate its high-affinity association with the substrate through activation of ATP hydrolysis to trigger its own release from substrates. On the basis of similarities among DnaJs and Hsp70s, this is likely to be applicable to other Hsp70-DnaJ pairs.  相似文献   

5.
ERdj3, a mammalian endoplasmic reticulum (ER) Hsp40/DnaJ family member, binds unfolded proteins, transfers them to BiP, and concomitantly stimulates BiP ATPase activity. However, the requirements for ERdj3 binding to and release from substrates in cells are not well understood. We found that ERdj3 homodimers that cannot stimulate the ATPase activity of BiP (QPD mutants) bound to unfolded ER proteins under steady state conditions in much greater amounts than wild-type ERdj3. This was due to reduced release from these substrates as opposed to enhanced binding, although in both cases dimerization was strictly required for substrate binding. Conversely, heterodimers consisting of one wild-type and one mutant ERdj3 subunit bound substrates at levels comparable with wild-type ERdj3 homodimers, demonstrating that release requires only one protomer to be functional in stimulating BiP ATPase activity. Co-expressing wild-type ERdj3 and a QPD mutant, which each exclusively formed homodimers, revealed that the release rate of wild-type ERdj3 varied according to the relative half-lives of substrates, suggesting that ERdj3 release is an important step in degradation of unfolded client proteins in the ER. Furthermore, pulse-chase experiments revealed that the binding of QPD mutant homodimers remained constant as opposed to increasing, suggesting that ERdj3 does not normally undergo reiterative binding cycles with substrates.  相似文献   

6.
Cholera toxin (CT) traffics from the host cell surface to the endoplasmic reticulum (ER), where the toxin''s catalytic CTA1 subunit retrotranslocates to the cytosol to induce toxicity. In the ER, CT is captured by the E3 ubiquitin ligase Hrd1 via an undefined mechanism to prepare for retrotranslocation. Using loss-of-function and gain-of-function approaches, we demonstrate that the ER-resident factor ERdj5 promotes CTA1 retrotranslocation, in part, via its J domain. This Hsp70 cochaperone regulates binding between CTA and the ER Hsp70 BiP, a chaperone previously implicated in toxin retrotranslocation. Importantly, ERdj5 interacts with the Hrd1 adaptor Sel1L directly through Sel1L''s N-terminal lumenal domain, thereby linking ERdj5 to the Hrd1 complex. Sel1L itself also binds CTA and facilitates toxin retrotranslocation. By contrast, EDEM1 and OS-9, two established Sel1L binding partners, do not play significant roles in CTA1 retrotranslocation. Our results thus identify two ER factors that promote ER-to-cytosol transport of CTA1. They also indicate that ERdj5, by binding to Sel1L, triggers BiP–toxin interaction proximal to the Hrd1 complex. We postulate this scenario enables the Hrd1-associated retrotranslocation machinery to capture the toxin efficiently once the toxin is released from BiP.  相似文献   

7.
ERdj3/DNAJB11 is an endoplasmic reticulum (ER)‐targeted HSP40 co‐chaperone that performs multifaceted functions involved in coordinating ER and extracellular proteostasis. Here, we show that ERdj3 assembles into a native tetramer that is distinct from the dimeric structure observed for other HSP40 co‐chaperones. An electron microscopy structural model of full‐length ERdj3 shows that these tetramers are arranged as a dimer of dimers formed by distinct inter‐subunit interactions involving ERdj3 domain II and domain III. Targeted deletion of residues 175‐190 within domain II renders ERdj3 a stable dimer that is folded and efficiently secreted from mammalian cells. This dimeric ERdj3 shows impaired substrate binding both in the ER and extracellular environments and reduced interactions with the ER HSP70 chaperone BiP. Furthermore, we show that overexpression of dimeric ERdj3 exacerbates ER stress‐dependent reductions in the secretion of a destabilized, aggregation‐prone protein and increases its accumulation as soluble oligomers in extracellular environments. These results reveal ERdj3 tetramerization as an important structural framework for ERdj3 functions involved in coordinating ER and extracellular proteostasis in the presence and absence of ER stress.  相似文献   

8.
We identified a mammalian BiP-associated protein, BAP, using a yeast two-hybrid screen that shared low homology with yeast Sls1p/Sil1p and mammalian HspBP1, both of which regulate the ATPase activity of their Hsp70 partner. BAP encoded an approximately 54-kDa protein with an N-terminal endoplasmic reticulum (ER) targeting sequence, two sites of N-linked glycosylation, and a C-terminal ER retention sequence. Immunofluorescence staining demonstrated that BAP co-localized with GRP94 in the endoplasmic reticulum. BAP was ubiquitously expressed but showed the highest levels of expression in secretory organ tissues, a pattern similar to that observed with BiP. BAP binding was affected by the conformation of the ATPase domain of BiP based on in vivo binding studies with BiP mutants. BAP stimulated the ATPase activity of BiP when added alone or together with the ER DnaJ protein, ERdj4, by promoting the release of ADP from BiP. Together, these data demonstrate that BAP serves as a nucleotide exchange factor for BiP and provide insights into the mechanisms that control protein folding in the mammalian ER.  相似文献   

9.
Like in animals, cell surface and intracellular receptors mediate immune recognition of potential microbial intruders in plants. Membrane‐localized pattern recognition receptors (PRRs) initiate immune responses upon perception of cognate microbe‐associated molecular patterns (MAMPs). MAMP‐triggered immunity provides a first line of defence that restricts the invasion and propagation of both adapted and non‐adapted pathogens. The Leu‐rich repeat (LRR) receptor protein kinases (RKs) define a major class of trans‐membrane receptors in plants, of which some members are engaged in MAMP recognition and/or defence signalling. The endoplasmic reticulum (ER) quality control (QC) systems monitor N‐glycosylation and folding states of the extracellular, ligand‐binding LRR domains of LRR‐RKs. Recent progress reveals a critical role of evolutionarily conserved ERQC components for different layers of plant immunity. N‐glycosylation appears to play a role in ERQC fidelity rather than in ligand binding of LRR‐RKs. Moreover, even closely related PRRs show receptor‐specific requirements for N‐glycosylation. These findings are reminiscent of the earlier defined function of the cytosolic chaperon complex for LRR domain‐containing intracellular immune receptors. QC of the LRR domains might provide a basis not only for the maintenance but also for diversification of recognition specificities for immune receptors in plants.  相似文献   

10.
The activity of Hsp70 proteins is regulated by accessory proteins, which include members of the DnaJ-like protein family. Characterized by the presence of a highly conserved 70-amino acid J domain, DnaJ homologues activate the ATPase activity of Hsp70 proteins and stabilize their interaction with unfolded substrates. DnaJ homologues have been identified in most organelles where they are involved in nearly all aspects of protein synthesis and folding. Within the endoplasmic reticulum (ER), DnaJ homologues have also been shown to assist in the translocation, secretion, retro-translocation, and ER-associated degradation (ERAD) of secretory pathway proteins. By using bioinformatic methods, we identified a novel mammalian DnaJ homologue, ERdj4. It is the first ER-localized type II DnaJ homologue to be reported. The signal sequence of ERdj4 remains uncleaved and serves as a membrane anchor, orienting its J domain into the ER lumen. ERdj4 co-localized with GRP94 in the ER and associated with BiP in vivo when they were co-expressed in COS-1 cells. In vitro experiments demonstrated that the J domain of ERdj4 stimulated the ATPase activity of BiP in a concentration-dependent manner. However, mutation of the hallmark tripeptide HPD (His --> Gln) in the J domain totally abolished this activation. ERdj4 mRNA expression was detected in all human tissues examined but showed the highest level of the expression in the liver, kidney, and placenta. We found that ERdj4 was highly induced at both the mRNA and protein level in response to ER stress, indicating that this protein might be involved in either protein folding or ER-associated degradation.  相似文献   

11.
Alpha‐1‐antitrypsin deficiency (AATD) is an inherited disease characterized by emphysema and liver disease. AATD is most often caused by a single amino acid substitution at amino acid 342 in the mature protein, resulting in the Z mutation of the alpha‐1‐antitrypsin gene (ZAAT). This substitution is associated with misfolding and accumulation of ZAAT in the endoplasmic reticulum (ER) of hepatocytes and monocytes, causing a toxic gain of function. Retained ZAAT is eliminated by ER‐associated degradation and autophagy. We hypothesized that alpha‐1‐antitrypsin (AAT)‐interacting proteins play critical roles in quality control of human AAT. Using co‐immunoprecipitation, we identified ERdj3, an ER‐resident Hsp40 family member, as a part of the AAT trafficking network. Depleting ERdj3 increased the rate of ZAAT degradation in hepatocytes by redirecting ZAAT to the ER calreticulin‐EDEM1 pathway, followed by autophagosome formation. In the Huh7.5 cell line, ZAAT ER clearance resulted from enhancing ERdj3‐mediated ZAAT degradation by silencing ERdj3 while simultaneously enhancing autophagy. In this context, ERdj3 suppression may eliminate the toxic gain of function associated with polymerization of ZAAT, thus providing a potential new therapeutic approach to the treatment of AATD‐related liver disease. J. Cell. Biochem. 118: 3090–3101, 2017. © 2017 The Authors. Journal of Cellular Biochemistry Published by Wiley Periodicals Inc.  相似文献   

12.
The receptor kinase EFR of Arabidopsis thaliana detects the microbe-associated molecular pattern elf18, a peptide that represents the N terminus of bacterial elongation factor Tu. Here, we tested subdomains of EFR for their importance in receptor function. Transient expression of tagged versions of EFR and EFR lacking its cytoplasmic domain in leaves of Nicotiana benthamiana resulted in functional binding sites for elf18. No binding of ligand was found with the ectodomain lacking the transmembrane domain or with EFR lacking the first 5 of its 21 leucine-rich repeats (LRRs). EFR is structurally related to the receptor kinase flagellin-sensing 2 (FLS2) that detects bacterial flagellin. Chimeric receptors with subdomains of FLS2 substituting for corresponding parts of EFR were tested for functionality in ligand binding and receptor activation assays. Substituting the transmembrane domain and the cytoplasmic domain resulted in a fully functional receptor for elf18. Replacing also the outer juxtamembrane domain with that of FLS2 led to a receptor with full affinity for elf18 but with a lower efficiency in response activation. Extending the substitution to encompass also the last two of the LRRs abolished binding and receptor activation. Substitution of the N terminus by the first six LRRs from FLS2 reduced binding affinity and strongly affected receptor activation. In summary, chimeric receptors allow mapping of subdomains relevant for ligand binding and receptor activation. The results also show that modular assembly of chimeras from different receptors can be used to form functional receptors.  相似文献   

13.
Heat shock proteins of 70 kDa (Hsp70s) and their J domain-containing Hsp40 cofactors are highly conserved chaperone pairs that facilitate a large number of cellular processes. The observation that each Hsp70 partners with many J domain-containing proteins (JDPs) has led to the hypothesis that Hsp70 function is dictated by cognate JDPs. If this is true, one might expect highly divergent Hsp70-JDP pairs to be unable to function in vivo. However, we discovered that, when a yeast cytosolic JDP, Ydj1, was targeted to the mammalian endoplasmic reticulum (ER), it interacted with the ER-lumenal Hsp70, BiP, and bound to BiP substrates. Conversely, when a mammalian ER-lumenal JDP, ERdj3, was directed to the yeast cytosol, it rescued the temperature-sensitive growth phenotype of yeast-containing mutant alleles in two cytosolic JDPs, HLJ1 and YDJ1, and activated the ATP hydrolysis rate of Ssa1, the yeast cytosolic Hsp70 that partners with Hlj1 and Ydj1. Surprisingly, ERdj3 mutants that were compromised for substrate binding were unable to rescue the hlj1ydj1 growth defect even though they stimulated the ATPase activity of Ssa1. Yet, J domain mutants of ERdj3 that were defective for interaction with Ssa1 restored the growth of hlj1ydj1 yeast. Taken together, these data suggest that the substrate binding properties of certain JDPs, not simply the formation of unique Hsp70-JDP pairs, are critical to specify in vivo function.  相似文献   

14.
Awe K  Lambert C  Prange R 《FEBS letters》2008,582(21-22):3179-3184
The hepatitis B virus L protein forms a dual topology in the endoplasmic reticulum (ER) via a process involving cotranslational membrane integration and subsequent posttranslational translocation of its preS subdomain. Here, we show that preS posttranslocation depends on the action of the ER chaperone BiP. To modulate the in vivo BiP activity, we designed an approach based on overexpressing its positive and negative regulators, ER-localized DnaJ-domain containing protein 4 (ERdj4) and BiP-associated protein (BAP), respectively. The feasibility of this approach was confirmed by demonstrating that BAP, but not ERdj4, destabilizes the L/BiP complex. Overexpressing BAP or ERdj4 inhibits preS posttranslocation as does the reduction of ATP levels. These results hint to a new role of BiP in guiding posttranslational polypeptide import into the mammalian ER.  相似文献   

15.
16.
During endoplasmic reticulum (ER)–associated degradation (ERAD), terminally misfolded proteins are retrotranslocated from the ER to the cytosol and degraded by the ubiquitin-proteasome system. Misfolded glycoproteins are recognized by calnexin and transferred to EDEM1, followed by the ER disulfide reductase ERdj5 and the BiP complex. The mechanisms involved in ERAD of nonglycoproteins, however, are poorly understood. Here we show that nonglycoprotein substrates are captured by BiP and then transferred to ERdj5 without going through the calnexin/EDEM1 pathway; after cleavage of disulfide bonds by ERdj5, the nonglycoproteins are transferred to the ERAD scaffold protein SEL1L by the aid of BiP for dislocation into the cytosol. When glucose trimming of the N-glycan groups of the substrates is inhibited, glycoproteins are also targeted to the nonglycoprotein ERAD pathway. These results indicate that two distinct pathways for ERAD of glycoproteins and nonglycoproteins exist in mammalian cells, and these pathways are interchangeable under ER stress conditions.  相似文献   

17.
P58IPK is one of the endoplasmic reticulum- (ER-) localised DnaJ (ERdj) proteins which interact with the chaperone BiP, the mammalian ER ortholog of Hsp70, and are thought to contribute to the specificity and regulation of its diverse functions. P58IPK, expression of which is upregulated in response to ER stress, has been suggested to act as a co-chaperone, binding un- or misfolded proteins and delivering them to BiP. In order to give further insights into the functions of P58IPK, and the regulation of BiP by ERdj proteins, we have determined the crystal structure of human P58IPK to 3.0 Å resolution using a combination of molecular replacement and single wavelength anomalous diffraction. The structure shows the human P58IPK monomer to have a very elongated overall shape. In addition to the conserved J domain, P58IPK contains nine N-terminal tetratricopeptide repeat motifs, divided into three subdomains of three motifs each. The J domain is attached to the C-terminal end via a flexible linker, and the structure shows the conserved Hsp70-binding histidine-proline-aspartate (HPD) motif to be situated on the very edge of the elongated protein, 100 Å from the putative binding site for unfolded protein substrates. The residues that comprise the surface surrounding the HPD motif are highly conserved in P58IPK from other organisms but more varied between the human ERdj proteins, supporting the view that their regulation of different BiP functions is facilitated by differences in BiP-binding.  相似文献   

18.
The epithelial sodium channel (ENaC) is composed of a single copy of an α-, β-, and γ-subunit and plays an essential role in water and salt balance. Because ENaC assembles inefficiently after its insertion into the ER, a substantial percentage of each subunit is targeted for ER-associated degradation (ERAD). To define how the ENaC subunits are selected for degradation, we developed novel yeast expression systems for each ENaC subunit. Data from this analysis suggested that ENaC subunits display folding defects in more than one compartment and that subunit turnover might require a unique group of factors. Consistent with this hypothesis, yeast lacking the lumenal Hsp40s, Jem1 and Scj1, exhibited defects in ENaC degradation, whereas BiP function was dispensable. We also discovered that Jem1 and Scj1 assist in ENaC ubiquitination, and overexpression of ERdj3 and ERdj4, two lumenal mammalian Hsp40s, increased the proteasome-mediated degradation of ENaC in vertebrate cells. Our data indicate that Hsp40s can act independently of Hsp70 to select substrates for ERAD.  相似文献   

19.
The ER-resident Hsp70 paralog BiP is important in cellular homeostasis as well as in cancer cell progression. Although several BiP inhibitors have been developed, they have not succeeded in clinical trials due to toxicity issues. ER-resident co-chaperones (ERdjs) tailor the activity and specificity of BiP. Here, we report multiple-cancer analyses of BiP and ERdj genomic alterations including mRNA expression from cancer patients using available data from The Cancer Genome Atlas (TCGA). We examine the individual roles of BiP co-chaperones ERdj1-8 in mediating anticancer drug resistance through chemogenomic screening of ERdj1-8 CRISPR KO cells. In keeping with the idea that ERdjs regulate distinct facets of proteostasis, we find that each ERdj KO displays a unique signature of drug resistance. Taken together, our results demonstrate a novel way to understand functional specificity of ERdjs, suggesting a future personalized medicine approach, whereby ERdj mutation status is assessed to design an effective anticancer treatment plan.  相似文献   

20.
Endoplasmic reticulum–localized DnaJ 4 (ERdj4) is an immunoglobulin-binding protein (BiP) cochaperone and component of the endoplasmic reticulum–associated degradation (ERAD) pathway that functions to remove unfolded/misfolded substrates from the ER lumen under conditions of ER stress. To elucidate the function of ERdj4 in vivo, we disrupted the ERdj4 locus using gene trap (GT) mutagenesis, leading to hypomorphic expression of ERdj4 in mice homozygous for the trapped allele (ERdj4GT/GT). Approximately half of ERdj4GT/GT mice died perinatally associated with fetal growth restriction, reduced hepatic glycogen stores, and hypoglycemia. Surviving adult mice exhibited evidence of constitutive ER stress in multiple cells/tissues, including fibroblasts, lung, kidney, salivary gland, and pancreas. Elevated ER stress in pancreatic β cells of ERdj4GT/GT mice was associated with β cell loss, hypoinsulinemia, and glucose intolerance. Collectively these results suggest an important role for ERdj4 in maintaining ER homeostasis during normal fetal growth and postnatal adaptation to metabolic stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号