首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Diabet. Med. 29, 1153-1158 (2012) ABSTRACT: Objective To examine associations of central adiposity, serum adiponectin and clamp-derived insulin sensitivity in a single longitudinal cohort from early adolescence to young adulthood. Methods The cohort was examined three times at mean ages 15?years (n?=?308), 19?years (n?=?218) and 22?years (n?=?163). Insulin sensitivity was measured with the euglycaemic hyperinsulinaemic clamp. Circulating adiponectin was measured by enzyme-linked immunosorbent assay. Computed tomography scans were used at mean age 22 to compute subcutaneous and visceral abdominal fat volume. Partial Pearson correlations and linear regression were used to examine cross-sectional associations at each examination. Results The moderate negative correlation between waist circumference and adiponectin was significant and essentially unchanged from mean age 15 (-0.32, P?相似文献   

2.
Adiponectin is a plasma protein produced by the adipose tissue. Hypoadiponectinemia has been associated with insulin resistance and several components of the metabolic syndrome (MS): type 2 diabetes, obesity, and dyslipidemia. We investigated whether single nucleotide polymorphisms (SNPs) at positions 45 and 276 in the adiponectin gene were associated with features of the MS in 747 unrelated Spanish subjects. The G allele of SNP45 and the G/G genotype of SNP276 were associated with impaired glucose tolerance (p = 0.020 and 0.042, respectively). The G/G genotype for SNP276 was associated with lower serum adiponectin levels as compared with the G/T and T/T genotypes (G/G, 10.10 ± 0.24 μg/mL; G/T, 10.98 ± 0.32 μg/mL; T/T, 12.00 ± 0.92 μg/mL; p = 0.015) even after adjustment for sex, age, BMI, waist‐to‐hip ratio, homeostasis model assessment index, and the degree of glucose tolerance (p = 0.040). We found a significant negative association of circulating adiponectin levels with waist‐to‐hip ratio (r = ?0.42, p < 0.001), sagittal abdominal diameter (r = ?0.24, p < 0.001), triglycerides (r = ?0.32, p < 0.001), homeostasis model assessment index (r = ?0.14, p = 0.001), and uric acid (r = ?0.36, p < 0.001) and positive association with high‐density lipoprotein‐cholesterol (r = 0.41, p < 0.001). Our findings indicate that serum adiponectin levels are associated with several components of the MS. The SNP276 of the adiponectin gene may affect impaired glucose tolerance and hypoadiponectinemia.  相似文献   

3.
Objective: We studied plasma adiponectin, insulin sensitivity, and insulin secretion before and after oral glucose challenge in normal glucose tolerant, impaired glucose tolerant, and type 2 diabetic first degree relatives of African‐American patients with type 2 diabetes. Research Methods and Procedures: We studied 19 subjects with normal glucose tolerance (NGT), 8 with impaired glucose tolerance (IGT), and 14 with type 2 diabetes. Serum glucose, insulin, C‐peptide, and plasma adiponectin levels were measured before and 2 hours after oral glucose tolerance test. Homeostasis model assessment‐insulin resistance index (HOMA‐IR) and HOMA‐β cell function were calculated in each subject using HOMA. We empirically defined insulin sensitivity as HOMA‐IR < 2.68 and insulin resistance as HOMA‐IR > 2.68. Results: Subjects with IGT and type 2 diabetes were more insulin resistant (as assessed by HOMA‐IR) when compared with NGT subjects. Mean plasma fasting adiponectin levels were significantly lower in the type 2 diabetes group when compared with NGT and IGT groups. Plasma adiponectin levels were 2‐fold greater (11.09 ± 4.98 vs. 6.42 ± 3.3811 μg/mL) in insulin‐sensitive (HOMA‐IR, 1.74 ± 0.65) than in insulin‐resistant (HOMA‐IR, 5.12 ± 2.14) NGT subjects. Mean plasma adiponectin levels were significantly lower in the glucose tolerant, insulin‐resistant subjects than in the insulin sensitive NGT subjects and were comparable with those of the patients with newly diagnosed type 2 diabetes. We found significant inverse relationships of adiponectin with HOMA‐IR (r = ?0.502, p = 0.046) and with HOMA‐β cell function (r = ?0.498, p = 0.042) but not with the percentage body fat (r = ?0.368, p = 0.063), serum glucose, BMI, age, and glycosylated hemoglobin A1C (%A1C). Discussion: In summary, we found that plasma adiponectin levels were significantly lower in insulin‐resistant, non‐diabetic first degree relatives of African‐American patients with type 2 diabetes and in those with newly diagnosed type 2 diabetes. We conclude that a decreased plasma adiponectin and insulin resistance coexist in a genetically prone subset of first degree African‐American relatives before development of IGT and type 2 diabetes.  相似文献   

4.
Objective: In humans, low plasma adiponectin concentrations precede a decrease in insulin sensitivity and predict type 2 diabetes independently of obesity. However, it is possible that the contribution of adiponectin to insulin sensitivity is not equally strong over the whole range of obesity. Research Methods and Procedures: We investigated the cross‐sectional association between plasma adiponectin levels and insulin sensitivity in different ranges of body fat content [expressed as percentage of body fat (PFAT)] in a large cohort of normal glucose‐tolerant subjects (n = 900). All individuals underwent an oral glucose tolerance test (OGTT), and 299 subjects additionally a euglycemic hyperinsulinemic clamp. In longitudinal analyses, the association of adiponectin at baseline with change in insulin sensitivity was investigated in a subgroup of 108 subjects. Results: In cross‐sectional analyses, the association between plasma adiponectin and insulin sensitivity, adjusted for age, gender, and PFAT, depended on whether subjects were lean or obese [p for interaction adiponectin × PFAT = <0.001 (OGTT) and 0.002 (clamp)]. Stratified by quartiles of PFAT, adiponectin did not correlate significantly with insulin sensitivity in subjects in the lowest PFAT quartile (R2 = 0.10, p = 0.13, OGTT; and R2 = 0.10, p = 0.57, clamp), whereas the association in the upper PFAT quartile was rather strong (R2 = 0.36, p < 0.0001, OGTT; and R2 = 0.48, p = 0.003, clamp). In longitudinal analyses, plasma adiponectin at baseline preceded change in insulin sensitivity in obese (n = 54, p = 0.03) but not in lean (n = 54, p = 0.68) individuals. Discussion: These data suggest that adiponectin is especially critical in sustaining insulin sensitivity in obese subjects. Thus, interventions to reduce insulin resistance by increasing adiponectin concentrations may be effective particularly in obese, insulin‐resistant individuals.  相似文献   

5.
Objective: We investigated whether serum concentrations of adiponectin are determined by body fat distribution and compared the findings with leptin. Research Methods and Procedures: Serum concentrations of adiponectin and leptin were measured by radioimmunoassay (n = 394) and analyzed for correlation with sex, age, and body fat distribution, i.e., waist‐to‐hip ratio, waist and hip circumference, and subcutaneous adipose tissue area of the lower leg as assessed by magnetic resonance imaging. Results: After adjusting for sex and percentage of body fat, adiponectin was negatively (r = ?0.17, p < 0.001) and leptin was positively (r = 0.22, p < 0.001) correlated with waist‐to‐hip ratio. Leptin, but not adiponectin, correlated with both waist (r = 0.49, p < 0.001) and hip circumference (r = 0.46, p < 0.001). Furthermore, leptin, but not adiponectin, correlated with the proportion of subcutaneous fat of the lower leg cross‐sectional area (r = 0.37, p < 0.001). Discussion: These data suggest that both adipocytokines are associated with central body fat distribution, and serum adiponectin concentrations are determined predominantly by the visceral fat compartment.  相似文献   

6.
Objective: The relationships of retinol‐binding protein 4 (RBP4) with insulin sensitivity and body fat distribution have been investigated in a few recent studies with conflicting results. This may have been due to differences in ages of the subjects in the different studies. The aim of this study was to investigate whether the association of RBP4 and insulin sensitivity and percent trunk fat are influenced by age. Methods and Procedures: Cross‐sectional analyses of 48 young subjects and 55 elderly subjects. Insulin sensitivity was determined by a hyperinsulinemic–euglycemic clamp. Body fat distribution was determined by a dual‐energy X‐ray absorptiometry (DXA). Results: In the young subjects, RBP4 levels were associated with insulin sensitivity (r = ?0.30, P = 0.04), percent trunk fat (r = 0.54, P < 0.001), triglycerides (r = 0.44, P = 0.003), low‐density lipoprotein (r = 0.38, P = 0.01). In contrast, in the elderly subjects there was no correlation between RBP4 levels and insulin sensitivity (r = ?0.18, P = 0.20), percent trunk fat (r = 0.00, P = 0.10), triglycerides (r = 0.25, P = 0.10), and low‐density lipoprotein (r = ?0.11, P = 0.47). Discussion: The associations of RBP4 with insulin sensitivity, percent trunk fat, and lipid levels are influenced by age.  相似文献   

7.
Aims of the study were to measure insulin‐like growth factor‐binding protein‐2 (IGFBP‐2) expression by abdominal subcutaneous adipocytes and to assess the relationship between IGFBP‐2 expression, circulating IGFBP‐2, obesity, and insulin sensitivity in obese children. Thirty‐eight obese children were recruited. Insulin sensitivity was assessed by intravenous glucose tolerance test and body composition by total‐body dual‐energy X‐ray absorptiometry. Serum free and total IGF‐I, IGFBP‐2, adiponectin, and leptin were measured. Relative quantification of IGFBP‐2 mRNA by subcutaneous adipose tissue biopsies was obtained using real‐time PCR. Circulating IGFBP‐2 was positively associated with insulin sensitivity, in agreement with previous studies. IGFBP‐2 expression was associated with fat mass percentage (r = 0.656; P < 0.02), insulin sensitivity (r = ?0.604; P < 0.05), free IGF‐I (r = 0.646; P < 0.05), and leptin (r = 0.603; P < 0.05), but not with circulating IGFBP‐2 (r = 0.003, P = ns). The association between IGFBP‐2 expression and adiposity (r = 0.648; P < 0.05) was independent of insulin sensitivity (covariate). In conclusion, circulating IGFBP‐2 was positively associated with insulin sensitivity. IGFBP‐2 was expressed by subcutaneous abdominal adipocytes of obese children and increased with adiposity, independently from the level of insulin sensitivity. IGFBP‐2 expression may potentially be one of the local mechanisms used by adipocytes to limit further fat gain.  相似文献   

8.
Circulating adiponectin reflects the degree of energy homeostasis and insulin sensitivity of adult individuals. Low abundance of the high molecular weight (HMW) multimers, the most active forms mediating the insulin‐sensitizing effects of adiponectin, is indicative of impaired metabolic status. The increase in fetal adiponectin HMW compared with adults is a distinctive features of human neonates. To further understand the functional properties of adiponectin during fetal life, we have evaluated the associations of adiponectin with insulin sensitivity, body composition, and gender. Umbilical cord adiponectin, adiponectin complexes, and metabolic parameters were measured at term by elective cesarean delivery. The associations between adiponectin, measures of body composition, and insulin sensitivity were evaluated in relation to fetal gender in 121 singleton neonates. Higher total adiponectin concentrations in female compared with male fetuses (34.3 ± 9.5 vs. 24.9 ± 8.6, P < 0.001) were associated with a 3.2‐fold greater abundance in circulating HMW complexes (0.20 ± 0.03 vs. 0.08 ± 0.03, P < 0.001, n = 9). Adiponectin was positively correlated with neonatal fat mass (r = 0.27, P < 0.04) and percent body fat in female fetuses (r = 0.28, P < 0.03) and with lean mass in males (r = 0.28, P < 0.03). There was no significant correlation between cord adiponectin and fasting insulin concentrations or fetal insulin sensitivity as estimated by homeostasis model assessment of insulin resistance (HOMA‐IR). The gender dimorphism for plasma adiponectin concentration and complex distribution first appears in utero. In sharp contrast to the inverse correlation found in adults, the positive relationship between adiponectin and body fat is a specific feature of the fetus.  相似文献   

9.
Objective: To investigate the effect of moderate alcohol consumption on fat distribution, adipose tissue secreted proteins (adiponectin and resistin), and insulin sensitivity in healthy middle‐aged men with abdominal obesity. Research Methods and Procedures: Thirty‐four healthy men between 35 and 70 years old, with increased waist circumference (≥94 cm), participated in a randomized, controlled cross‐over design trial. They drank 450 mL of red wine (40 grams of alcohol) or 450 mL of de‐alcoholized red wine daily during 4 weeks. At the end of each treatment period, fat distribution, adipose tissue proteins, and insulin sensitivity index (ISI) were measured. Results: Subcutaneous and abdominal fat contents and body weight did not change after 4 weeks of moderate alcohol consumption. Liver fat (quip index) was slightly higher after consumption of red wine (6.8 ± 0.1) as compared with de‐alcoholized red wine (6.5 ± 0.1) but not significantly different (p = 0.09). Plasma adiponectin concentration increased (p < 0.01) to 6.0 ± 0.1 μg/mL after 28 days of moderate alcohol consumption compared with de‐alcoholized red wine (5.5 ± 0.1 μg/mL). Serum resistin concentrations and ISI were not affected by alcohol consumption. Percentage changes in serum resistin correlated significantly with changes in ISI (r = ?0.69, p < 0.01), whereas this correlation was not present between changes in plasma adiponectin and ISI (r = 0.31, p = 0.22). Discussion: Moderate alcohol consumption for 4 weeks is not associated with differences in subcutaneous and abdominal fat contents or body weight. Thus, the 10% increase in adiponectin was not associated with a change in fat distribution or body weight change.  相似文献   

10.
The prevalence of type 2 diabetes is greater among African Americans (AA) vs. European Americans (EA), independent of obesity and lifestyle. We tested the hypothesis that intramyocellular lipid (IMCL) or extramycellular lipid (EMCL) would be associated with insulin sensitivity among healthy young women, and that the associations would differ with ethnic background. We also explored the hypothesis that adipokines and estradiol would be associated with muscle lipid content. Participants were 57 healthy, normoglycemic, women and girls mean age 26 (±10) years; mean BMI 27.3 (±4.8) kg/m2; 32 AA, 25 EA. Soleus IMCL and EMCL were assessed with 1H magnetic resonance spectroscopy (MRS); insulin sensitivity with an insulin‐modified frequently sampled intravenous glucose tolerance test and minimal modeling; body composition with dual‐energy X‐ray absorptiometry; and intra‐abdominal adipose tissue (IAAT) with computed tomography. Adiponectin, leptin, and estradiol were assessed in fasting sera. Analyses indicated that EMCL, but not IMCL, was greater in AA vs. EA (2.55 ± 0.16 vs. 1.98 ± 0.18 arbitrary units, respectively, P < 0.05; adjusted for total body fat). IMCL was associated with insulin sensitivity in EA (r = ?0.54, P < 0.05, adjusted for total fat, IAAT, and age), but not AA (r = 0.16, P = 0.424). IMCL was inversely associated with adiponectin (r = ?0.31, P < 0.05, adjusted for ethnicity, age, total fat, and IAAT). In conclusion, IMCL was a significant determinant of insulin sensitivity among healthy, young, EA but not AA women. Further research is needed to determine whether the component lipids of IMCL (e.g., diacylglycerol (DAG) or ceramide) are associated with insulin sensitivity in an ethnicity specific manner.  相似文献   

11.
Our objective was to examine omental and subcutaneous adipocyte adiponectin release in women. We tested the hypothesis that adiponectin release would be reduced to a greater extent in omental than in subcutaneous adipocytes of women with visceral obesity. Omental and subcutaneous adipose tissue samples were obtained from 52 women undergoing abdominal hysterectomies (age: 47.1 ± 4.8 years; BMI: 26.7 ± 4.7 kg/m2). Adipocytes were isolated and their adiponectin release in the medium was measured over 2 h. Measures of body fat accumulation and distribution were obtained using dual‐energy X‐ray absorptiometry and computed tomography, respectively. Adiponectin release by omental and subcutaneous adipocytes was similar in lean individuals; however, in subsamples of obese or visceral obese women, adiponectin release by omental adipocytes was significantly reduced while that of subcutaneous adipocytes was not affected. Omental adipocyte adiponectin release was significantly and negatively correlated with total body fat mass (r = ?0.47, P < 0.01), visceral adipose tissue area (r = ?0.50, P < 0.01), omental adipocyte diameter (r = ?0.43, P < 0.01), triglyceride levels (r = ?0.32, P ≤ 0.05), cholesterol/high‐density lipoprotein (HDL)‐cholesterol (r = ?0.31, P ≤ 0.05), fasting glucose (r = ?0.39, P ≤ 0.01), fasting insulin (r = ?0.36, P ≤ 0.05), homeostasis model assessment index (r = ?0.39, P ≤ 0.01), and positively associated with HDL‐cholesterol concentrations (r = 0.33, P ≤ 0.05). Adiponectin release from subcutaneous cells was not associated with any measure of adiposity, lipid profile, or glucose homeostasis. In conclusion, compared to subcutaneous adipocyte adiponectin release, omental adipocyte adiponectin release is reduced to a greater extent in visceral obese women and better predicts obesity‐associated metabolic abnormalities.  相似文献   

12.
Objective: Soluble CD163 (sCD163) is a new macrophage‐specific serum marker elevated in inflammatory conditions. sCD163 is elevated in obesity and found to be a strong predictor of the development of type 2 diabetes. We investigated whether dietary intervention and moderate exercise was related to changes in sCD163 and how sCD163 is associated to insulin resistance in obesity. Design and Methods: Ninety‐six obese subjects were enrolled: 62 followed a very low energy diet (VLED) program for 8 weeks followed by 3‐4 weeks of weight stabilization, 20 followed a moderate exercise program for 12 weeks, and 14 were included without any intervention. Fasting blood samples and anthropometric measures were taken at baseline and after intervention. Thirty‐six lean subjects were included in a control group. Results: sCD163 was significantly higher in obese subjects (2.3 ± 1.0 mg/l) compared with lean (1.6 ± 0.4 mg/l, P < 0.001). Weight loss (11%) induced by VLED resulted in a reduction and partial normalization of sCD163 to 2.0 ± 0.9 mg/l (P < 0.001). Exercise for 12 weeks had no effect on sCD163. At baseline, sCD163 was significantly correlated with BMI (r = 0.46), waist circumference (r = 0.40), insulin resistance measured by the homeostasis model assessment (HOMA‐IR; r = 0.41; all P < 0.001), and the leptin‐to‐adiponectin ratio (r = 0.28, P < 0.05). In a multivariate linear regression analysis with various inflammatory markers, sCD163 (β = 0.25), adiponectin (β = ?0.24), and high sensitivity C‐reactive protein (hs‐CRP; β = 0.20) remained independently and significantly associated to HOMA‐IR (all P < 0.05). After further adjustment for waist circumference, only sCD163 was associated with HOMA‐IR (P < 0.05). Conclusion: The macrophage‐specific serum marker sCD163 is increased in obesity and partially normalized by dietary‐induced weight loss but not by moderate exercise. Furthermore, we confirm that sCD163 is a good marker for obesity‐related insulin resistance.  相似文献   

13.
We aimed at determining which circulating forms of the adipokine adiponectin that increases lipid oxidation in liver and skeletal muscle are related to ectopic fat in these depots in humans. Plasma total‐, high‐molecular weight (HMW)‐, middle‐molecular weight (MMW)‐, and low‐molecular weight (LMW) adiponectin were quantified by an enzyme‐linked immunosorbent assay. Their relationships with liver‐ and intramyocellular fat, measured using 1H magnetic resonance spectroscopy, were investigated in 54 whites without type 2 diabetes. Liver fat, adjusted for gender, age, and total body fat, was associated only with HMW adiponectin (r = ?0.35, P = 0.012), but not with total‐, MMW‐, or LMW adiponectin. In addition, subjects with fatty liver (liver fat ≥5.56%, n = 15) had significantly lower HMW‐ (P = 0.04), but not total‐, MMW‐, or LMW adiponectin levels, compared to controls (n = 39). Similarly, intramyocellular fat correlated only with HMW (r = ?0.32, P = 0.039), but not with the other circulating forms of adiponectin. These data indicate that, among circulating forms of adiponectin, HMW is strongly related to ectopic fat, thus possibly representing the form of adiponectin regulating lipid oxidation in liver and skeletal muscle.  相似文献   

14.
Objective: Our goal was to test any association between human plasma circulating levels of monocyte chemoattractant protein‐1 (cMCP‐1) and insulin resistance and to compare monocyte chemoattractant protein‐1 (MCP‐1) adipose tissue gene expression and cMCP‐1 in relation with inflammatory markers. Research Methods and Procedures: cMCP‐1 was measured in n = 116 consecutive control male subjects to whom an insulin sensitivity (Si) test was performed. Circulating levels of soluble CD14, soluble tumor necrosis factor receptor type 2 (sTNFR2), soluble interleukin‐6 (sIL‐6), and adiponectin also were measured. Subcutaneous adipose tissue samples were obtained from n = 107 non‐diabetic and type 2 diabetic subjects with different degrees of obesity. Real‐time polymerase chain reaction was used to measure gene expression of MCP‐1, CD68, tumor necrosis factor‐α (TNF‐α), and its receptor TNFR2. Results: In the Si study, no independent effect of cMCP‐1 levels on insulin sensitivity was observed. In the expression study, in non‐diabetic subjects, MCP‐1 mRNA had a positive correlation with BMI (r = 0.407, p = 0.003), TNF‐α mRNA (r = 0.419, p = 0.002), and TNFR2 mRNA (r = 0.410, p = 0.003). In these subjects, cMCP‐1 was found to correlate with waist‐to‐hip ratio (r = 0.322, p = 0.048). In patients with type 2 diabetes, MCP‐1 mRNA was up‐regulated compared with non‐diabetic subjects. TNF‐α mRNA was found to independently contribute to MCP‐1 mRNA expression. In this group, CD68 mRNA was found to correlate with BMI (r = 0.455, p = 0.001). Discussion: cMCP‐1 is not associated with insulin sensitivity in apparently healthy men. TNF‐α is the inflammatory cytokine associated with MCP‐1 expression in subcutaneous adipose tissue.  相似文献   

15.
Objective: Prior studies have reported ethnic differences in adiponectin and ghrelin, but few have assessed the role of body size in normoglycemic women. We compared fasting adiponectin and ghrelin concentrations in normoglycemic 40‐ to 80‐year‐old Filipino, African‐American, and white women. Methods: Participants included women from the Rancho Bernardo Study (n = 143), the University of California‐San Diego Filipino Women's Health Study (n = 136), and the Health Assessment Study of African‐American Women (n = 212). A 2‐hour oral glucose tolerance test was administered; glucose, insulin, lipid, and anthropometric measurements were obtained. Fasting adiponectin and ghrelin were measured by radioimmunoassay. Results: Whites and Filipinas had similar BMI (23.7 and 24.3 kg/m2, respectively), waist girth (75.6 and 77.2 cm, respectively), and total body fat (27.4 and 28.5%, respectively); African‐Americans had significantly larger BMI (28.8 kg/m2), waist girth (86.3 cm), and body fat (39.6%, p < 0.0001). Adiponectin was lower in Filipinas (8.90 µg/mL) and African‐Americans (9.67 µg/mL) compared with whites (15.6 µg/mL, p < 0.001) after adjusting for age, homeostasis model assessment of insulin resistance (HOMA‐IR), and waist‐to‐hip ratio. Compared with whites, Filipinas (β = ?5.06, p < 0.0001) and African‐Americans (β = ?6.85, p < 0.0001) had significantly lower adiponectin levels after adjusting for age, waist‐to‐hip ratio, HOMA‐IR, triglycerides, high‐density lipoprotein (HDL) cholesterol, exercise, and alcohol use. Ghrelin was significantly lower in Filipinas compared with African‐Americans (1146.9 vs. 1412.2 pg/mL, p < 0.001), and this observation persisted in multivariable analysis (β = ?245.4, p < 0.0001). Ghrelin levels did not differ between whites (1356.9 pg/mL) and either ethnic group. Discussion: Normoglycemic Filipino and African‐American women had significantly lower adiponectin concentrations than white women, and Filipinas had lower ghrelin levels than African‐Americans, independently of body size or indices of insulin resistance or lipids.  相似文献   

16.
Pericardial adipose tissue (PAT) is positively associated with fatty liver and obesity‐related insulin resistance. Because PAT is a well‐known marker of visceral adiposity, we investigated the impact of weight loss on PAT and its relationship with liver fat and insulin sensitivity independently of body fat distribution. Thirty overweight nondiabetic women (BMI 28.2–46.8 kg/m2, 22–41 years) followed a 14.2 ± 4‐weeks low‐calorie diet. PAT, abdominal subcutaneous (SAT), and visceral fat volumes (VAT) were measured by magnetic resonance imaging (MRI), total fat mass, trunk, and leg fat by dual‐energy X‐ray absorptiometry and intrahepatocellular lipids (IHCL) by (1)H‐magnetic resonance spectroscopy. Euglycemic hyperinsulinemic clamp (M) and homeostasis model assessment of insulin resistance (HOMAIR) were used to assess insulin sensitivity or insulin resistance. At baseline, PAT correlated with VAT (r = 0.82; P < 0.001), IHCL (r = 0.46), HOMAIR (r = 0.46), and M value (r = ?0.40; all P < 0.05). During intervention, body weight decreased by ?8.5%, accompanied by decreases of ?12% PAT, ?13% VAT, ?44% IHCL, ?10% HOMA2‐%B, and +24% as well as +15% increases in HOMA2‐%S and M, respectively. Decreases in PAT were only correlated with baseline PAT and the loss in VAT (r = ?0.56; P < 0.01; r = 0.42; P < 0.05) but no associations with liver fat or indexes of insulin sensitivity were observed. Improvements in HOMAIR and HOMA2‐%B were only related to the decrease in IHCL (r = 0.62, P < 0.01; r = 0.65, P = 0.002) and decreases in IHCL only correlated with the decrease in VAT (r = 0.61, P = 0.004). In conclusion, cross‐sectionally PAT is correlated with VAT, liver fat, and insulin resistance. Longitudinally, the association between PAT and insulin resistance was lost suggesting no causal relationship between the two.  相似文献   

17.
Objective: Obesity and hyperinsulinemia are associated with dyslipidemia in adults and older children, but little is known about these relationships in very young children. We examined the relation of fasting insulin to lipid levels and lipid particle size in young healthy children. Research Methods and Procedures: Analyses were performed on data from 491 healthy 2‐ and 3‐year old Hispanic children enrolled in a dietary study conducted in New York City, 1992–1995. Obesity measures included BMI, ponderal index, skinfold thickness, and waist circumference. Low‐density lipoprotein (LDL)‐ and high‐density lipoprotein (HDL)‐cholesterol particle size were measured by nuclear magnetic resonance. Results: Fasting insulin level was positively correlated with triglyceride levels (r = 0.24 for boys and r = 0.23 for girls; p < 0.001 for both) and inversely correlated with HDL‐cholesterol level in boys (r = ?0.20; p < 0.01). Higher fasting insulin level was also correlated with smaller mean HDL particle size in both boys (r = ?0.21; p < 0.001) and girls (r = ?0.14; p < 0.05) and smaller mean LDL particle size in boys (r = ?0.13; p < 0.05). The associations of fasting insulin level with triglyceride and HDL‐cholesterol levels and HDL and LDL particle size remained significant after multivariate regression adjustment for age, sex, and BMI or ponderal index. Discussion: Fasting insulin level is associated with relative dyslipidemia in healthy 2‐ and 3‐year‐old Hispanic children.  相似文献   

18.
Objective: The objective of this study was to investigate the association among adiposity, insulin resistance, and inflammatory markers [high‐sensitivity C‐reactive protein (hs‐CRP), interleukin (IL)‐6, and tumor necrosis factor (TNF)‐α] and adiponectin and to study the effects of exercise training on adiposity, insulin resistance, and inflammatory markers among obese male Korean adolescents. Research Methods and Procedures: Twenty‐six obese and 14 lean age‐matched male adolescents were studied. We divided the obese subjects into two groups: obese exercise group (N = 14) and obese control group (N = 12). The obese exercise group underwent 6 weeks of jump rope exercise training (40 min/d, 5 d/wk). Adiposity, insulin resistance, lipid profile, hs‐CRP, IL‐6, TNF‐α, and adiponectin were measured before and after the completion of exercise training. Results: The current study demonstrated higher insulin resistance, total cholesterol, LDL‐C levels, triglyceride, and inflammatory markers and lower adiponectin and HDL‐C in obese Korean male adolescents. Six weeks of increased physical activity improved body composition, insulin sensitivity, and adiponectin levels in obese Korean male adolescents without changes in TNF‐α, IL‐6, and hs‐CRP. Discussion: Obese Korean male adolescents showed reduced adiponectin levels and increased inflammatory cytokines. Six weeks of jump rope exercise improved triglyceride and insulin sensitivity and increased adiponectin levels.  相似文献   

19.
Objective: The association between circulating vascular adhesion protein‐1 (VAP‐1) and metabolic phenotypes has been shown to be inconsistent. The current study explored whether the changes in serum VAP‐1 levels correlate with the changes in metabolic phenotypes after weight reduction surgery. Research Methods and Procedures: Clinical characteristics and serum VAP‐1 levels in 20 morbidly obese subjects (mean BMI 38.84 kg/m2) were measured before and after vertical banded gastroplasty. Results: Before surgery, serum VAP‐1 levels correlated positively with fasting plasma glucose (γ = 0.56, p = 0.01) and negatively with insulin levels (γ = ?0.51, p = 0.021). After surgery, the changes in serum VAP‐1 levels were negatively correlated with the changes in waist circumference (γ = ?0.57, p = 0.011), diastolic blood pressure (DBP) (γ = ?0.56, p = 0.015), and mean arterial pressure (γ = ?0.46, p = 0.055). In multivariate regression, serum VAP‐1 levels were negatively correlated with waist circumference (β = ?2.36, p = 0.014) and DBP (β = ?3.02, p = 0.017) after adjusting for age and gender. The change in DBP was negatively correlated with the change in VAP‐1 levels after adjusting for age, gender, and steady‐state plasma glucose. Discussion: The results suggest that VAP‐1 levels are correlated with fasting glucose and insulin levels in morbidly obese subjects. After surgery, the changes in VAP‐1 levels were associated with changes in visceral adiposity and DBP. Serum VAP‐1 might modulate DBP independently from the changes in insulin resistance in morbidly obese people.  相似文献   

20.
Kim C  Park J  Park J  Kang E  Ahn C  Cha B  Lim S  Kim K  Lee H 《Obesity (Silver Spring, Md.)》2006,14(7):1164-1171
Objective: Clinical aspects of diabetes and obesity are somewhat different, even at similar levels of insulin resistance. The purpose of this study was to determine differences in body fat distribution and serum adiponectin concentrations in diabetic and non‐diabetic obese participants. We were also interested in identifying the characteristics of insulin resistance in these two groups, particularly from the standpoint of adiponectin. Research Methods and Procedures: Adiponectin concentrations of 112 type 2 diabetic obese participants and 124 non‐diabetic obese participants were determined. Abdominal adipose tissue areas and midthigh skeletal muscle areas were measured by computed tomography. A homeostasis model assessment of the insulin resistance score was calculated to assess insulin sensitivity. The relationships among serum adiponectin, body fat distribution, and clinical characteristics were also analyzed. Results: Both abdominal subcutaneous and visceral fat areas were higher in the non‐diabetic obese group, whereas midthigh low‐density muscle area was higher in the diabetic obese group. The homeostasis model assessment of the insulin resistance score was similar between groups, whereas serum adiponectin was lower in the diabetic obese group. Abdominal visceral fat (β = ?0.381, p = 0.012) was a more important predictor of adiponectin concentration than low‐density muscle (β = ?0.218, p = 0.026) in cases of non‐diabetic obesity, whereas low‐density muscle (β = ?0.413, p = 0.013) was a better predictor of adiponectin level than abdominal visceral fat (β = ? 0.228, p = 0.044) in diabetic obese patients. Discussion: Therefore, factors involved in pathophysiology, including different serum adiponectin levels and body fat distributions, are believed to be responsible for differences in clinical characteristics, even at similar levels of insulin resistance in both diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号