首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The role of the actin-depolymerizing factor (ADF)/cofilin-family protein Adf1 in cytokinesis of fission yeast cells was studied. Adf1 was required for accumulation of actin at the division site by depolymerizing actin at the cell ends, assembly of the contractile ring through severing actin filaments, and maintenance of the contractile ring once formed. Genetic and cytological analyses suggested that it collaborates with profilin and capping protein in the mitotic reorganization of the actin cytoskeleton. Furthermore, it was unexpectedly found that Adf1 and myosin-II also collaborate in assembling the contractile ring. Tropomyosin was shown to antagonize the function of Adf1 in the contractile ring. We propose that formation and maintenance of the contractile ring are achieved by a balanced collaboration of these proteins.  相似文献   

2.
As one form of actin binding protein (ABP), LIM domain protein can trigger the formation of actin bundles during plant growth and development. In this study, a cDNA (designated GhPLIM1) encoding a LIM domain protein with 216 amino acid residues was identified from a cotton flower cDNA library. Quantitative RT‐PCR indicated that GhPLIM1 is specifically expressed in cotton anthers, and its expression levels are regulated during anther development of cotton. GhPLIM1:eGFP transformed cotton cells display a distributed network of eGFP fluorescence, suggesting that GhPLIM1 protein is mainly localised to the cell cytoskeleton. In vitro high‐speed co‐sedimentation and low co‐sedimentation assays indicate that GhPLIM1 protein not only directly binds actin filaments but also bundles F‐actin. Further biochemical experiments verified that GhPLIM1 protein can protect F‐actin against depolymerisation by Lat B. Thus, our data demonstrate that GhPLIM1 functions as an actin binding protein (ABP) in modulating actin filaments in vitro, suggesting that GhPLIM1 may be involved in regulating the actin cytoskeleton required for pollen development in cotton.  相似文献   

3.
The contractile ring is essential for cytokinesis in most fungal and animal cells. In fission yeast, cytokinesis nodes are precursors of the contractile ring and mark the future cleavage site. However, their assembly and architecture have not been well described. We found that nodes are assembled stoichiometrically in a hierarchical order with two modules linked by the positional marker anillin Mid1. Mid1 first recruits Cdc4 and IQGAP Rng2 to form module I. Rng2 subsequently recruits the myosin-II subunits Myo2 and Rlc1. Mid1 then independently recruits the F-BAR protein Cdc15 to form module II. Mid1, Rng2, Cdc4, and Cdc15 are stable node components that accumulate close to the plasma membrane. Both modules recruit the formin Cdc12 to nucleate actin filaments. Myo2 heads point into the cell interior, where they efficiently capture actin filaments to condense nodes into the contractile ring. Collectively, our work characterizing the assembly and architecture of precursor nodes defines important steps and molecular players for contractile ring assembly.  相似文献   

4.
Eukaryotic cells require IQGAP family multidomain adapter proteins for cytokinesis, but many questions remain about how IQGAPs contribute to the process. Here we show that fission yeast IQGAP Rng2p is required for both the normal process of contractile ring formation from precursor nodes and an alternative mechanism by which rings form from strands of actin filaments. Our work adds to previous studies suggesting a role for Rng2p in node and ring formation. We demonstrate that Rng2p is also required for normal ring constriction and septum formation. Systematic analysis of domain-deletion mutants established how the four domains of Rng2p contribute to cytokinesis. Contrary to a previous report, the actin-binding calponin homology domain of Rng2p is not required for viability, ring formation, or ring constriction. The IQ motifs are not required for ring formation but are important for ring constriction and septum formation. The GTPase-activating protein (GAP)–related domain is required for node-based ring formation. The Rng2p C-terminal domain is the only domain essential for viability. Our studies identified several distinct functions of Rng2 at multiple stages of cytokinesis.  相似文献   

5.
Cortical F‐actin reorganization during the cell cycle was observed in Pyrenomonas helgolandii U. J. Santore (SAG 28.87) for the first time in Cryptophyta using fluorescein‐isothiocyanate (FITC)–phalloidin staining. In interphase, a number of F‐actin bundles were observed as straight lines running parallel to the long axis of the cell on the cell cortical region. They extended from an F‐actin bundle that runs along the margin of the vestibulum. Although the F‐actin bundles running parallel to the long axis of the cell disappeared during anaphase, they gradually reappeared in telophase. By contrast, the F‐actin bundle along the vestibulum margin remained visible during cytokinesis and dynamically changed following the enlargement of the vestibulum, suggesting that F‐actin was involved in the mechanism of vestibulum enlargement. F‐actins were not found in the cytoplasmic and nucleoplasmic regions throughout the cell cycle. In addition, a contractile ring‐like structure appeared at the cleavage furrow during cytokinesis. Treatment with cytochalasin B and latrunculin B significantly inhibited the formation of cleavage furrow, resulting in forming an abnormal cell with two nuclei, suggesting that cytokinesis in P. helgolandii is controlled by the contractile ring‐like structure constituted of F‐actin.  相似文献   

6.
Endocytic processes are facilitated by both curvature‐generating BAR‐domain proteins and the coordinated polymerization of actin filaments. Under physiological conditions, the N‐BAR protein Bin1 has been shown to sense and curve membranes in a variety of cellular processes. Recent studies have identified Bin1 as a risk factor for Alzheimer's disease, although its possible pathological function in neurodegeneration is currently unknown. Here, we report that Bin1 not only shapes membranes, but is also directly involved in actin binding through its BAR domain. We observed a moderate actin bundling activity by human Bin1 and describe its ability to stabilize actin filaments against depolymerization. Moreover, Bin1 is also involved in stabilizing tau‐induced actin bundles, which are neuropathological hallmarks of Alzheimer's disease. We also provide evidence for this effect in vivo, where we observed that downregulation of Bin1 in a Drosophila model of tauopathy significantly reduces the appearance of tau‐induced actin inclusions. Together, these findings reveal the ability of Bin1 to modify actin dynamics and provide a possible mechanistic connection between Bin1 and tau‐induced pathobiological changes of the actin cytoskeleton.  相似文献   

7.
UCS proteins have been proposed to operate as co-chaperones that work with Hsp90 in the de novo folding of myosin motors. The fission yeast UCS protein Rng3p is essential for actomyosin ring assembly and cytokinesis. Here we investigated the role of Rng3p in fission yeast myosin-II (Myo2p) motor activity. Myo2p isolated from an arrested rng3-65 mutant was capable of binding actin, yet lacked stability and activity based on its expression levels and inactivity in ATPase and actin filament gliding assays. Myo2p isolated from a myo2-E1 mutant (a mutant hyper-sensitive to perturbation of Rng3p function) showed similar behavior in the same assays and exhibited an altered motor conformation based on limited proteolysis experiments. We propose that Rng3p is not required for the folding of motors per se, but instead works to ensure the activity of intrinsically unstable myosin-II motors. Rng3p is specific to conventional myosin-II and the actomyosin ring, and is not required for unconventional myosin motor function at other actin structures. However, artificial destabilization of myosin-I motors at endocytic actin patches (using a myo1-E1 mutant) led to recruitment of Rng3p to patches. Thus, while Rng3p is specific to myosin-II, UCS proteins are adaptable and can respond to changes in the stability of other myosin motors.  相似文献   

8.
The dimorphic phytopathogenic fungus Ustilago maydis grows in its haploid phase by budding. Cytokinesis and separation of daughter cells are accomplished by the consecutive formation of two distinct septa. Here, we show that both septation events involve the dynamic rearrangement of septin assemblies from hourglass‐shaped collars into ring‐like structures. Using a chemical genetic approach we demonstrate that the germinal centre kinase Don3 triggers this septin reorganization during secondary septum formation. Although chemical inhibition of an analogue‐sensitive version of Don3 prevented septation, a stable septin collar was assembled at the presumptive septation site. Interestingly, the essential light chain of type II myosin, Cdc4, was already associated with this septin collar. Release of Don3 kinase inhibition triggered immediate dispersal of septin filaments and concomitant incorporation of Cdc4 into a contractile actomyosin ring, which also contained the F‐BAR domain protein Cdc15. Inhibition of actin polymerization or deletion of the cdc15 gene, did not affect assembly of the initial collar consisting of septin and myosin light chain. However, reassembly of septin filaments into a ring‐like structure was prevented in the absence of either F‐actin or Cdc15, indicating that septin ring formation in U. maydis depends on a functional contractile actomyosin ring.  相似文献   

9.
The myosin-V family of molecular motors is known to be under sophisticated regulation, but our knowledge of the roles and regulation of myosin-Vs in cytokinesis is limited. Here, we report that the myosin-V Myo51 affects contractile ring assembly and stability during fission yeast cytokinesis, and is regulated by two novel coiled-coil proteins, Rng8 and Rng9. Both rng8Δ and rng9Δ cells display similar defects as myo51Δ in cytokinesis. Rng8 and Rng9 are required for Myo51’s localizations to cytoplasmic puncta, actin cables, and the contractile ring. Myo51 puncta contain multiple Myo51 molecules and walk continuously on actin filaments in rng8+ cells, whereas Myo51 forms speckles containing only one dimer and does not move efficiently on actin tracks in rng8Δ. Consistently, Myo51 transports artificial cargos efficiently in vivo, and this activity is regulated by Rng8. Purified Rng8 and Rng9 form stable higher-order complexes. Collectively, we propose that Rng8 and Rng9 form oligomers and cluster multiple Myo51 dimers to regulate Myo51 localization and functions.  相似文献   

10.
Growing the intracellular bridges that connect nurse cells with each o ther and to the developing oocyte is vital for egg development. These ring canals increase from 0.5 microns in diameter at stage 2 to 10 microns in diameter at stage 11. Thin sections cut horizontally as you would cut a bagel, show that there is a layer of circumferentially oriented actin filaments attached to the plasma membrane at the periphery of each canal. By decoration with subfragment 1 of myosin we find actin filaments of mixed polarities in the ring such as found in the "contractile ring" formed during cytokinesis. In vertical sections through the canal the actin filaments appear as dense dots. At stage 2 there are 82 actin filaments in the ring, by stage 6 there are 717 and by stage 10 there are 726. Taking into account the diameter, this indicates that there is 170 microns of actin filaments/canal at stage 2 (pi x 0.5 microns x 82), 14,000 microns at stage 9 and approximately 23,000 microns at stage 11 or one inch of actin filament! The density of actin filaments remains unchanged throughout development. What is particularly striking is that by stages 4-5, the ring of actin filaments has achieved its maximum thickness, even though the diameter has not yet increased significantly. Thereafter, the diameter increases. Throughout development, stages 2-11, the canal length also increases. Although the density (number of actin filaments/micron2) through a canal remains constant from stage 5 on, the actin filaments appear as a net of interconnected bundles. Further information on this net of bundles comes from studying mutant animals that lack kelch, a protein located in the ring canal that has homology to the actin binding protein, scruin. In this mutant, the actin filaments form normally but individual bundles that comprise the fibers of the net are not bound tightly together. Some bundles enter into the ring canal lumen but do not completely occlude the lumen. all these observations lay the groundwork for our understanding of how a noncontractile ring increases in thickness, diameter, and length during development.  相似文献   

11.
Through the coordinated action of diverse actin-binding proteins, cells simultaneously assemble actin filaments with distinct architectures and dynamics to drive different processes. Actin filament cross-linking proteins organize filaments into higher order networks, although the requirement of cross-linking activity in cells has largely been assumed rather than directly tested. Fission yeast Schizosaccharomyces pombe assembles actin into three discrete structures: endocytic actin patches, polarizing actin cables, and the cytokinetic contractile ring. The fission yeast filament cross-linker fimbrin Fim1 primarily localizes to Arp2/3 complex-nucleated branched filaments of the actin patch and by a lesser amount to bundles of linear antiparallel filaments in the contractile ring. It is unclear whether Fim1 associates with bundles of parallel filaments in actin cables. We previously discovered that a principal role of Fim1 is to control localization of tropomyosin Cdc8, thereby facilitating cofilin-mediated filament turnover. Therefore, we hypothesized that the bundling ability of Fim1 is dispensable for actin patches but is important for the contractile ring and possibly actin cables. By directly visualizing actin filament assembly using total internal reflection fluorescence microscopy, we determined that Fim1 bundles filaments in both parallel and antiparallel orientations and efficiently bundles Arp2/3 complex-branched filaments in the absence but not the presence of actin capping protein. Examination of cells exclusively expressing a truncated version of Fim1 that can bind but not bundle actin filaments revealed that bundling activity of Fim1 is in fact important for all three actin structures. Therefore, fimbrin Fim1 has diverse roles as both a filament "gatekeeper" and as a filament cross-linker.  相似文献   

12.
Lasp-2 binds to actin filaments and concentrates in the actin bundles of filopodia and lamellipodia in neural cells and focal adhesions in fibroblastic cells. Lasp-2 has three structural regions: a LIM domain, a nebulin-repeat region, and an SH3 domain; however, the region(s) responsible for its interactions with actin filaments and focal adhesions are still unclear. In this study, we revealed that the N-terminal fragment from the LIM domain to the first nebulin-repeat module (LIM-n1) retained actin-binding activity and showed a similar subcellular localization to full-length lasp-2 in neural cells. The LIM domain fragment did not interact with actin filaments or localize to actin filament bundles. In contrast, LIM-n1 showed a clear subcellular localization to filopodial actin bundles. Although truncation of the LIM domain caused the loss of F-actin binding activity and the accumulation of filopodial actin bundles, these truncated fragments localized to focal adhesions. These results suggest that lasp-2 interactions with actin filaments are mediated through the cooperation of the LIM domain and the first nebulin-repeat module in vitro and in vivo. Actin filament binding activity may be a major contributor to the subcellular localization of lasp-2 to filopodia but is not crucial for lasp-2 recruitment to focal adhesions.  相似文献   

13.
14.
Cladocerans (water fleas) are planktonic crustaceans that typically have a bivalved carapace. Each valve of the carapace consists of two cuticle‐secreting epithelial layers that are separated by a hemolymphatic chamber and joined by pillar structures. Ultrastructural analyses in several species of Cladocera have shown that the carapace epithelia and pillars contain filamentous structures of unknown composition. In the present study we used a fluorescent phalloidin conjugate to show that the carapaces of three cladocerans, Daphnia magna, D. pulex, and Sida crystallina, are rich in large bundles of filamentous actin (F‐actin). In D. magna we employed confocal microscopy and orthogonal views of three‐dimensional reconstructions to show that these bundles extend radially from foci in the pillars towards the integument surfaces, and their structure is consistent with that of contractile stress fibers. Using a fluorescent lipophilic stain, DiOC6(3), we show that the F‐actin bundles are distributed in membrane‐rich regions within the carapace epithelia, and that, in the superficial epithelium, these may be large membrane‐bound organelles. In D. magna, the F‐actin bundles are present in embryonic, juvenile instar, and adult, developmental stages, and through development the bundles become larger, contain more F‐actin, and become more widely spaced. We present an alignment of the deduced amino acid sequences of six putative D. pulex actin genes, and discuss the implications that their respective sequences have on the likelihood of their inclusion into the F‐actin bundles of the carapace. Our identification of these large F‐actin bundles within the pillars of three cladocerans provides new insight into the role these structures play in influencing carapace dynamics within this order.  相似文献   

15.
Actin has been identified in the ciliated protozoon Tetrahymena paravorax on the basis of the ultrastructural detection of filaments typically decorated with heavy meromyosin (HMM) in glycerinated microstome cells. These filaments are widely distributed in endoplasmic and cortical regions and can form bundles. They are particularly numerous in elongating cells; HMM-binding filaments run approximately parallel to rib microtubules in the ectoplasm of the right wall of the buccal cavity and seem to extend to the cytopharyngeal region, suggesting some role of actin in maintenance of the crest-trough pattern of ribbed wall and/or in formation of food vacuoles. Extensive actin bundles are observed below some membranellar areas and are thought to follow the course of the microtubular “deep fiber bundle.” The “fine filamentous reticulum” underlying the oral ribs and the “apical ring” extending beneath kinetosomes of ciliary couplets display filaments that do not bind HMM and are ? 14 nm in diameter. No evidence for actin in these structures was obtained in the present study. The “specialized cytoplasm” of the cytostome-cytopharyngeal region appears as an undecorated reticulum with 20 nm-spaced nodes. Occasionally HMM-binding filaments were found inside the macronucleus, just beneath its envelope. Actin is suggested to be involved in cell shaping and in control of the transport of food vacuoles.  相似文献   

16.
In fission yeast cells cortical nodes containing the protein Blt1p and several kinases appear early in G2, mature into cytokinetic nodes by adding anillin Mid1p, myosin-II, formin Cdc12p, and other proteins, and condense into a contractile ring by movements that depend on actin and myosin-II. Previous studies concluded that cells without Mid1p lack cytokinetic nodes and assemble rings unreliably from myosin-II strands but left open questions. Why do strands form outside the equatorial region? Why is ring assembly unreliable without Mid1p? We found in Δmid1 cells that Cdc12p accumulates in cytokinetic nodes scattered in the cortex and produces actin filaments that associate with myosin-II, Rng2p, and Cdc15p to form strands located between the nodes. Strands incorporate nodes, and in ∼67% of cells, strands slowly close into rings that constrict without the normal ∼25-min maturation period. Ring assembly is unreliable and slow without Mid1p because the scattered Cdc12p nodes generate strands spread widely beyond the equator, and growing strands depend on random encounters to merge with other strands into a ring. We conclude that orderly assembly of the contractile ring in wild-type cells depends on Mid1p to recruit myosin-II, Rng2p, and Cdc15p to nodes and to place cytokinetic nodes around the cell equator.  相似文献   

17.
Myosin VI (myoVI) and myosin Va (myoVa) serve roles both as intracellular cargo transporters and tethers/anchors. In both capacities, these motors bind to and processively travel along the actin cytoskeleton, a network of intersecting actin filaments and bundles that present directional challenges to these motors. Are myoVI and myoVa inherently different in their abilities to interact and maneuver through the complexities of the actin cytoskeleton? Thus, we created an in vitro model system of intersecting actin filaments and individual unipolar (fascin‐actin) or mixed polarity (α‐actinin‐actin) bundles. The stepping dynamics of individual Qdot‐labeled myoVI and myoVa motors were determined on these actin tracks. Interestingly, myoVI prefers to stay on the actin filament it is traveling on, while myoVa switches filaments with higher probability at an intersection or between filaments in a bundle. The structural basis for this maneuverability difference was assessed by expressing a myoVI chimera in which the single myoVI IQ was replaced with the longer, six IQ myoVa lever. The mutant behaved more like myoVI at actin intersections and on bundles, suggesting that a structural element other than the lever arm dictates myoVI's preference to stay on track, which may be critical to its role as an intracellular anchor .  相似文献   

18.
《The Journal of cell biology》1993,120(5):1169-1176
Actin cross-linking proteins are important for formation of isotropic F- actin networks and anisotropic bundles of filaments in the cytoplasm of eucaryotic cells. A 34,000-D protein from the cellular slime mold Dictyostelium discoideum mediates formation of actin bundles in vitro, and is specifically incorporated into filopodia. The actin cross- linking activity of this protein is inhibited by the presence of micromolar calcium. A 27,000-D fragment obtained by digestion with alpha-chymotrypsin lacks the amino-terminal six amino acids and the carboxyl-terminal 7,000 D of the intact polypeptide. The 27,000-D fragment retains F-actin binding activity assessed by cosedimentation assays and by 125I-[F-actin] blot overlay technique, F-actin cross- linking activity as assessed by viscometry, and calcium binding activity. Ultrastructural analyses indicate that the 27,000-D fragment is deficient in the bundling activity characteristic of the intact 34,000-D protein. Actin filaments are aggregated into microdomains but not bundle in the presence of the 27,000-D fragment. A polarized light scattering assay was used to demonstrate that the 34,000-D protein increases the orientational correlation among F-actin filaments. The 27,000-D fragment does not increase the orientation of the actin filaments as assessed by this technique. A terminal segment(s) of the 34,000-D protein, lacking in the 27,000-D fragment, contributes significantly to the ability to cross-link actin filaments into bundles.  相似文献   

19.
The actomyosin contractile ring assembles through the condensation of a broad band of nodes that forms at the cell equator in fission yeast cytokinesis. The condensation process depends on actin filaments that interconnect nodes. By mutating or titrating actin cross-linkers α-actinin Ain1 and fimbrin Fim1 in live cells, we reveal that both proteins are involved in node condensation. Ain1 and Fim1 stabilize the actin cytoskeleton and modulate node movement, which prevents nodes and linear structures from aggregating into clumps and allows normal ring formation. Our computer simulations modeling actin filaments as semiflexible polymers reproduce the experimental observations and provide a model of how actin cross-linkers work with other proteins to regulate actin-filament orientations inside actin bundles and organize the actin network. As predicted by the simulations, doubling myosin II Myo2 level rescues the node condensation defects caused by Ain1 overexpression. Taken together, our work supports a cooperative process of ring self-organization driven by the interaction between actin filaments and myosin II, which is progressively stabilized by the cross-linking proteins.  相似文献   

20.
Understanding the cytoskeletal functionality and its relation to other cellular components and properties is a prominent question in biophysics. The dynamics of actin cytoskeleton and its polymorphic nature are indispensable for the proper functioning of living cells. Actin bundles are involved in cell motility, environmental exploration, intracellular transport and mechanical stability. Though the viscoelastic properties of actin-based structures have been extensively probed, the underlying microstructure dynamics, especially their disassembly, is not fully understood. In this article, we explore the rich dynamics and emergent properties exhibited by actin bundles within flow-free confinements using a microfluidic set-up and epifluorescence microscopy. After forming entangled actin filaments within cell-sized quasi two-dimensional confinements, we induce their bundling using three different fundamental mechanisms: counterion condensation, depletion interactions and specific protein-protein interactions. Intriguingly, long actin filaments form emerging networks of actin bundles via percolation leading to remarkable properties such as stress generation and spindle-like intermediate structures. Simultaneous sharing of filaments in different links of the network is an important parameter, as short filaments do not form networks but segregated clusters of bundles instead. We encounter a hierarchical process of bundling and its subsequent disassembly. Additionally, our study suggests that such percolated networks are likely to exist within living cells in a dynamic fashion. These observations render a perspective about differential cytoskeletal responses towards numerous stimuli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号