首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The internal membranes of eukaryotic cells are all twists and bends characterized by high curvature. During recent years it has become clear that specific proteins sustain these curvatures while others simply recognize membrane shape and use it as “molecular information” to organize cellular processes in space and time. Here we discuss this new important recognition process termed membrane curvature sensing (MCS). First, we review a new fluorescence-based experimental method that allows characterization of MCS using measurements on single vesicles and compare it to sensing assays that use bulk/ensemble liposome samples of different mean diameter. Next, we describe two different MCS protein motifs (amphipathic helices and BAR domains) and suggest that in both cases curvature sensitive membrane binding results from asymmetric insertion of hydrophobic amino acids in the lipid membrane. This mechanism can be extended to include the insertion of alkyl chain in the lipid membrane and consequently palmitoylated and myristoylated proteins are predicted to display similar curvature sensitive binding. Surprisingly, in all the aforementioned cases, MCS is predominantly mediated by a higher density of binding sites on curved membranes instead of higher affinity as assumed so far. Finally, we integrate these new insights into the debate about which motifs are involved in sensing versus induction of membrane curvature and what role MCS proteins may play in biology.  相似文献   

2.
The discovery of proteins that recognize membrane curvature created a paradigm shift by suggesting that membrane shape may act as a cue for protein localization that is independent of lipid or protein composition. Here we review recent data on membrane curvature sensing by three structurally unrelated motifs: BAR domains, amphipathic helices and membrane-anchored proteins. We discuss the conclusion that the curvature of the BAR dimer is not responsible for sensing and that the sensing properties of all three motifs can be rationalized by the physicochemical properties of the curved membrane itself. We thus anticipate that membrane curvature will promote the redistribution of proteins that are anchored in membranes through any type of hydrophobic moiety, a thesis that broadens tremendously the implications of membrane curvature for protein sorting, trafficking and signaling in cell biology.  相似文献   

3.
4.
Bin/Amphiphysin/Rvs-homology (BAR) domains generate and sense membrane curvature by binding the negatively charged membrane to their positively charged concave surfaces. N-BAR domains contain an N-terminal extension (helix-0) predicted to form an amphipathic helix upon membrane binding. We determined the NMR structure and nano-to-picosecond dynamics of helix-0 of the human Bin1/Amphiphysin II BAR domain in sodium dodecyl sulfate and dodecylphosphocholine micelles. Molecular dynamics simulations of this 34-amino acid peptide revealed electrostatic and hydrophobic interactions with the detergent molecules that induce helical structure formation from residues 8-10 toward the C-terminus. The orientation in the micelles was experimentally confirmed by backbone amide proton exchange. The simulation and the experiment indicated that the N-terminal region is disordered, and the peptide curves to adopted the micelle shape. Deletion of helix-0 reduced tubulation of liposomes by the BAR domain, whereas the helix-0 peptide itself was fusogenic. These findings support models for membrane curving by BAR domains in which helix-0 increases the binding affinity to the membrane and enhances curvature generation.  相似文献   

5.
Arfaptin2 contains a Bin/Amphiphysin/Rvs (BAR) domain and directly interacts with proteins of the Arf/Arl family in their active GTP-bound state. It has been proposed that BAR domains are able to sense membrane curvature and to induce membrane tubulation. We report here that active Arf1 is required for the recruitment of Arfaptin2 to artificial liposomes mimicking the Golgi apparatus lipid composition. The Arf1-dependent recruitment of Arfaptin2 increases with membrane curvature, while the recruitment of Arf1 itself is not sensitive to curvature. At high protein concentrations, the binding of Arfaptin2 induces membrane tubulation. Finally, membrane-bound Arfaptin2 is released from the liposome when ArfGAP1 catalyzes the hydrolysis of GTP to GDP in Arf1. These results show that both Arf1 activation and high membrane curvature are required for efficient recruitment of Arfaptin2 to membranes.  相似文献   

6.
I-BAR proteins are well-known actin-cytoskeleton adaptors and have been observed to be involved in the formation of plasma membrane protrusions (filopodia). I-BAR proteins contain an all-helical, crescent-shaped IRSp53-MIM domain (IMD) dimer that is believed to be able to couple with a membrane shape. This coupling could involve the sensing and even the generation of negative plasma membrane curvature. Indeed, the in vitro studies have shown that IMDs can induce inward tubulation of liposomes. While N-BAR domains, which generate positive membrane curvature, have received a considerable amount of attention from both theory and experiments, the mechanisms of curvature coupling through IMDs are comparatively less studied and understood. Here we used a membrane-shape stability assay developed recently in our lab to quantitatively characterize IMD-induced membrane-shape transitions. We determined a membrane-shape stability diagram for IMDs that reveals how membrane tension and protein density can comodulate the generation of IMD-induced membrane protrusions. From comparison to analytical theory, we determine three key parameters that characterize the curvature coupling of IMD. We find that the curvature generation capacity of IMDs is significantly stronger compared to that of endophilin, an N-BAR protein known to be involved in plasma membrane shape transitions. Contrary to N-BAR domains, where amphipathic helix insertion is known to promote its membrane curvature generation, for IMDs we find that amphipathic helices inhibit membrane shape transitions, consistent with the inverse curvature that IMDs generate. Importantly, in both of these types of BAR domains, electrostatic interactions affect membrane-binding capacity, but do not appear to affect the curvature generation capacity of the protein. These two types of BAR domain proteins show qualitatively similar membrane shape stability diagrams, suggesting an underlying ubiquitous mechanism by which peripheral proteins regulate membrane curvature.  相似文献   

7.
The crescent-shaped BAR (Bin/Amphiphysin/Rvs-homology) domain dimer is a versatile protein module that senses and generates positive membrane curvature. The BAR domain dimer of human endophilin-A1, solved at 3.1 A, has a unique structure consisting of a pair of helix-loop appendages sprouting out from the crescent. The appendage's short helices form a hydrophobic ridge, which runs across the concave surface at its center. Examining liposome binding and tubulation in vitro using purified BAR domain and its mutants indicated that the ridge penetrates into the membrane bilayer and enhances liposome tubulation. BAR domain-expressing cells exhibited marked plasma membrane tubulation in vivo. Furthermore, a swinging-arm mutant lost liposome tubulation activity yet retaining liposome binding. These data suggested that the rigid crescent dimer shape is crucial for the tubulation. We here propose that the BAR domain drives membrane curvature by coordinate action of the crescent's scaffold mechanism and the ridge's membrane insertion in addition to membrane binding via amino-terminal amphipathic helix.  相似文献   

8.
Mechanism of endophilin N-BAR domain-mediated membrane curvature   总被引:1,自引:0,他引:1  
Endophilin-A1 is a BAR domain-containing protein enriched at synapses and is implicated in synaptic vesicle endocytosis. It binds to dynamin and synaptojanin via a C-terminal SH3 domain. We examine the mechanism by which the BAR domain and an N-terminal amphipathic helix, which folds upon membrane binding, work as a functional unit (the N-BAR domain) to promote dimerisation and membrane curvature generation. By electron paramagnetic resonance spectroscopy, we show that this amphipathic helix is peripherally bound in the plane of the membrane, with the midpoint of insertion aligned with the phosphate level of headgroups. This places the helix in an optimal position to effect membrane curvature generation. We solved the crystal structure of rat endophilin-A1 BAR domain and examined a distinctive insert protruding from the membrane interaction face. This insert is predicted to form an additional amphipathic helix and is important for curvature generation. Its presence defines an endophilin/nadrin subclass of BAR domains. We propose that N-BAR domains function as low-affinity dimers regulating binding partner recruitment to areas of high membrane curvature.  相似文献   

9.
A group of proteins with cell membrane remodeling properties is also able to change dramatically the morphology of liposomes in vitro, frequently inducing tubulation. For a number of these proteins, the mechanism by which this effect is exerted has been proposed to be the embedding of amphipathic helices into the lipid bilayer. For proteins presenting BAR domains, removal of an N-terminal amphipathic α-helix (H0-NBAR) results in much lower membrane tubulation efficiency, pointing to a fundamental role of this protein segment. Here, we studied the interaction of a peptide corresponding to H0-NBAR with model lipid membranes. H0-NBAR bound avidly to anionic liposomes but partitioned weakly to zwitterionic bilayers, suggesting an essentially electrostatic interaction with the lipid bilayer. Interestingly, it is shown that after membrane incorporation, the peptide oligomerizes as an antiparallel dimer, suggesting a potential role of H0-NBAR in the mediation of BAR domain oligomerization. Through monitoring the effect of H0-NBAR on liposome shape by cryoelectron microscopy, it is clear that membrane morphology is not radically changed. We conclude that H0-NBAR alone is not able to induce vesicle curvature, and its function must be related to the promotion of the scaffold effect provided by the concave surface of the BAR domain.  相似文献   

10.
Among an increasing number of lipid-binding domains, a group that not only binds to membrane lipids but also changes the shape of the membrane has been found. These domains are characterized by their strong ability to transform globular liposomes as well as flat plasma membranes into elongated membrane tubules both in vitro and in vivo. Biochemical studies on the structures of these proteins have revealed the importance of the amphipathic helix, which potentially intercalates into the lipid bilayer to induce and/or sense membrane curvature. Among such membrane-deforming domains, BAR and F-BAR/EFC domains form crescent-shaped dimers, suggesting a preference for a curved membrane, which is important for curvature sensing. Bioinformatics in combination with structural analyses has been identifying an increasing number of novel families of lipid-binding domains. This review attempts to summarize the evidence obtained by recent studies in order to gain general insights into the roles of membrane-deforming domains in a variety of biological events.  相似文献   

11.
Membrane tethering is a physical association of two membranes before their fusion. Many membrane tethering factors have been identified, but the interactions that mediate inter‐membrane associations remain largely a matter of conjecture. Previously, we reported that the homotypic fusion and protein sorting/Class C vacuolar protein sorting (HOPS/Class C Vps) complex, which has two binding sites for the yeast vacuolar Rab GTPase Ypt7p, can tether two low‐curvature liposomes when both membranes bear Ypt7p. Here, we show that HOPS tethers highly curved liposomes to Ypt7p‐bearing low‐curvature liposomes even when the high‐curvature liposomes are protein‐free. Phosphorylation of the curvature‐sensing amphipathic lipid‐packing sensor (ALPS) motif from the Vps41p HOPS subunit abrogates tethering of high‐curvature liposomes. A HOPS complex without its Vps39p subunit, which contains one of the Ypt7p binding sites in HOPS, lacks tethering activity, though it binds high‐curvature liposomes and Ypt7p‐bearing low‐curvature liposomes. Thus, HOPS tethers highly curved membranes via a direct protein–membrane interaction. Such high‐curvature membranes are found at the sites of vacuole tethering and fusion. There, vacuole membranes bend sharply, generating large areas of vacuole‐vacuole contact. We propose that HOPS localizes via the Vps41p ALPS motif to these high‐curvature regions. There, HOPS binds via Vps39p to Ypt7p in an apposed vacuole membrane.   相似文献   

12.
BAR and ENTH domains are families of alpha-helical lipid bilayer binding modules found in proteins that function in endocytosis, actin regulation and signaling. Several members of these families not only bind the bilayer, but also participate in the regulation of its curvature. These properties are thought to play physiological roles at sites of membrane budding and at other sites where narrow tubular membranes occur in vivo. Studies of BAR and ENTH domains and of their flanking regions have provided new insights into mechanisms of membrane deformation and curvature sensing, and have emphasized the importance of amphipathic helices, thought to intercalate in one of the leaflets of the lipid bilayer, in the generation of membrane curvature. Structural studies and database searches are rapidly expanding the BAR and ENTH domains families, with the identification of new related domains and subfamilies, such as F-BAR (also called EFC) domains and ANTH domains, respectively. Here we present a short overview of the properties of these domains based on evidence obtained from genetics, cell biology, biochemistry and structural biology.  相似文献   

13.
The BAR (Bin/Amphiphysin/Rvs) domain proteins arfaptin1 and arfaptin2 are localized to the trans‐Golgi network (TGN) and, by virtue of their ability to sense and/or generate membrane curvature, could play an important role in the biogenesis of transport carriers. We report that arfaptins contain an amphipathic helix (AH) preceding the BAR domain, which is essential for their binding to phosphatidylinositol 4‐phosphate (PI(4)P)‐containing liposomes and the TGN of mammalian cells. The binding of arfaptin1, but not arfaptin2, to PI(4)P is regulated by protein kinase D (PKD) mediated phosphorylation at Ser100 within the AH. We also found that only arfaptin1 is required for the PKD‐dependent trafficking of chromogranin A by the regulated secretory pathway. Altogether, these findings reveal the importance of PI(4)P and PKD in the recruitment of arfaptins at the TGN and their requirement in the events leading to the biogenesis of secretory storage granules.  相似文献   

14.
N-BAR domains are protein modules that bind to and induce curvature in membranes via a charged concave surface and N-terminal amphipathic helices. Recently, molecular dynamics simulations have demonstrated that the N-BAR domain can induce a strong local curvature that matches the curvature of the BAR domain surface facing the bilayer. Here we present further molecular dynamics simulations that examine in greater detail the roles of the concave surface and amphipathic helices in driving local membrane curvature. We find that the strong curvature induction observed in our previous simulations requires the stable presentation of the charged concave surface to the membrane and is not driven by the membrane-embedded amphipathic helices. Nevertheless, without these amphipathic helices embedded in the membrane, the N-BAR domain does not maintain a close association with the bilayer, and fails to drive membrane curvature. Increasing the membrane negative charge through the addition of PIP2 facilitates closer association with the membrane in the absence of embedded helices. At sufficiently high concentrations, amphipathic helices embedded in the membrane drive membrane curvature independently of the BAR domain.  相似文献   

15.
BAR domains are protein modules that bind to membranes and promote membrane curvature. One type of BAR domain, the N-BAR domain, contains an additional N-terminal amphipathic helix, which contributes to membrane-binding and bending activities. The only known N-BAR-domain proteins in the budding yeast Saccharomyces cerevisiae, Rvs161 and Rvs167, are required for endocytosis. We have explored the mechanism of N-BAR-domain function in the endocytosis process using a combined biochemical and genetic approach. We show that the purified Rvs161–Rvs167 complex binds to liposomes in a curvature-independent manner and promotes tubule formation in vitro. Consistent with the known role of BAR domain polymerization in membrane bending, we found that Rvs167 BAR domains interact with each other at cortical actin patches in vivo. To characterize N-BAR-domain function in endocytosis, we constructed yeast strains harboring changes in conserved residues in the Rvs161 and Rvs167 N-BAR domains. In vivo analysis of the rvs endocytosis mutants suggests that Rvs proteins are initially recruited to sites of endocytosis through their membrane-binding ability. We show that inappropriate regulation of complex sphingolipid and phosphoinositide levels in the membrane can impinge on Rvs function, highlighting the relationship between membrane components and N-BAR-domain proteins in vivo.  相似文献   

16.
Control of membrane curvature is required in many important cellular processes, including endocytosis and vesicular trafficking. Endophilin is a bin/amphiphysin/rvs (BAR) domain protein that induces vesicle formation by promotion of membrane curvature through membrane binding as a dimer. Using site-directed spin labeling and EPR spectroscopy, we show that the overall BAR domain structure of the rat endophilin A1 dimer determined crystallographically is maintained under predominantly vesiculating conditions. Spin-labeled side chains on the concave surface of the BAR domain do not penetrate into the acyl chain interior, indicating that the BAR domain interacts only peripherally with the surface of a curved bilayer. Using a combination of EPR data and computational refinement, we determined the structure of residues 63–86, a region that is disordered in the crystal structure of rat endophilin A1. Upon membrane binding, residues 63–75 in each subunit of the endophilin dimer form a slightly tilted, amphipathic α-helix that directly interacts with the membrane. In their predominant conformation, these helices are located orthogonal to the long axis of the BAR domain. In this conformation, the amphipathic helices are positioned to act as molecular wedges that induce membrane curvature along the concave surface of the BAR domain.  相似文献   

17.
Shallow hydrophobic insertions and crescent-shaped BAR scaffolds promote membrane curvature. Here, we investigate membrane fission by shallow hydrophobic insertions quantitatively and mechanistically. We provide evidence that membrane insertion of the ENTH domain of epsin leads to liposome vesiculation, and that epsin is required for clathrin-coated vesicle budding in cells. We also show that BAR-domain scaffolds from endophilin, amphiphysin, GRAF, and β2-centaurin limit membrane fission driven by hydrophobic insertions. A quantitative assay for vesiculation reveals an antagonistic relationship between amphipathic helices and scaffolds of N-BAR domains in fission. The extent of vesiculation by these proteins and vesicle size depend on the number and length of amphipathic helices per BAR domain, in accord with theoretical considerations. This fission mechanism gives a new framework for understanding membrane scission in the absence of mechanoenzymes such as dynamin and suggests how Arf and Sar proteins work in vesicle scission.  相似文献   

18.
BAR domains are proteins that sense and sculpt curved membranes in cells, furnishing a relatively well-studied example of mechanisms employed in cellular morphogenesis. We report a computational study of membrane bending by BAR domains at four levels of resolution, described by 1), all-atom molecular dynamics; 2), residue-based coarse-graining (resolving single amino acids and lipid molecules); 3), shape-based coarse-graining (resolving overall protein and membrane shapes); and 4), a continuum elastic membrane model. Membrane sculpting performed by BAR domains collectively is observed in agreement with experiments. Different arrangements of BAR domains on the membrane surface are found to lead to distinct membrane curvatures and bending dynamics.  相似文献   

19.
The molecular architecture and composition of the outer membrane (OM) of Treponema pallidum (Tp), the noncultivable agent of venereal syphilis, differ considerably from those of typical Gram-negative bacteria. Several years ago we described TP0453, the only lipoprotein associated with the inner leaflet of the Tp OM. Whereas polypeptides of other treponemal lipoproteins are hydrophilic, non-lipidated TP0453 can integrate into membranes, a property attributed to its multiple amphipathic helices (AHs). Furthermore, membrane integration of the TP0453 polypeptide was found to increase membrane permeability, suggesting the molecule functions in a porin-like manner. To better understand the mechanism of membrane integration of TP0453 and its physiological role in Tp OM biogenesis, we solved its crystal structure and used mutagenesis to identify membrane insertion elements. The crystal structure of TP0453 consists of an α/β/α-fold and includes five stably folded AHs. In high concentrations of detergent, TP0453 transitions from a closed to open conformation by lateral movement of two groups of AHs, exposing a large hydrophobic cavity. Triton X-114 phase partitioning, liposome floatation assay, and bis-1-anilino-8-naphthalenesulfonate binding revealed that two adjacent AHs are critical for membrane sensing/integration. Using terbium-dipicolinic acid complex-loaded large unilamellar vesicles, we found that TP0453 increased efflux of fluorophore only at acidic pH. Gel filtration and cross-linking experiments demonstrated that one AH critical for membrane sensing/insertion also forms a dimeric interface. Based on structural dynamics and comparison with Mycobacterium tuberculosis lipoproteins LprG and LppX, we propose that TP0453 functions as a carrier of lipids, glycolipids, and/or derivatives during OM biogenesis.  相似文献   

20.
The BAR (Bin/amphiphysin/Rvs) domain defines an emerging superfamily of proteins implicated in fundamental biological processes by sensing and inducing membrane curvature. We identified a novel autoregulatory function for the BAR domain of two related GAPs' (GTPase-activating proteins) of the GRAF (GTPase regulator associated with focal adhesion kinase) subfamily. We demonstrate that the N-terminal fragment of these GAPs including the BAR domain interacts directly with the GAP domain and inhibits its activity. Analysis of various BAR and GAP domains revealed that the BAR domain-mediated inhibition of these GAPs' function is highly specific. These GAPs, in their autoinhibited state, are able to bind and tubulate liposomes in vitro, and to generate lipid tubules in cells. Taken together, we identified BAR domains as cis-acting inhibitory elements that very likely mask the active sites of the GAP domains and thus prevent down-regulation of Rho proteins. Most remarkably, these BAR proteins represent a dual-site system with separate membrane-tubulation and GAP-inhibitory functions that operate simultaneously.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号