首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Background information. In endocrine cells, IP3R (inositol 1,4,5‐trisphosphate receptor), a ligand‐gated Ca2+ channel, plays an important role in the control of intracellular Ca2+ concentration. There are three subtypes of IP3R that are distributed differentially among cell types. RINm5F cells express almost exclusively the IP3R‐3 subtype. The purpose of the present study was to investigate the effect of PKA (protein kinase A) on the activity of IP3R‐3 in RINm5F cells. Results. We show that immunoprecipitated IP3R‐3 is a good substrate for PKA. Using a back‐phosphorylation approach, we show that endogenous PKA phosphorylates IP3R‐3 in intact RINm5F cells. [3H]IP3 (inositol 1,4,5‐trisphosphate) binding affinity and IP3‐induced Ca2+ release activity were enhanced in permeabilized cells that were pre‐treated with forskolin or PKA. The PKA‐induced enhancement of IP3R‐3 activity was also observed in intact RINm5F cells stimulated with carbachol and epidermal growth factor, two agonists that use different receptor types to activate phospholipase C. Conclusion. The results of the present study reveal a converging step where the cAMP and the Ca2+ signalling systems act co‐operatively in endocrine cell responses to external stimuli.  相似文献   

2.
Ejaculated spermatozoa must undergo a series of biochemical modifications called capacitation, prior to fertilization. Protein-kinase A (PKA) mediates sperm capacitation, although its regulation is not fully understood. Sperm contain several A-kinase anchoring proteins (AKAPs), which are scaffold proteins that anchor PKA. In this study, we show that AKAP3 is degraded in bovine sperm incubated under capacitation conditions. The degradation rate is variable in sperm from different bulls and is correlated with the capacitation ability. The degradation of AKAP3 was significantly inhibited by MG-132, a proteasome inhibitor, indicating that AKAP3 degradation occurs via the proteasomal machinery. Treatment with Ca2+-ionophore induced further degradation of AKAP3; however, this effect was found to be enhanced in the absence of Ca2+ in the medium or when intracellular Ca2+ was chelated the degradation rate of AKAP3 was significantly enhanced when intracellular space was alkalized using NH4Cl, or when sperm were treated with Ht31, a peptide that contains the PKA-binding domain of AKAPs. Moreover, inhibition of PKA activity by H89, or its activation using 8Br-cAMP, increased AKAP3 degradation rate. This apparent contradiction could be explained by assuming that binding of PKA to AKAP3 protects AKAP3 from degradation. We conclude that AKAP3 degradation is regulated by intracellular alkalization and PKARII anchoring during sperm capacitation.  相似文献   

3.
Ca2+ release through inositol 1,4,5-trisphosphate receptors (InsP3R) can be modulated by numerous factors, including input from other signal transduction cascades. These events shape the spatio-temporal characteristics of the Ca2+ signal and provide fidelity essential for the appropriate activation of effectors. In this study, we investigate the regulation of Ca2+ release via InsP3R following activation of cyclic nucleotide-dependent kinases in the presence and absence of expression of a binding partner InsP3R-associated cGMP kinase substrate (IRAG). cGMP-dependent kinase (PKG) phosphorylation of only the S2+ InsP3R-1 subtype resulted in enhanced Ca2+ release in the absence of IRAG expression. In contrast, IRAG bound to each InsP3R subtype, and phosphorylation of IRAG by PKG attenuated Ca2+ release through all InsP3R subtypes. Surprisingly, simply the expression of IRAG attenuated phosphorylation and inhibited the enhanced Ca2+ release through InsP3R-1 following cAMP-dependent protein kinase (PKA) activation. In contrast, IRAG expression did not influence the PKA-enhanced activity of the InsP3R-2. Phosphorylation of IRAG resulted in reduced Ca2+ release through all InsP3R subtypes during concurrent activation of PKA and PKG, indicating that IRAG modulation is dominant under these conditions. These studies yield mechanistic insight into how cells with various complements of proteins integrate and prioritize signals from ubiquitous signaling pathways.  相似文献   

4.
5.
The ubiquitous InsP3/Ca2+ signalling pathway is modulated by diverse mechanisms, i.e. feedback of Ca2+ and interactions with other signalling pathways. In the salivary glands of the blowfly Calliphora vicina, the hormone serotonin (5-HT) causes a parallel rise in intracellular [Ca2+] and [cAMP] via two types of 5-HT receptors. We have shown recently that cAMP/protein kinase A (PKA) sensitizes InsP3-induced Ca2+ release. We have now identified the protein phosphatase that counteracts the effect of PKA on 5-HT-induced InsP3/Ca2+ signalling. We demonstrate that (1) tautomycin and okadaic acid, inhibitors of protein phosphatases PP1 and PP2A, have no effect on 5-HT-induced Ca2+ signals; (2) cyclosporin A and FK506, inhibitors of Ca2+/calmodulin-activated protein phosphatase calcineurin, cause an increase in the frequency of 5-HT-induced Ca2+ oscillations; (3) the sensitizing effect of cyclosporin A on 5-HT-induced Ca2+ responses does not involve Ca2+ entry into the cells; (4) cyclosporin A increases InsP3-dependent Ca2+ release; (5) inhibition of PKA abolishes the effect of cyclosporin A on the 5-HT-induced Ca2+ responses, indicating that PKA and calcineurin act antagonistically on the InsP3/Ca2+ signalling pathway. These findings suggest that calcineurin provides a negative feedback on InsP3/Ca2+ signalling in blowfly salivary glands, counteracting the effect of PKA and desensitizing the signalling cascade at higher 5-HT concentrations.  相似文献   

6.
The kinetic and mechanistic details of the interaction between caldendrin, calmodulin and the B‐domain of AKAP79 were determined using a biosensor‐based approach. Caldendrin was found to compete with calmodulin for binding at AKAP79, indicating overlapping binding sites. Although the AKAP79 affinities were similar for caldendrin (KD = 20 n m ) and calmodulin (KD = 30 n m ), their interaction characteristics were different. The calmodulin interaction was well described by a reversible one‐step model, but was only detected in the presence of Ca2+. Caldendrin interacted with a higher level of complexity, deduced to be an induced fit mechanism with a slow relaxation back to the initial encounter complex. It interacted with AKAP79 also in the absence of Ca2+, but with different kinetic rate constants. The data are consistent with a similar initial Ca2+‐dependent binding step for the two proteins. For caldendrin, a second Ca2+‐independent rearrangement step follows, resulting in a stable complex. The study shows the importance of establishing the mechanism and kinetics of protein–protein interactions and that minor differences in the interaction of two homologous proteins can have major implications in their functional characteristics. These results are important for the further elucidation of the roles of caldendrin and calmodulin in synaptic function. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
The inositol (1,4,5)-trisphosphate receptor (InsP3R) mediates Ca2+ release from intracellular stores in response to generation of second messenger InsP3. InsP3R was biochemically purified and cloned, and functional properties of native InsP3-gated Ca2+ channels were extensively studied. However, further studies of InsP3R are obstructed by the lack of a convenient functional assay of expressed InsP3R activity. To establish a functional assay of recombinant InsP3R activity, transient heterologous expression of neuronal rat InsP3R cDNA (InsP3R-I, SI− SII+ splice variant) in HEK-293 cells was combined with the planar lipid bilayer reconstitution experiments. Recombinant InsP3R retained specific InsP3 binding properties (K d = 60 nM InsP3) and were specifically recognized by anti–InsP3R-I rabbit polyclonal antibody. Density of expressed InsP3R-I was at least 20-fold above endogenous InsP3R background and only 2–3-fold lower than InsP3R density in rat cerebellar microsomes. When incorporated into planar lipid bilayers, the recombinant InsP3R formed a functional InsP3-gated Ca2+ channel with 80 pS conductance using 50 mM Ba2+ as a current carrier. Mean open time of recombinant InsP3-gated channels was 3.0 ms; closed dwell time distribution was double exponential and characterized by short (18 ms) and long (130 ms) time constants. Overall, gating and conductance properties of recombinant neuronal rat InsP3R-I were very similar to properties of native rat cerebellar InsP3R recorded in identical experimental conditions. Recombinant InsP3R also retained bell-shaped dependence on cytosolic Ca2+ concentration and allosteric modulation by ATP, similar to native cerebellar InsP3R. The following conclusions are drawn from these results. (a) Rat neuronal InsP3R-I cDNA encodes a protein that is either sufficient to produce InsP3-gated channel with functional properties identical to the properties of native rat cerebellar InsP3R, or it is able to form a functional InsP3-gated channel by forming a complex with proteins endogenously expressed in HEK-293 cells. (b) Successful functional expression of InsP3R in a heterologous expression system provides an opportunity for future detailed structure–function characterization of this vital protein.  相似文献   

8.
Abstract: The mechanisms involved in Ca2+ mobilization evoked by the muscarinic cholinoceptor (mAChR) agonist carbachol (CCh) and N-methyl-d -aspartate (NMDA) in cerebellar granule cells have been investigated. An initial challenge with caffeine greatly reduced the subsequent intracellular Ca2+ concentration ([Ca2+]i) response to CCh (to 45 ± 19% of the control), and, similarly, a much reduced caffeine response was detectable after prior stimulation with CCh (to 27 ± 6% of the control). CCh-evoked [Ca2+]i responses were inhibited by preincubation with thapsigargin (10 µM), 2,5-di(tert-butyl)-1,4-benzohydroquinone (BHQ; 25 µM), ryanodine (10 µM), or dantrolene (25 µM). BHQ pretreatment was found to have no effect on the sustained phase of the NMDA-evoked [Ca2+]i response. Both CCh (1 mM) and 1-aminocyclopentane-1S,3R-dicarboxylic acid (ACPD; 200 µM) evoked a much diminished increase in [Ca2+]i in granule cells pretreated with CCh for 24 h compared with vehicle-treated control cells (CCh, 23 ± 14%; ACPD, 27 ± 1% of respective control values). In contrast, a 24-h CCh pretreatment decreased the subsequent inositol 1,4,5-trisphosphate (InsP3) response to CCh to a much greater extent compared with responses evoked by metabotropic glutamate receptor (mGluR) agonists; this suggests that the former effect on Ca2+ mobilization represents a heterologous desensitization of the mGluR-mediated response distal to the pathway second messenger. Furthermore, [Ca2+]i responses to caffeine and NMDA were unaffected by a 24-h pretreatment with CCh. This study indicates that ryanodine receptors, as well as InsP3 receptors, appear to be crucial to the mAChR-mediated [Ca2+]i response in granule cells. As BHQ apparently differentiates between the CCh- and NMDA-evoked responses, it is possible that the directly InsP3-sensitive pool is physically different from the ryanodine receptor pool. Also, activation of InsP3 receptors may not contribute significantly to NMDA-evoked elevation of [Ca2+]i in cerebellar granule cells. A model for the topographic organization of cerebellar granule cell Ca2+ stores is proposed.  相似文献   

9.
The repetitive spiking of free cytosolic [Ca2+] ([Ca2+]i) during hormonal activation of hepatocytes depends on the activation and subsequent inactivation of InsP3-evoked Ca2+ release. The kinetics of both processes were studied with flash photolytic release of InsP3 and time resolved measurements of [Ca2+]i in single cells. InsP3 evoked Ca2+ flux into the cytosol was measured as d[Ca2+]i/dt, and the kinetics of Ca2+ release compared between hepatocytes and cerebellar Purkinje neurons. In hepatocytes release occurs at InsP3 concentrations greater than 0.1–0.2 μM. A comparison with photolytic release of metabolically stable 5-thio-InsP3 suggests that metabolism of InsP3 is important in determining the minimal concentration needed to produce Ca2+ release. A distinct latency or delay of several hundred milliseconds after release of low InsP3 concentrations decreased to a minimum of 20–30 ms at high concentrations and is reduced to zero by prior increase of [Ca2+]i, suggesting a cooperative action of Ca2+ in InsP3 receptor activation. InsP3-evoked flux and peak [Ca2+]i increased with InsP3 concentration up to 5–10 μM, with large variation from cell to cell at each InsP3 concentration. The duration of InsP3-evoked flux, measured as 10–90% risetime, showed a good reciprocal correlation with d[Ca2+]i/dt and much less cell to cell variation than the dependence of flux on InsP3 concentration, suggesting that the rate of termination of the Ca2+ flux depends on the free Ca2+ flux itself. Comparing this data between hepatocytes and Purkinje neurons shows a similar reciprocal correlation for both, in hepatocytes in the range of low Ca2+ flux, up to 50 μM · s−1 and in Purkinje neurons at high flux up to 1,400 μM · s−1. Experiments in which [Ca2+]i was controlled at resting or elevated levels support a mechanism in which InsP3-evoked Ca2+ flux is inhibited by Ca2+ inactivation of closed receptor/channels due to Ca2+ accumulation local to the release sites. Hepatocytes have a much smaller, more prolonged InsP3-evoked Ca2+ flux than Purkinje neurons. Evidence suggests that these differences in kinetics can be explained by the much lower InsP3 receptor density in hepatocytes than Purkinje neurons, rather than differences in receptor isoform, and, more generally, that high InsP3 receptor density promotes fast rising, rapidly inactivating InsP3-evoked [Ca2+]i transients.  相似文献   

10.
We investigated the early effects (5–60 s) of progesterone (1 pM–0.1 μM) on cytosolic free calcium concentration ([Ca2+]i) and inositol 1,4,5-trisphosphate (InsP3) formation in nonluteinized and in vitro luteinized porcine granulosa cells (pGCs). Progesterone increased [Ca2+]i and InsP3 formation within 5 s in both cell types. Progesterone induced calcium mobilization from the endoplasmic reticulum via the activation of a phospholipase C linked to a pertussis-insensitive G-protein. This process was controlled by protein kinases C and A. In contrast, only nonluteinized pGCs showed a Ca2+ influx via dihydropyridine-insensitive calcium channel. In both cell types, the nuclear progesterone receptor antagonist RU-38486 did not inhibit the progesterone-induced increase in [Ca2+]i; progesterone immobilized on bovine serum albumin, which did not enter the cell, increased [Ca2+]i within 5 s and was a full agonist, but less potent than the free progesterone; pertussis toxin did not inhibit progesterone effect on InsP3. In conclusion, progesterone may interact with membrane unconventional receptors that belong to the class of membrane receptors coupled to a phospholipase C via a pertussis toxin-insensitive G-protein. The source of the Ca2+ for the progesterone-induced increase in [Ca2+]i also depends on the stage of cell luteinization. © 1996 Wiley-Liss, Inc.  相似文献   

11.
Protein kinase A (PKA) phosphorylation of inositol 1,4,5-trisphosphate receptors (InsP3Rs) represents a mechanism for shaping intracellular Ca2+ signals following a concomitant elevation in cAMP. Activation of PKA results in enhanced Ca2+ release in cells that express predominantly InsP3R2. PKA is known to phosphorylate InsP3R2, but the molecular determinants of this effect are not known. We have expressed mouse InsP3R2 in DT40-3KO cells that are devoid of endogenous InsP3R and examined the effects of PKA phosphorylation on this isoform in unambiguous isolation. Activation of PKA increased Ca2+ signals and augmented the single channel open probability of InsP3R2. A PKA phosphorylation site unique to the InsP3R2 was identified at Ser937. The enhancing effects of PKA activation on this isoform required the phosphorylation of Ser937, since replacing this residue with alanine eliminated the positive effects of PKA activation. These results provide a mechanism responsible for the enhanced Ca2+ signaling following PKA activation in cells that express predominantly InsP3R2.Hormones, neurotransmitters, and growth factors stimulate the production of InsP33 and Ca2+ signals in virtually all cell types (1). The ubiquitous nature of this mode of signaling dictates that this pathway does not exist in isolation; indeed, a multitude of additional signaling pathways can be activated simultaneously. A prime example of this type of “cross-talk” between independently activated signaling systems results from the parallel activation of cAMP and Ca2+ signaling pathways (2, 3). Interactions between these two systems occur in numerous distinct cell types with various physiological consequences (36). Given the central role of InsP3R in Ca2+ signaling, a major route of modulating the spatial and temporal features of Ca2+ signals following cAMP production is potentially through PKA phosphorylation of the InsP3R isoform(s) expressed in a particular cell type.There are three InsP3R isoforms (InsP3R1, InsP3R2, and InsP3R3) expressed to varying degrees in mammalian cells (7, 8). InsP3R1 is the major isoform expressed in the nervous system, but it is less abundant compared with other subtypes in non-neuronal tissues (8). Ca2+ release via InsP3R2 and InsP3R3 predominate in these tissues. InsP3R2 is the major InsP3R isoform in many cell types, including hepatocytes (7, 8), astrocytes (9, 10), cardiac myocytes (11), and exocrine acinar cells (8, 12). Activation of PKA has been demonstrated to enhance InsP3-induced Ca2+ signaling in hepatocytes (13) and parotid acinar cells (4, 14). Although PKA phosphorylation of InsP3R2 is a likely causal mechanism underlying these effects, the functional effects of phosphorylation have not been determined in cells unambiguously expressing InsP3R2 in isolation. Furthermore, the molecular determinants of PKA phosphorylation of this isoform are not known.PKA-mediated phosphorylation is an efficient means of transiently and reversibly regulating the activity of the InsP3R. InsP3R1 was identified as a major substrate of PKA in the brain prior to its identification as the InsP3R (15, 16). However, until recently, the functional consequences of phosphorylation were unresolved. Initial conflicting results were reported indicating that phosphoregulation of InsP3R1 could result in either inhibition or stimulation of receptor activity (16, 17). Mutagenic strategies were employed by our laboratory to clarify this discrepancy. These studies unequivocally assigned phosphorylation-dependent enhanced Ca2+ release and InsP3R1 activity at the single channel level, through phosphorylation at canonical PKA consensus motifs at Ser1589 and Ser1755. The sites responsible were also shown to be specific to the particular InsP3R1 splice variant (18). These data were also corroborated by replacing the relevant serines with glutamates in a strategy designed to construct “phosphomimetic” InsP3R1 by mimicking the negative charge added by phosphorylation (19, 20). Of particular note, however, although all three isoforms are substrates for PKA, neither of the sites phosphorylated by PKA in InsP3R1 are conserved in the other two isoforms (21). Recently, three distinct PKA phosphorylation sites were identified in InsP3R3 that were in different regions of the protein when compared with InsP3R1 (22). To date, no PKA phosphorylation sites have been identified in InsP3R2.Interactions between Ca2+ and cAMP signaling pathways are evident in exocrine acinar cells of the parotid salivary gland. In these cells, both signals are important mediators of fluid and protein secretion (23). Multiple components of the [Ca2+]i signaling pathway in these cells are potential substrates for modulation by PKA. Previous work from this laboratory established that activation of PKA potentiates muscarinic acetylcholine receptor-induced [Ca2+]i signaling in mouse and human parotid acinar cells (4, 24, 25). A likely mechanism to explain this effect is that PKA phosphorylation increases the activity of InsP3R expressed in these cells. Consistent with this idea, activation of PKA enhanced InsP3-induced Ca2+ release in permeabilized mouse parotid acinar cells and also resulted in the phosphorylation of InsP3R2 (4).Invariably, prior work examining the functional effects of PKA phosphorylation on InsP3R2 has been performed using cell types expressing multiple InsP3R isoforms. For example, AR4-2J cells are the preferred cell type for examining InsP3R2 in relative isolation, because this isoform constitutes more than 85% of the total InsP3R population (8). InsP3R1, however, contributes up to ∼12% of the total InsP3R in AR4-2J cells. An initial report using InsP3-mediated 45Ca2+ flux suggested that PKA activation increased InsP3R activity in AR4-2J cells (21). A similar conclusion was made in a later study, which documented the effects of PKA activation on agonist stimulated Ca2+ signals in AR4-2J cells (26). Any effects of phosphorylation observed in these experiments could plausibly have resulted from phosphorylation of the residual InsP3R1.Although PKA enhances InsP3-induced calcium release in cells expressing predominantly InsP3R2, including hepatocytes, parotid acinar cells, and AR4-2J cells (4, 13, 21, 26, 27), InsP3R2 is not phosphorylated at stoichiometric levels by PKA (21). This observation has called into question the physiological significance of PKA phosphorylation of InsP3R2 (28). The apparent low levels of InsP3R2 phosphorylation are clearly at odds with the augmented Ca2+ release observed in cells expressing predominantly this isoform. The equivocal nature of these findings probably stems from the fact that, to date, all of the studies demonstrating positive effects of PKA activation on Ca2+ release were conducted in cells that also express InsP3R1. The purpose of the current experiments was to analyze the functional effects of phosphorylation on InsP3R2 expressed in isolation on a null background. We report that InsP3R2 activity is increased by PKA phosphorylation under these conditions, and furthermore, we have identified a unique phosphorylation site in InsP3R2 at Ser937. In total, these results provide a direct mechanism for the cAMP-induced activation of InsP3R2 via PKA phosphorylation of InsP3R2.  相似文献   

12.
A‐kinase anchoring proteins (AKAPs) regulate cAMP‐dependent protein kinase (PKA) signaling in space and time. Dual‐specific AKAP2 (D‐AKAP2/AKAP10) binds with high affinity to both RI and RII regulatory subunits of PKA and is anchored to transporters through PDZ domain proteins. Here, we describe a structure of D‐AKAP2 in complex with two interacting partners and the exact mechanism by which a segment that on its own is disordered presents an α‐helix to PKA and a β‐strand to PDZK1. These two motifs nucleate a polyvalent scaffold and show how PKA signaling is linked to the regulation of transporters. Formation of the D‐AKAP2: PKA binary complex is an important first step for high affinity interaction with PDZK1, and the structure reveals important clues toward understanding this phenomenon. In contrast to many other AKAPs, D‐AKAP2 does not interact directly with the membrane protein. Instead, the interaction is facilitated by the C‐terminus of D‐AKAP2, which contains two binding motifs—the D‐AKAP2AKB and the PDZ motif—that are joined by a short linker and only become ordered upon binding to their respective partner signaling proteins. The D‐AKAP2AKB binds to the D/D domain of the R‐subunit and the C‐terminal PDZ motif binds to a PDZ domain (from PDZK1) that serves as a bridging protein to the transporter. This structure also provides insights into the fundamental question of why D‐AKAP2 would exhibit a differential mode of binding to the two PKA isoforms.  相似文献   

13.
Vascular dysfunction resulting from diabetes is an important factor in arteriosclerosis. Previous studies have shown that during hyperglycaemia and diabetes, AKAP150 promotes vascular tone enhancement by intensifying the remodelling of the BK channel. However, the interaction between AKAP150 and the BK channel remains open to discussion. In this study, we investigated the regulation of impaired BK channel‐mediated vascular dysfunction in diabetes mellitus. Using AKAP150 null mice (AKAP150?/?) and wild‐type (WT) control mice (C57BL/6J), diabetes was induced by intraperitoneal injection of streptozotocin. We found that knockout of AKAP150 reversed vascular remodelling and fibrosis in mice with diabetes and in AKAP150?/? diabetic mice. Impaired Akt/GSK3β signalling contributed to decreased BK‐β1 expression in aortas from diabetic mice, and the silencing of AKAP150 increased Akt phosphorylation and BK‐β1 expression in MOVAS cells treated with HG medium. The inhibition of Akt activity caused a decrease in BK‐β1 expression, and treatment with AKAP150 siRNA suppressed GSK3β expression in the nuclei of MOVAS cells treated with HG. Knockout of AKAP150 reverses impaired BK channel‐mediated vascular dysfunction through the Akt/GSK3β signalling pathway in diabetes mellitus.  相似文献   

14.
The inositol 1,4,5-trisphosphate receptor (IP3R) is an intracellular Ca2+ release channel responsible for mobilizing stored Ca2+. Three different receptor types have been molecularly cloned, and their genes have been classified into a family. The gene for the type 1 receptor (IP3R1) is predominantly expressed in cerebellar Purkinje neurons, but its gene product is localized widely in a variety of tissues; however, there is little information on what types of cells express the other two receptor types, type 2 and type 3 (IP3R2 and IP3R3, respectively). We studied the expression of the IP3R gene family in various mouse tissues by in situ hybridization histochemistry. Compared with IP3R1, the levels of expression of IP3R2 and IP3R3 mRNAs were low in all of the tissues tested. IP3R2 mRNA was localized in the intralobular duct cells of the submandibular gland, the urinary tubule cells of the kidney, the epithelial cells of epididymal ducts and the follicular granulosa cells of the ovary, while the IP3R3 mRNA was distributed in gastric cells, salivary and pancreatic acinar cells and the epithelium of the small intestine. All of these cells which express either IP3R2 or IP3R3 mRNA are known to have a secretory function in which IP3/Ca2+ signalling has been shown to be involved, and thus either IP3R2 or IP3R3 may be a prerequisite to secretion in these cells.  相似文献   

15.
Cardiac hypertrophy is associated with profound remodelling of Ca2+ signalling pathways. During the early, compensated stages of hypertrophy, Ca2+ fluxes may be enhanced to facilitate greater contraction, whereas as the hypertrophic heart decompensates, Ca2+ homeostatic mechanisms are dysregulated leading to decreased contractility, arrhythmia and death. Although ryanodine receptor Ca2+ release channels (RyR) on the sarcoplasmic reticulum (SR) intracellular Ca2+ store are primarily responsible for the Ca2+ flux that induces myocyte contraction, a role for Ca2+ release via the inositol 1,4,5-trisphosphate receptor (InsP3R) in cardiac physiology has also emerged. Specifically, InsP3-induced Ca2+ signals generated following myocyte stimulation with an InsP3-generating agonist (e.g. endothelin, ET-1), lead to modulation of Ca2+ signals associated with excitation-contraction coupling (ECC) and the induction of spontaneous Ca2+ release events that cause cellular arrhythmia. Using myocytes from spontaneously hypertensive rats (SHR), we recently reported that expression of the type 2 InsP3R (InsP3R2) is significantly increased during hypertrophy. Notably, this increased expression was restricted to the junctional SR in close proximity to RyRs. There, enhanced Ca2+ release via InsP3Rs serves to sensitise neighbouring RyRs causing an augmentation of Ca2+ fluxes during ECC as well as an increase in non-triggered Ca2+ release events. Although the sensitization of RyRs may be a beneficial consequence of elevated InsP3R expression during hypertrophy, the spontaneous Ca2+ release events are potentially of pathological significance giving rise to cardiac arrhythmia. InsP3R2 expression was also increased in hypertrophic hearts from patients with ischemic dilated cardiomyopathy and aortically-banded mice demonstrating that increased InsP3R expression may be a general phenomenon that underlies Ca2+ changes during hypertrophy.  相似文献   

16.
To clarify the molecular mechanisms behind quantal Ca2+ release, the graded Ca2+ release from intracellular stores through inositol 1,4,5-trisphosphate receptor (InsP3R) channels responding to incremental ligand stimulation, single-channel patch-clamp electrophysiology was used to continuously monitor the number and open probability of InsP3R channels in the same excised cytoplasmic-side-out nuclear membrane patches exposed alternately to optimal and suboptimal cytoplasmic ligand conditions. Progressively more channels were activated by more favorable conditions in patches from insect cells with only one InsP3R gene or from cells solely expressing one recombinant InsP3R isoform, demonstrating that channels with identical primary sequence have different ligand recruitment thresholds. Such heterogeneity was largely abrogated, in a fully reversible manner, by treatment of the channels with sulfhydryl reducing agents, suggesting that it was mostly regulated by different levels of posttranslational redox modifications of the channels. In contrast, sulfhydryl reduction had limited effects on channel open probability. Thus, sulfhydryl redox modification can regulate various aspects of intracellular Ca2+ signaling, including quantal Ca2+ release, by tuning ligand sensitivities of InsP3R channels. No intrinsic termination of channel activity with a timescale comparable to that for quantal Ca2+ release was observed under any steady ligand conditions, indicating that this process is unlikely to contribute.  相似文献   

17.
Neuronal calcium sensor-1 (NCS-1) is a high-affinity, low-capacity Ca2+-binding protein expressed in many cell types. We previously showed that NCS-1 interacts with inositol 1,4,5-trisphosphate receptor (InsP3R) and modulates Ca2+-signaling by enhancing InsP3-dependent InsP3R channel activity and intracellular Ca2+ transients. Recently we reported that the chemotherapeutic agent, paclitaxel (taxol) triggers μ-calpain dependent proteolysis of NCS-1, leading to reduced Ca2+-signaling within the cell. Degradation of NCS-1 may be critical in the induction of peripheral neuropathy associated with taxol treatment for breast and ovarian cancer. To begin to design strategies to protect NCS-1, we treated NCS-1 with μ-calpain in vitro and identified the cleavage site by N-terminal sequencing and MALDI mass spectroscopy. μ-Calpain cleavage of NCS-1 occurs within an N-terminal pseudoEF-hand domain, which by sequence analysis appears to be unable to bind Ca2+. Our results suggest a role for this pseudoEF-hand in stabilizing the three functional EF-hands within NCS-1. Using isothermal titration calorimetry (ITC) we found that loss of the pseudoEF-hand markedly decreased NCS-1's affinity for Ca2+. Physiologically, this significant decrease in Ca2+ affinity may render NCS-1 incapable of responding to changes in Ca2+ levels in vivo. The reduced ability of μ-calpain treated NCS-1 to bind Ca2+ may explain the altered Ca2+ signaling in the presence of taxol and suggests a strategy for therapeutic intervention of peripheral neuropathy in cancer patients undergoing taxol treatment.  相似文献   

18.
The role of second messengers in the diversion of cellular processes by pathogens remains poorly studied despite their importance. Among these, Ca2+ virtually regulates all known cell processes, including cytoskeletal reorganization, inflammation, or cell death pathways. Under physiological conditions, cytosolic Ca2+ increases are transient and oscillatory, defining the so‐called Ca2+ code that links cell responses to specific Ca2+ oscillatory patterns. During cell invasion, Shigella induces atypical local and global Ca2+ signals. Here, we show that by hydrolyzing phosphatidylinositol‐(4,5)bisphosphate, the Shigella type III effector IpgD dampens inositol‐(1,4,5)trisphosphate (InsP3) levels. By modifying InsP3 dynamics and diffusion, IpgD favors the elicitation of long‐lasting local Ca2+ signals at Shigella invasion sites and converts Shigella‐induced global oscillatory responses into erratic responses with atypical dynamics and amplitude. Furthermore, IpgD eventually inhibits InsP3‐dependent responses during prolonged infection kinetics. IpgD thus acts as a pathogen regulator of the Ca2+ code implicated in a versatility of cell functions. Consistent with this function, IpgD prevents the Ca2+‐dependent activation of calpain, thereby preserving the integrity of cell adhesion structures during the early stages of infection.  相似文献   

19.
The cyclic AMP-dependent protein kinase (PKA) type II is directed to different subcellular loci through interaction of the RII subunits with A-kinase anchoring proteins (AKAPs). A full-length human clone encoding AKAP95 was identified and sequenced, and revealed a 692-amino acid open reading frame that was 89% homologous to the rat AKAP95 (V. M. Coghlan, L. K. Langeberg, A. Fernandez, N. J. Lamb, and J. D. Scott (1994)J. Biol. Chem.269, 7658–7665). The gene encoding AKAP95 was mapped to human chromosome 19p13.1-q12 using somatic cell hybrids and PCR. A fragment covering amino acids 414–692 of human AKAP95 was expressed inEscherichia coliand shown to bind RIIα. Competition with a peptide covering the RII-binding domain of AKAP Ht31 abolished RIIα binding to AKAP95. Immunofluorescence studies in quiescent human Hs-68 fibroblasts showed a nuclear localization of AKAP95, whereas RIIα was excluded from the nucleus. In contrast, during mitosis AKAP95 staining was markedly changed and appeared to be excluded from the condensed chromatin and localized outside the metaphase plate. Furthermore, the subcellular localizations of AKAP95 and RIIα overlapped in metaphase but started to segregate in anaphase and were again separated as AKAP95 reentered the nucleus in telophase. Finally, RIIα was coimmunoprecipitated with AKAP95 from HeLa cells arrested in mitosis, but not from interphase HeLa cells, demonstrating a physical association between these two molecules during mitosis. The results show a distinct redistribution of AKAP95 during mitosis, suggesting that the interaction between AKAP95 and RIIα may be cell cycle-dependent.  相似文献   

20.
The type III isoform of the inositol 1,4,5-trisphosphate receptor (InsP3R3) is apically localized and triggers Ca2+ waves and secretion in a number of polarized epithelia. However, nothing is known about epigenetic regulation of this InsP3R isoform. We investigated miRNA regulation of InsP3R3 in primary bile duct epithelia (cholangiocytes) and in the H69 cholangiocyte cell line, because the role of InsP3R3 in cholangiocyte Ca2+ signaling and secretion is well established and because loss of InsP3R3 from cholangiocytes is responsible for the impairment in bile secretion that occurs in a number of liver diseases. Analysis of the 3′-UTR of human InsP3R3 mRNA revealed two highly conserved binding sites for miR-506. Transfection of miR-506 mimics into cell lines expressing InsP3R3–3′UTR-luciferase led to decreased reporter activity, whereas co-transfection with miR-506 inhibitors led to enhanced activity. Reporter activity was abrogated in isolated mutant proximal or distal miR-506 constructs in miR-506-transfected HEK293 cells. InsP3R3 protein levels were decreased by miR-506 mimics and increased by inhibitors, and InsP3R3 expression was markedly decreased in H69 cells stably transfected with miR-506 relative to control cells. miR-506-H69 cells exhibited a fibrotic signature. In situ hybridization revealed elevated miR-506 expression in vivo in human-diseased cholangiocytes. Histamine-induced, InsP3-mediated Ca2+ signals were decreased by 50% in stable miR-506 cells compared with controls. Finally, InsP3R3-mediated fluid secretion was significantly decreased in isolated bile duct units transfected with miR-506, relative to control IBDU. Together, these data identify miR-506 as a regulator of InsP3R3 expression and InsP3R3-mediated Ca2+ signaling and secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号