首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
DNA-damage response control of E2F7 and E2F8   总被引:2,自引:0,他引:2  
Here, we report that the two recently identified E2F subunits, E2F7 and E2F8, are induced in cells treated with DNA-damaging agents where they have an important role in dictating the outcome of the DNA-damage response. The DNA-damage-dependent induction coincides with the binding of E2F7 and E2F8 to the promoters of certain E2F-responsive genes, most notably that of the E2F1 gene, in which E2F7 and E2F8 coexist in a DNA-binding complex. As a consequence, E2F7 and E2F8 repress E2F target genes, such as E2F1, and reducing the level of each subunit results in an increase in E2F1 expression and activity. Importantly, depletion of either E2F7 or E2F8 prevents the cell-cycle effects that occur in response to DNA damage. Thus, E2F7 and E2F8 act upstream of E2F1, and influence the ability of cells to undergo a DNA-damage response. E2F7 and E2F8, therefore, underpin the DNA-damage response.  相似文献   

3.
E2F-1-deleted mutant, 'truncated E2F' (E2Ftr, E2F-1[1-375]), lacking the carboxy-terminal transactivation domain, was shown to be more potent at inducing cancer cell apoptosis than wild-type E2F-1 (wtE2F-1; full-length E2F-1). Mechanisms by which wtE2F-1 and E2Ftr induce apoptosis, however, are not fully elucidated. Our study demonstrates molecular effects of pro-apoptotic BH3-only Bcl-2 family member Harakiri (Hrk) in wtE2F-1- and E2Ftr-induced melanoma cell apoptosis. We found that Hrk mRNA and Harakiri (HRK) protein expression was highly up-regulated in melanoma cells in response to wtE2F-1 and E2Ftr overexpression. HRK up-regulation did not require the E2F-1 transactivation domain. In addition, Hrk gene up-regulation and HRK protein expression did not require p53 in cancer cells. Hrk knockdown by Hrk siRNA was associated with significantly reduced wtE2F-1- and E2Ftr-induced apoptosis. We also found that an upstream factor, 'downstream regulatory element antagonist modulator' (DREAM), may be involved in HRK-mediated apoptosis in response to wtE2F-1 and E2Ftr overexpression. DREAM expression levels increased following wtE2F-1 and E2Ftr overexpression. Western blotting detected increased DREAM primarily in dimeric form. The homodimerization of DREAM resulting from wtE2F-1 and E2Ftr overexpression may contribute to the decreased binding activity of DREAM to the 3'-untranslated region of the Hrk gene as shown by electromobility shift assay. Results showed wtE2F-1- and E2Ftr-induced apoptosis is partially mediated by HRK. HRK function is regulated in response to DREAM. Our findings contribute to understanding the mechanisms that regulate wtE2F-1- and E2Ftr-induced apoptosis and provide insights into the further evaluation of how E2Ftr-induced apoptosis may be used for therapeutic gain.  相似文献   

4.
5.
6.
7.
E2F-1 induced apoptosis   总被引:4,自引:0,他引:4  
  相似文献   

8.
9.
10.
11.
《Epigenetics》2013,8(1):79-91
Chromatin regulation is a fundamental mechanism underlying stem cell pluripotency, differentiation, and the establishment of cell type-specific gene expression profiles. To examine the role of chromatin regulation in stem cells in vivo, we study regeneration in the freshwater planarian Schmidtea mediterranea. These animals possess a high concentration of pluripotent stem cells, which are capable of restoring any damaged or lost tissues after injury or amputation. Here, we identify the S. mediterranea homologs of the SET1/MLL family of histone methyltransferases and COMPASS and COMPASS-like complex proteins and investigate their role in stem cell function during regeneration. We identified six S. mediterranea homologs of the SET1/MLL family (set1, mll1/2, trr-1, trr-2, mll5–1 and mll5–2), characterized their patterns of expression in the animal, and examined their function by RNAi. All members of this family are expressed in the stem cell population and differentiated tissues. We show that set1, mll1/2, trr-1, and mll5–2 are required for regeneration and that set1, trr-1 and mll5–2 play roles in the regulation of mitosis. Most notably, knockdown of the planarian set1 homolog leads to stem cell depletion. A subset of planarian homologs of COMPASS and COMPASS-like complex proteins are also expressed in stem cells and implicated in regeneration, but the knockdown phenotypes suggest that some complex members also function in other aspects of planarian biology. This work characterizes the function of the SET1/MLL family in the context of planarian regeneration and provides insight into the role of these enzymes in adult stem cell regulation in vivo.  相似文献   

12.
The E2F1 gene well known is its pivotal role in regulating the entry from G1 to S phase, while the salvage antitumoral pathway which implicates it, especially in the absence of p53, is not fully characterized. We therefore attempted to identify the up‐ and down‐stream events involved in the activation of the E2F1‐dependent pro‐apoptotic pathway. For this purpose, a amonafide analogue, 7‐d (2‐(3‐(2‐(Dimethylamino)ethylamino)propyl)‐6‐(dodecylamino)‐1H‐benzo[de]isoquinoline‐1,3(2H)‐dione) was screened, which exhibited high antitumor activity against p53‐deficient human Chronic Myelogenous Leukemia (CML) K562 cells. Analysis of flow cytometry and western blots of K562 cells treated with 7‐d revealed an appreciable G2/M cycle arrest and apoptosis in a dose and time‐dependent manner via p53‐independent pathway. A striking increase in “Comet tail” formation and γ‐H2AX expression showed that DNA double strand breaks (DSB) were caused by 7‐d treatment. ATM/ATR signaling was reported to connect E2F1 induction with apoptosis in response to DNA damage. Indeed, 7‐d‐induced G2/M arrest and apoptosis were antagonized by ATM/ATR signaling inhibitor, Caffeine, which suggested that ATM/ATR signaling was activated by 7‐d treatment. Furthermore, the increased expression of E2F1, p73, and Apaf‐1 and p73 dissociation from HDM2 was induced by 7‐d treatment, however, knockout of E2F1 expression reversed p73, Apaf‐1, and p21Cip1/WAF1 expression, reactivated cell cycle progression, and inhibited 7‐d‐induced apoptosis. Altogether our results for the first time indicate that 7‐d mediates its growth inhibitory effects on CML p53‐deficient cells via the activation of an E2F1‐dependent mitochondrial and cell cycle checkpoint signaling pathway which subsequently targets p73, Apaf‐1, and p21Cip1/WAF1. J. Cell. Biochem. 113: 3165–3177, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

13.
14.
Deregulation of the Rb-E2F pathway occurs in many cancers and results in aberrant cell proliferation as well as an increased propensity to undergo apoptosis. In most cases, apoptosis in response to Rb inactivation involves the activation of p53 but the molecular details of the signaling pathway connecting Rb loss to p53 are poorly understood. Here we demonstrate that the E1A oncoprotein, which binds and inhibits Rb family members, induces the accumulation and phosphorylation of p53 through the DNA damage-responsive ATM kinase. As a result, E1A-induced apoptosis is significantly impaired in cells lacking ATM. In contrast, inactivation of ARF, which is widely believed to activate p53 in response to oncogenic stress, has no effect on p53 induction and only a modest effect on apoptosis in response to E1A. Both E2F1 and E2F3 contribute to ATM-dependent phosphorylation of p53 and apoptosis in cells expressing E1A. However, deregulated E2F3 activity is implicated in the DNA damage caused by E1A while E2F1 stimulates ATM- and NBS1-dependent p53 phosphorylation and apoptosis through a mechanism that does not involve DNA damage.  相似文献   

15.
Yang SZ  Lin FT  Lin WC 《EMBO reports》2008,9(9):907-915
Microcephalin (MCPH1) has a crucial role in the DNA damage response by promoting the expression of Checkpoint kinase 1 (CHK1) and Breast cancer susceptibility gene 1 (BRCA1); however, the mechanism of this regulation remains unclear. Here, we show that MCPH1 regulates CHK1 and BRCA1 through the interaction with E2F1 on the promoters of both genes. MCPH1 also regulates other E2F target genes involved in DNA repair and apoptosis such as RAD51, DDB2, TOPBP1, p73 and caspases. MCPH1 interacts with E2F1 on the p73 promoter, and regulates p73 induction and E2F1-induced apoptosis as a result of DNA damage. MCPH1 forms oligomers through the second and third BRCT domains. An MCPH1 mutant containing only its oligomerization domain has a dominant-negative role by blocking MCPH1 binding to E2F1. It also inhibits p73 induction in DNA damage and E2F1-dependent apoptosis. Taken together, MCPH1 cooperates with E2F1 to regulate genes involved in DNA repair, checkpoint and apoptosis, and might participate in the maintenance of genomic integrity.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号