首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 725 毫秒
1.
Cyto-nuclear shuttling of β-catenin is at the epicenter of the canonical Wnt pathway and mutations in genes that result in excessive nuclear accumulation of β-catenin are the driving force behind the initiation of many cancers. Recently, Naked Cuticle homolog 1 (Nkd1) has been identified as a Wnt-induced intracellular negative regulator of canonical Wnt signaling. The current model suggests that Nkd1 acts between Disheveled (Dvl) and β-catenin. Here, we employ the zebrafish embryo to characterize the cellular and biochemical role of Nkd1 in vivo. We demonstrate that Nkd1 binds to β-catenin and prevents its nuclear accumulation. We also show that this interaction is conserved in mammalian cultured cells. Further, we demonstrate that Nkd1 function is dependent on its interaction with the cell membrane. Given the conserved nature of Nkd1, our results shed light on the negative feedback regulation of Wnt signaling through the Nkd1-mediated negative control of nuclear accumulation of β-catenin.  相似文献   

2.
During Drosophila development, the naked cuticle (nkd) gene attenuates wingless/Wnt signaling through a negative feedback loop mechanism. Fly and vertebrate Nkd proteins contain a putative calcium-binding EF-hand motif, the EFX domain, that interacts with the basic/PDZ region of the Wnt signal transducer, dishevelled (Dsh). Here we show that Dsh binding by Drosophila Nkd in vitro is mediated by the EFX domain as well as an adjacent C-terminal sequence. In vivo data suggest that both of these regions contribute to the ability of Nkd to antagonize Wnt signaling. Mutations in the Nkd EF-hand designed to eliminate potential ion binding affected Nkd-Dsh interactions in the yeast two-hybrid assay but not in the glutathione S-transferase pull-down assay. Addition of the chelating agent EDTA abolished the in vitro Nkd-Dsh interaction. Surprisingly zinc, but not calcium, was able to restore Nkd-Dsh binding, suggesting a zinc-mediated interaction. Calcium 45- and zinc 65-blotting experiments show that Nkd is a zinc-binding metalloprotein. The results further clarify how Nkd may antagonize Wnt signaling via interaction with Dsh, and identify a novel zinc-binding domain in Drosophila Nkd that collaborates with the conserved EFX domain to bind Dsh.  相似文献   

3.
Nkd1 is an antagonist of the canonical Wnt/beta-catenin signaling pathway. The EF-hand motif of Nkd1 is required for its inhibitory function. Early studies suggested that Nkd1 might play important roles in mouse embryonic development and tumorigenesis. We constructed Nkd1(-/-) mice whose Nkd1 protein lacked the EF-hand and was unable to inhibit Wnt/beta-catenin signaling. The homozygotes were viable and grew normally, but their fertility in males was reduced. In wild-type adult testes, Nkd1 mRNA was expressed more abundantly in the elongating spermatids than in the round spermatids. Lack of EF-hand caused reductions in the testis weight and sperm count by 30 and 60%, respectively. During testis development, Nkd1 mRNA expression started at the 25th day after birth, coincident with the onset of Wnt1 expression. Nuclear localization of beta-catenin increased in the elongating spermatids, suggesting that the mutant Nkd1 failed to inhibit the Wnt/beta-catenin pathway. These results suggest that deletion of the EF-hand from Nkd1 reduces the number of the elongating spermatids at haploid stage. In contrast, the mutant Nkd1 did not affect intestinal polyposis in Apc(Delta716) mice.  相似文献   

4.
5.
Wnt signaling controls a wide range of developmental processes and its aberrant regulation can lead to disease. To better understand the regulation of this pathway, we identified zebrafish homologues of Naked Cuticle (Nkd), Nkd1 and Nkd2, which have previously been shown to inhibit canonical Wnt/beta-catenin signaling. Zebrafish nkd1 expression increases substantially after the mid-blastula transition in a pattern mirroring that of activated canonical Wnt/beta-catenin signaling, being expressed in both the ventrolateral blastoderm margin and also in the axial mesendoderm. In contrast, zebrafish nkd2 is maternally and ubiquitously expressed. Overexpression of Nkd1 or Nkd2a suppressed canonical Wnt/beta-catenin signaling at multiple stages of early zebrafish development and also exacerbated the cyclopia and axial mesendoderm convergence and extension (C&E) defect in the non-canonical Wnt/PCP mutant silberblick (slb/wnt11). Thus, Nkds are sufficient to antagonize both canonical and non-canonical Wnt signaling. Reducing Nkd function using antisense morpholino oligonucleotides resulted in increased expression of canonical Wnt/beta-catenin target genes. Finally, reducing Nkd1 function in slb mutants suppressed the axial mesendoderm C&E defect. These data indicate that zebrafish Nkd1 and Nkd2 function to limit both canonical and non-canonical Wnt signaling.  相似文献   

6.
Misregulation of Wnt signaling is at the root of many diseases, most notably colorectal cancer, and although we understand the activation of the pathway, we have a very poor understanding of the circumstances under which Wnt signaling turns itself off. There are numerous negative feedback regulators of Wnt signaling, but two stand out as constitutive and obligate Wnt-induced regulators: Axin2 and Nkd1. Whereas Axin2 behaves similarly to Axin in the destruction complex, Nkd1 is more enigmatic. Here we use zebrafish blastula cells that are responsive Wnt signaling to demonstrate that Nkd1 activity is specifically dependent on Wnt ligand activation of the receptor. Furthermore, our results support the hypothesis that Nkd1 is recruited to the Wnt signalosome with Dvl2, where it becomes activated to move into the cytoplasm to interact with β-catenin, inhibiting its nuclear accumulation. Comparison of these results with Nkd function in Drosophila generates a unified and conserved model for the role of this negative feedback regulator in the modulation of Wnt signaling.  相似文献   

7.
Wnt signals control cell fate decisions and orchestrate cell behavior in metazoan animals. In the fruit fly Drosophila, embryos defective in signaling mediated by the Wnt protein Wingless (Wg) exhibit severe segmentation defects. The Drosophila segment polarity gene naked cuticle (nkd) encodes an EF hand protein that regulates early Wg activity by acting as an inducible antagonist. Nkd antagonizes Wg via a direct interaction with the Wnt signaling component Dishevelled (Dsh). Here we describe two mouse and human proteins, Nkd1 and Nkd2, related to fly Nkd. The most conserved region among the fly and vertebrate proteins, the EFX domain, includes the putative EF hand and flanking sequences. EFX corresponds to a minimal domain required for fly or vertebrate Nkd to interact with the basic/PDZ domains of fly Dsh or vertebrate Dvl proteins in the yeast two-hybrid assay. During mouse development, nkd1 and nkd2 are expressed in multiple tissues in partially overlapping, gradient-like patterns, some of which correlate with known patterns of Wnt activity. Mouse Nkd1 can block Wnt1-mediated, but not beta-catenin-mediated, activation of a Wnt-dependent reporter construct in mammalian cell culture. Misexpression of mouse nkd1 in Drosophila antagonizes Wg function. The data suggest that the vertebrate Nkd-related proteins, similar to their fly counterpart, may act as inducible antagonists of Wnt signals.  相似文献   

8.
Frequent amplification and abundant expression of Nkd2 has been identified in malignant peripheral nerve sheath tumors (MPNSTs), dominant for genomic instability, who is involved in both Wnt pathway and EGFR signaling pathway. As a negative regulator of Wnt pathway, Nkd2 suppresses Wnt signaling by binding to Dvl1 and causing its ubiquitination followed by 26S proteasome degradation. On the other hand, it interacts with TGF-α for its transportation to basolateral plasma membrane in polarized epithelial cells. It is of interest to determine if Nkd2 over-expression contributes to tumorigenesis and genomic instablity. In this paper, we found that cells expressing NKD2 delayed mitotic exit stage after double thymidine block synchronization, but aneuploidy was not detected in these cells. This was further confirmed by Western blotting. In nocodazole-synchronised cells, Cyclin B1 degradation was delayed with Nkd2 over-expression compared to control group. Given many previous publications showed that Wnt pathway components are involved in mitotic progression. Further investigation on Nkd2’s function in mitosis might give more clues on MPNSTs pathological progression.  相似文献   

9.
10.
11.
Gradients of Wnt/beta-catenin signaling coordinate development and physiological homeostasis in metazoan animals. Proper embryonic development of the fruit fly Drosophila melanogaster requires the Naked cuticle (Nkd) protein to attenuate a gradient of Wnt/beta-catenin signaling across each segmental anlage. Nkd inhibits Wnt signaling by binding the intracellular protein Dishevelled (Dsh). Mice and humans have two nkd homologs, nkd1 and nkd2, whose encoded proteins can bind Dsh homologs (the Dvl proteins) and inhibit Wnt signaling. To determine whether nkd genes are necessary for murine development, we replaced nkd exons that encode Dvl-binding sequences with IRES-lacZ/neomycin cassettes. Mutants homozygous for each nkd(lacZ) allele are viable with slightly reduced mean litter sizes. Surprisingly, double-knockout mice are viable, with subtle alterations in cranial bone morphology that are reminiscent of mutation in another Wnt/beta-catenin antagonist, axin2. Our data show that nkd function in the mouse is dispensable for embryonic development.  相似文献   

12.
Wnt signaling is involved in many aspects of development and in the homeostasis of stem cells. Its importance is underscored by the fact that misregulation of Wnt signaling has been implicated in numerous diseases, especially colorectal cancer. However, how Wnt signaling regulates itself is not well understood. There are several Wnt negative feedback regulators, which are active antagonists of Wnt signaling, but one feedback regulator, Nkd1, has reduced activity compared to other antagonists, yet is still a negative feedback regulator. Here we describe our efforts to understand the role of Nkd1 using Wnt signaling compromised zebrafish mutant lines. In several of these lines, Nkd1 function was not any more active than it was in wild type embryos. However, we found that Nkd1’s ability to antagonize canonical Wnt/β-catenin signaling was enhanced in the Wnt/Planar Cell Polarity mutants silberblick (slb/wnt11) and trilobite (tri/vangl2). While slb and tri mutants do not display alterations in canonical Wnt signaling, we found that they are hypersensitive to it. Overexpression of the canonical Wnt/β-catenin ligand Wnt8a in slb or tri mutants resulted in dorsalized embryos, with tri mutants being much more sensitive to Wnt8a than slb mutants. Furthermore, the hyperdorsalization caused by Wnt8a in tri could be rescued by Nkd1. These results suggest that Nkd1 functions as a passive antagonist of Wnt signaling, functioning only when homeostatic levels of Wnt signaling have been breached or when Wnt signaling becomes destabilized.  相似文献   

13.
Reconstruction of protein interaction networks that represent groups of proteins contributing to the same cellular function is a key step towards quantitative studies of signal transduction pathways. Here we present a novel approach to reconstruct a highly correlated protein interaction network and to identify previously unknown components of a signaling pathway through integration of protein-protein interaction data, gene expression data, and Gene Ontology annotations. A novel algorithm is designed to reconstruct a highly correlated protein interaction network which is composed of the candidate proteins for signal transduction mechanisms in yeast Saccharomyces cerevisiae. The high efficiency of the reconstruction process is proved by a Receiver Operating Characteristic curve analysis. Identification and scoring of the possible linear pathways enables reconstruction of specific sub-networks for glucose-induction signaling and high osmolarity MAPK signaling in S. cerevisiae. All of the known components of these pathways are identified together with several new "candidate" proteins, indicating the successful reconstructions of two model pathways involved in S. cerevisiae. The integrated approach is hence shown useful for (i) prediction of new signaling pathways, (ii) identification of unknown members of documented pathways, and (iii) identification of network modules consisting of a group of related components that often incorporate the same functional mechanism.  相似文献   

14.
SCRIB is a scaffold protein containing leucine‐rich repeats (LRR) and PSD‐95/Dlg‐A/ZO‐1 domains (PDZ) that localizes at the basolateral membranes of polarized epithelial cells. Deregulation of its expression or localization leads to epithelial defects and tumorigenesis in part as a consequence of its repressive role on several signaling pathways including AKT, ERK, and HIPPO. In the present work, a proteomic approach is used to characterize the protein complexes associated to SCRIB and its paralogue LANO. Common and specific sets of proteins associated to SCRIB and LANO by MS are identified and an extensive landscape of their associated networks and the first comparative analysis of their respective interactomes are provided. Under proteasome inhibition, it is further found that SCRIB is associated to the β‐catenin destruction complex that is central in Wnt/β‐catenin signaling, a conserved pathway regulating embryonic development and cancer progression. It is shown that the SCRIB/β‐catenin interaction is potentiated upon Wnt3a stimulation and that SCRIB plays a repressing role on Wnt signaling. The data thus provide evidence for the importance of SCRIB in the regulation of the Wnt/β‐catenin pathway.  相似文献   

15.
Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease with a life expectancy of less than 5 years post diagnosis for most patients. Poor molecular characterization of IPF has led to insufficient understanding of the pathogenesis of the disease, resulting in lack of effective therapies. In this study, we have integrated a label‐free LC‐MS based approach with systems biology to identify signaling pathways and regulatory nodes within protein interaction networks that govern phenotypic changes that may lead to IPF. Ingenuity Pathway Analysis of proteins modulated in response to bleomycin treatment identified PI3K/Akt and Wnt signaling as the most significant profibrotic pathways. Similar analysis of proteins modulated in response to vascular endothelial growth factor (VEGF) inhibitor (CBO‐P11) treatment identified natural killer cell signaling and PTEN signaling as the most significant antifibrotic pathways. Mechanistic/mammalian target of rapamycin (mTOR) and extracellular signal‐regulated kinase (ERK) were identified to be key mediators of pro‐ and antifibrotic response, where bleomycin (BLM) treatment resulted in increased expression and VEGF inhibitor treatment attenuated expression of mTOR and ERK. Using a BLM mouse model of pulmonary fibrosis and VEGF inhibitor CBO‐P11 as a therapeutic measure, we identified a comprehensive set of signaling pathways and proteins that contribute to the pathogenesis of pulmonary fibrosis that can be targeted for therapy against this fatal disease.  相似文献   

16.
17.
本研究对非小细胞肺癌(non-small cell lung carcinoma,NSCLC)基因表达数据进行差异表达分析,并与蛋白质相互作用网络(PPIN)数据进行整合,进一步利用Heinz搜索算法识别NSCLC相关的基因功能模块,并对模块中的基因进行功能(GO term)和通路(KEGG)富集分析,旨在探究肺癌发病分子机制。蛋白互作网络分析得到一个包含96个基因和117个相互作用的功能模块,以及8个对NSCLC的发生和发展起到关键作用候选基因标志物。富集分析结果表明,这些基因主要富集于基因转录催化及染色质调控等生物学过程,并在基础转录因子、黏着连接、细胞周期、Wnt信号通路及HTLV-Ⅰ感染等生物学通路中发挥重要作用。本研究对非小细胞肺癌相关的基因和生物学通路进行预测,可用于肺癌的早期诊断和早期治疗,以降低肺癌死亡率。  相似文献   

18.
19.
20.
Wnt proteins initiate signaling by binding to seven transmembrane spanning receptors of the frizzled (Fz) family together with the members of the low‐density lipoprotein receptor‐related protein (LRP) 5 and 6. A chimera of human Wnt3 and Fz1 receptor was developed that efficiently activated the TCF‐luciferase reporter. Deletion of the cytoplasmic tail and point mutations in the PDZ binding region in the chimera resulted in the loss of Wnt signaling, suggesting a critical role for the Fz cytoplasmic region in Wnt signaling. The Fz CRD is also critical for Wnt signaling, as a deletion of 29 amino acids in the 2nd cysteine loop resulted in the total loss of TCF‐luciferase activation. DKK‐1 protein blocks upregulation of the TCF‐luciferase reporter by the Wnt3–Fz1 chimera, suggesting involvement of LRP in Wnt3–Fz1 signaling. Expression of a Wnt3–Fz1 chimera in C3H10T1/2 cells resulted in the upregulation of alkaline phosphatase activity and inhibition of adipocyte formation, demonstrating that the Wnt3–Fz1 chimera is a potent activator of differentiation of C3H10T1/2 cells into osteoblasts and an inhibitor of their differentiation into the adipocyte lineage. In summary, the Wnt–Fz chimera approach has the potential to better our understanding of the mechanism of Wnt action and its role, particularly in stem cell differentiation. In addition, this methodology can be utilized to identify inhibitors of either Wnt, Fz or interactors of the canonical pathway, which may have potential therapeutic value in the treatment of cancers and other diseases. J. Cell. Biochem. 109: 876–884, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号