首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Epithelial cell junctions are essential for cell polarity, adhesion and morphogenesis. We have analysed VAB-9, a cell junction protein in Caenorhabditis elegans. VAB-9 is a predicted four-pass integral membrane protein that has greatest similarity to BCMP1 (brain cell membrane protein 1, a member of the PMP22/EMP/Claudin family of cell junction proteins) and localizes to the adherens junction domain of C. elegans apical junctions. Here, we show that VAB-9 requires HMR-1/cadherin for localization to the cell membrane, and both HMP-1/alpha-catenin and HMP-2/beta-catenin for maintaining its distribution at the cell junction. In vab-9 mutants, morphological defects correlate with disorganization of F-actin at the adherens junction; however, localization of the cadherin-catenin complex and epithelial polarity is normal. These results suggest that VAB-9 regulates interactions between the cytoskeleton and the adherens junction downstream of or parallel to alpha-catenin and/or beta-catenin. Mutations in vab-9 enhance adhesion defects through functional loss of the cell junction genes apical junction molecule 1 (ajm-1) and discs large 1 (dlg-1), suggesting that VAB-9 is involved in cell adhesion. Thus, VAB-9 represents the first characterized tetraspan adherens junction protein in C. elegans and defines a new family of such proteins in higher eukaryotes.  相似文献   

2.
Using a mutant hepatocyte cell line in which E-cadherin and beta-catenin are completely depleted from the cell surface, and, consequently, fail to form adherens junctions, we have investigated adherens junction requirement for apical-basolateral polarity development and polarized membrane trafficking. It is shown that these hepatocytes retain the capacity to form functional tight junctions, develop full apical-basolateral cell polarity, and assemble a subapical cortical F-actin network, although with a noted delay and a defect in subsequent apical lumen remodeling. Interestingly, whereas hepatocytes typically target the plasma membrane protein dipeptidyl peptidase IV first to the basolateral surface, followed by its transcytosis to the apical domain, hepatocytes lacking E-cadherin-based adherens junctions target dipeptidyl peptidase IV directly to the apical surface. Basolateral surface-directed transport of other proteins or lipids tested was not visibly affected in hepatocytes lacking E-cadherin-based adherens junctions. Together, our data show that E-cadherin/beta-catenin-based adherens junctions are dispensable for tight junction formation and apical lumen biogenesis but not for apical lumen remodeling. In addition, we suggest a possible requirement for E-cadherin/beta-catenin-based adherens junctions with regard to the indirect apical trafficking of specific proteins in hepatocytes.  相似文献   

3.
During development of the central nervous system, the apical-basal polarity of neuroepithelial cells is critical for homeostasis of proliferation and differentiation of neural stem cells. While adherens junctions at the apical surface of neuroepithelial cells are important for maintaining the polarity, the molecular mechanism regulating integrity of these adherens junctions remains largely unknown. Given the importance of actin cytoskeleton in adherens junctions, we have analyzed the role of mDia, an actin nucleator and a Rho effector, in the integrity of the apical adherens junction. Here we show that mDia1 and mDia3 are expressed in the developing brain, and that mDia3 is concentrated in the apical surface of neuroepithelium. Mice deficient in both mDia1 and mDia3 develop periventricular dysplastic mass widespread throughout the developing brain, where neuroepithelial cell polarity is impaired with attenuated apical actin belts and loss of apical adherens junctions. In addition, electron microscopic analysis revealed abnormal shrinkage and apical membrane bulging of neuroepithelial cells in the remaining areas. Furthermore, perturbation of Rho, but not that of ROCK, causes loss of the apical actin belt and adherens junctions similarly to mDia-deficient mice. These results suggest that actin cytoskeleton regulated by Rho-mDia pathway is critical for the integrity of the adherens junctions and the polarity of neuroepithelial cells, and that loss of this signaling induces aberrant, ectopic proliferation and differentiation of neural stem cells.  相似文献   

4.
Alibardi, L. 2011. Cell junctions during morphogenesis of feathers: general ultrastructure with emphasis on adherens junctions. —Acta Zoologica (Stockholm) 92 : 89–100. The present ultrastructural and immunocytochemical study analyzes the cell junctions joining barb/barbule cells versus cell junctions connecting supportive cells in forming feathers. Differently from the epidermis or the sheath, desmosomes are not the prevalent junctions among feather cells. Numerous adherens junctions, some gap junctions and fewer tight junctions are present among differentiating barb/barbule cells during early stages of their differentiation. Adherens junctions are frequent also among differentiating supportive cells and show weak immunolabeling for both N‐cadherin and neural‐cell adhesion molecule (N‐CAM). Differentiating barb and barbule cells do not show labeled junctions for N‐cadherin and N‐CAM. The labeling occurs at patches in the cytoplasm of supportive cells but is more frequently seen in the external cytoplasm and along the extra‐cellular space (glycocalix) covering the plasma membrane of supportive cells. Labeling for N‐cadherin is also found in medium‐dense 0.1‐ to 0.3‐μm granules present in supportive cells and sometimes is associated with coarse filaments or periderm granules. The study indicates that adherens junctions form most of the transitional connections among supportive cells before their degeneration. Keratinizing barb and barbule cells loose the labeling for adherens junctions (N‐CAM and N‐chaderin) while their adhesion is strengthened by the incorporation of cell junctions in the corneous mass forming the barbules.  相似文献   

5.
We reported that Disabled‐2 (Dab2) is located at the apical membrane in suckling rat intestine. Here, we discovered that, in colon of suckling and adult mouse and of adult human, Dab2 is only at lateral crypt cell membrane and colocalized with E‐cadherin. Dab2 depletion in Caco‐2 cells led to E‐cadherin internalization indicating that its membrane location requires Dab2. In mice, we found that 3 days of dextran sulfate sodium‐induced colitis increased Dab2/E‐cadherin colocalization, which was decreased as colitis progressed to 6 and 9 days. In agreement, Dab2/E‐cadherin colocalization increased in human mild and severe ulcerative colitis and in polyps, being reduced in colon adenocarcinomas, which even showed epithelial Dab2 absence and E‐cadherin delocalization. Epithelial Dab2 decrement preceded that of E‐cadherin. We suggest that Dab2, by inhibiting E‐cadherin internalization, stabilizes adherens junctions, and its absence from the epithelium may contribute to development of colon inflammation and cancer.  相似文献   

6.
7.
A primary function of cadherins is to regulate cell adhesion. Here, we demonstrate a broader function of cadherins in the differentiation of specialized epithelial cell phenotypes. In situ, the rat retinal pigment epithelium (RPE) forms cell-cell contacts within its monolayer, and at the apical membrane with the neural retina; Na+, K(+)-ATPase and the membrane cytoskeleton are restricted to the apical membrane. In vitro, RPE cells (RPE-J cell line) express an endogenous cadherin, form adherens junctions and a tight monolayer, but Na+,K(+)-ATPase is localized to both apical and basal-lateral membranes. Expression of E- cadherin in RPE-J cells results in restriction and accumulation of both Na+,K(+)-ATPase and the membrane cytoskeleton at the lateral membrane; these changes correlate with the synthesis of a different ankyrin isoform. In contrast to both RPE in situ and RPE-J cells that do not form desmosomes, E-cadherin expression in RPE-J cells induces accumulation of desmoglein mRNA, and assembly of desmosome-keratin complexes at cell-cell contacts. These results demonstrate that cadherins directly affect epithelial cell phenotype by remodeling the distributions of constitutively expressed proteins and by induced accumulation of specific proteins, which together lead to the generation of structurally and functionally distinct epithelial cell types.  相似文献   

8.
Cellular junctions are critical for intercellular communication and for the assembly of cells into tissues. Cell junctions often consist of tight junctions, which form a permeability barrier and prevent the diffusion of lipids and proteins between cell compartments, and adherens junctions, which control the adhesion of cells and link cortical actin filaments to attachment sites on the plasma membrane. Proper tight junction formation and cell polarity require the function of membrane-associated guanylate kinases (MAGUKs) that contain the PDZ protein-protein interaction domain. In contrast, less is known about how adherens junctions are assembled. Here we describe how the PDZ-containing protein DLG-1 is required for the proper formation and function of adherens junctions in Caenorhabditis elegans. DLG-1 is a MAGUK protein that is most similar in sequence to mammalian SAP97, which is found at both synapses of the CNS, as well as at cell junctions of epithelia. DLG-1 is localized to adherens junctions, and DLG-1 localization is mediated by an amino-terminal domain shared with SAP97 but not found in other MAGUK family members. DLG-1 recruits other proteins and signaling molecules to adherens junctions, while embryos that lack DLG-1 fail to recruit the proteins AJM-1 and CPI-1 to adherens junctions. DLG-1 is required for the proper organization of the actin cytoskeleton and for the morphological elongation of embryos. In contrast to other proteins that have been observed to affect adherens junction assembly and function, DLG-1 is not required to maintain cell polarity. Our results suggest a new function for MAGUK proteins distinct from their role in cell polarity.  相似文献   

9.
Epithelial cells are polarized, with apical and basal compartments demarcated by tight and adherens junctions. Proper establishment of these subapical junctions is critical for normal development and histogenesis. We report the characterization of the gene let-413 which has a critical role in assembling adherens junctions in Caenorhabditis elegans. In let-413 mutants, adherens junctions are abnormal and mislocalized to more basolateral positions, epithelial cell polarity is affected and the actin cytoskeleton is disorganized. The LET-413 protein contains one PDZ domain and 16 leucine-rich repeats with high homology to proteins known to interact with small GTPases. Strikingly, LET-413 localizes to the basolateral membrane. We suggest that LET-413 acts as an adaptor protein involved in polarizing protein trafficking in epithelial cells.  相似文献   

10.
Cadherin-mediated cell-cell interactions are dynamic processes, and cadherin function is tightly regulated in response to cellular context and signaling. Ultimately, cadherin regulation is likely to reflect the interplay between a range of fundamental cellular processes, including surface organization of receptors, cytoskeletal organization and cell trafficking, that are coordinated by signaling events. In this review we focus on recent advances in understanding how interplay with membrane trafficking and other cell-cell junctions can control cadherin function. The endocytosis of cadherins, and their post-internalization fate, influences surface expression and metabolic stability of these adhesion receptors. Similarly, at the surface, components of tight junctions provide a mode of cross-talk that regulates assembly of adherens junctions.  相似文献   

11.
This review addresses our current understanding of the regulatory mechanism by which N-cadherin, a classical cadherin, affects neural progenitor cells (NPCs) during development. N-cadherin is responsible for the integrity of adherens junctions (AJs), which develop in the sub-apical region of NPCs in the neural tube and brain cortex. The apical domain, which contains the sub-apical region, is involved in the switching from symmetric proliferative division to asymmetric neurogenic division of NPCs. In addition, N-cadherin-based AJ is deeply involved in the apico-basal polarity of NPCs and the regulation of Wnt-β-catenin, hedgehog (Hh), and Notch signaling. In this review, we discuss the roles of N-cadherin in the maintenance, proliferation, and differentiation of NPCs through components of AJ, β-catenin and αE-catenin.  相似文献   

12.
Cell-cell adhesive events affect cell growth and fate decisions and provide spatial clues for cell polarity within tissues. The complete molecular determinants required for adhesive junction formation and their function are not completely understood. LIM domain-containing proteins have been shown to be present at cell-cell contact sites and are known to shuttle into the nucleus where they can affect cell fate and growth; however, their precise localization at cell-cell contacts, how they localize to these sites, and what their functions are at these sites is unknown. Here we show that, in primary keratinocytes, the LIM domain protein Ajuba is recruited to cadherin-dependent cell-cell adhesive complexes in a regulated manner. At cadherin adhesive complexes Ajuba interacts with alpha-catenin, and alpha-catenin is required for efficient recruitment of Ajuba to cell junctions. Ajuba also interacts directly with F-actin. Keratinocytes from Ajuba null mice exhibit abnormal cell-cell junction formation and/or stability and function. These data reveal Ajuba as a new component at cadherin-mediated cell-cell junctions and suggest that Ajuba may contribute to the bridging of the cadherin adhesive complexes to the actin cytoskeleton and as such contribute to the formation or strengthening of cadherin-mediated cell-cell adhesion.  相似文献   

13.
The function of epithelial tissues is dependent on their polarised architecture, and loss of cell polarity is a hallmark of various diseases. Here we analyse cell polarisation in the follicular epithelium of Drosophila, an epithelium that arises by a mesenchymal-epithelial transition. Although many epithelia are formed by mesenchymal precursors, it is unclear how they polarise. Here we show how lateral, apical, and adherens junction proteins act stepwise to establish polarity in the follicular epithelium. Polarisation starts with the formation of adherens junctions, whose positioning is controlled by combined activities of Par-3, β-catenin, and Discs large. Subsequently, Par-6 and aPKC localise to the apical membrane in a Par-3-dependent manner. Apical membrane specification continues by the accumulation of the Crumbs complex, which is controlled by Par-3, Par-6, and aPKC. Thus, our data elucidate the genetic mechanisms leading to the stepwise polarisation of an epithelium with a mesenchymal origin.  相似文献   

14.
Adherens junctions play pivotal roles in cell and tissue organization and patterning by mediating cell adhesion and cell signaling. These junctions consist of large multiprotein complexes that join the actin cytoskeleton to the plasma membrane to form adhesive contacts between cells or between cells and extracellular matrix. The best-known adherens junction is the zonula adherens (ZA) that forms a belt surrounding the apical pole of epithelial cells. Recent studies in Drosophila have further illuminated the structure of adherens junctions. Scaffolding proteins encoded by the stardust gene are novel components of the Crumbs complex, which plays a critical role in ZA assembly.1-3 The small GTPase Rap1 controls the symmetric re-assembly of the ZA after cell division.4 Finally, the asymmetric distribution of adherens junction material regulates spindle orientation during asymmetric cell division in the sensory organ lineage.  相似文献   

15.
Cadherins are the primary adhesion molecules in adherens junctions and desmosomes and play essential roles in embryonic development. Although significant progress has been made in understanding cadherin structure and function, we lack a clear vision of how cells confer plasticity upon adhesive junctions to allow for cellular rearrangements during development, wound healing and metastasis. Endocytic membrane trafficking has emerged as a fundamental mechanism by which cells confer a dynamic state to adhesive junctions. Recent studies indicate that the juxtamembrane domain of classical cadherins contains multiple endocytic motifs, or “switches,” that can be used by cellular membrane trafficking machinery to regulate adhesion. The cadherin‐binding protein p120‐catenin (p120) appears to be the master regulator of access to these switches, thereby controlling cadherin endocytosis and turnover. This review focuses on p120 and other cadherin‐binding proteins, ubiquitin ligases, and growth factors as key modulators of cadherin membrane trafficking.   相似文献   

16.
Apicobasal polarity plays an important role in regulating asymmetric cell divisions by neural progenitor cells (NPCs) in invertebrates, but the role of polarity in mammalian NPCs is poorly understood. Here, we characterize the function of the PDZ domain protein MALS-3 in the developing cerebral cortex. We find that MALS-3 is localized to the apical domain of NPCs. Mice lacking all three MALS genes fail to localize the polarity proteins PATJ and PALS1 apically in NPCs, whereas the formation and maintenance of adherens junctions appears normal. In the absence of MALS proteins, early NPCs progressed more slowly through the cell cycle, and their daughter cells were more likely to exit the cell cycle and differentiate into neurons. Interestingly, these effects were transient; NPCs recovered normal cell cycle properties during late neurogenesis. Experiments in which MALS-3 was targeted to the entire membrane resulted in a breakdown of apicobasal polarity, loss of adherens junctions, and a slowing of the cell cycle. Our results suggest that MALS-3 plays a role in maintaining apicobasal polarity and is required for normal neurogenesis in the developing cortex.  相似文献   

17.
In Drosophila melanogaster, external sensory organs develop from a single sensory organ precursor (SOP). The SOP divides asymmetrically to generate daughter cells, whose fates are governed by differential Notch activation. Here we show that the clathrin adaptor AP-1 complex, localized at the trans Golgi network and in recycling endosomes, acts as a negative regulator of Notch signaling. Inactivation of AP-1 causes ligand-dependent activation of Notch, leading to a fate transformation within sensory organs. Loss of AP-1 affects neither cell polarity nor the unequal segregation of the cell fate determinants Numb and Neuralized. Instead, it causes apical accumulation of the Notch activator Sanpodo and stabilization of both Sanpodo and Notch at the interface between SOP daughter cells, where DE-cadherin is localized. Endocytosis-recycling assays reveal that AP-1 acts in recycling endosomes to prevent internalized Spdo from recycling toward adherens junctions. Because AP-1 does not prevent endocytosis and recycling of the Notch ligand Delta, our data indicate that the DE-cadherin junctional domain may act as a launching pad through which endocytosed Notch ligand is trafficked for signaling.  相似文献   

18.
Artificial adherens junctions were reconstituted in vitro by assembly of cadherin fragments at the surfaces of liposomes. The architecture of the adherens junctions was revealed by cryo-electron microscopy (cryo-EM). The formation of these artificial adherens junctions was shown to result from the two-dimensional (2D) self-assembly of cadherin fragments at membrane surfaces. The molecular architecture of the junctions was resolved by combining information from several cryo-EM views. This study concludes to the 2D ordered nature of the cadherin assembly and shows that the minimal information required to build up an adherens junction is contained within the extracellular moiety of cadherin molecules.  相似文献   

19.
The mammalian MAGI proteins play important roles in the maintenance of adherens and tight junctions. The MAGI family of proteins contains modular domains such as WW and PDZ domains necessary for scaffolding of membrane receptors and intracellular signaling components. Loss of MAGI leads to reduced junction stability while overexpression of MAGI can lead to increased adhesion and stabilization of epithelial morphology. However, how Magi regulates junction assembly in epithelia is largely unknown. We investigated the single Drosophila homologue of Magi to study the in vivo role of Magi in epithelial development. Magi is localized at the adherens junction and forms a complex with the polarity proteins, Par3/Bazooka and aPKC. We generated a Magi null mutant and found that Magi null mutants were viable with no detectable morphological defects even though the Magi protein is highly conserved with vertebrate Magi homologues. However, overexpression of Magi resulted in the displacement of Baz/Par3 and aPKC and lead to an increase in the level of PIP3. Interestingly, we found that Magi and Baz functioned in an antagonistic manner to regulate the localization of the apical polarity complex. Maintaining the balance between the level of Magi and Baz is an important determinant of the levels and localization of apical polarity complex.  相似文献   

20.
The establishment of tight junctions and cell polarity is an essential process in all epithelia. Endotubin is an integral membrane protein found in apical endosomes of developing epithelia when tight junctions and epithelial polarity first arise. We found that the disruption of endotubin function in cells in culture by siRNA or overexpression of the C‐terminal cytoplasmic domain of endotubin causes defects in organization and function of tight junctions. We observe defects in localization of tight junction proteins, reduced transepithelial resistance, increased lanthanum penetration between cells and reduced ability of cells to form cysts in three‐dimensional culture. In addition, in cells overexpressing the C‐terminal domain of endotubin, we observe a delay in re‐establishing the normal distribution of endosomes after calcium switch. These results suggest that endotubin regulates trafficking of polarity proteins and tight junction components out of the endosomal compartment, thereby providing a critical link between a resident protein of apical endosomes and tight junctions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号