首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Bcl-2 family members Bak and Bax constitute a mitochondrial gateway for multiple death pathways. Both proteins are also present in the endoplasmic reticulum where they control apoptosis through the regulation of calcium levels. We show here that reticular Bak has the additional capacity of modulating the structure of this organelle. Coexpression of Bak and Bcl-X(L) provokes extensive swelling and vacuolization of reticular cisternae. A Bak version lacking the BH3 domain suffices to induce this phenotype, and reticular targeting of this mutant retains the activity. Expression of upstream BH3-only activators in similar conditions recapitulates ER swelling and vacuolization if ryanodine receptor calcium channel activity is inhibited. Experiments with Bak and Bax-deficient mouse embryonic fibroblasts show that endogenous Bak mediates the effect, whereas Bax is mainly irrelevant. These results reveal a previously unidentified role of Bak in regulating reticular conformation. Because this activity is absent in Bax, it constitutes one of the first examples of functional divergence between the two multidomain homologues.  相似文献   

2.
Alterations in intracellular Ca(2+) homeostasis and cytochrome c release from mitochondria have been implicated in the regulation of apoptosis, but the relationship between these events remains unclear. Here we report that enforced expression of either Bax or Bak via adenoviral gene delivery results in the accumulation of the proteins in the endoplasmic reticulum (ER) and mitochondria, resulting in early caspase-independent BCL-2-sensitive release of the ER Ca(2+) pool and subsequent Ca(2+) accumulation in mitochondria. The inhibition of ER-to-mitochondrial Ca(2+) transport with a specific inhibitor of mitochondrial Ca(2+) uptake attenuates cytochrome c release and downstream biochemical events associated with apoptosis. Bax and Bak also directly sensitize mitochondria to cytochrome c release induced by immediate emptying of ER Ca(2+) pool. Our results demonstrate that the effects of the "multidomain" proapoptotic BCL-2 family members Bak and Bax involve direct effects on the endoplasmic reticular Ca(2+) pool with subsequent sensitization of mitochondria to calcium-mediated fluxes and cytochrome c release. These effects modulate the kinetics of cytochrome c release and apoptosis.  相似文献   

3.
The participation of the mitochondrial pathway in paclitaxel-induced apoptosis has been well documented. After addition of paclitaxel to U937 cells, however, we observed an early expression of five endoplasmic reticulum (ER) stress response genes that preceded the release of cytochrome c from the mitochondria and the cleavage of the caspases. Involvement of the ER was supported by the following evidence. Paclitaxel treatment not only activated calpain and caspase-4, but also induced a gradual increase in the cytosolic Ca(2+) concentration at 3-6 h. Paclitaxel-induced apoptosis can be inhibited by the calpain inhibitor calpeptin and IP(3) receptor inhibitors. Either buffering of the cytosolic Ca(2+) or inhibition of mitochondrial calcium uptake reduced BiP expression. These inhibitors also reduced mitochondrial apoptotic signals, such as mitochondrion membrane potential disruption, cytochrome c release and eventually reduced the death of U937 cells. Paclitaxel-induced Bax/Bak translocation to the ER and Bax dimerization on the ER membrane occurred within 3 h, which led to a Ca(2+) efflux into cytosol. Moreover, we found that cytochrome c translocated to the ER after releasing from mitochondria and then interacted with the IP(3) receptor at 12-15 h. This phenomenon has been known to amplify apoptotic signaling. Taken together, ER would seem to contribute to paclitaxel-induced apoptosis via both the early release of Ca(2+) and the late amplification of mitochondria-mediated apoptotic signals.  相似文献   

4.
Bcl-2 family members have been shown to be key mediators of apoptosis as either pro- or anti-apoptotic factors. It is thought that both classes of Bcl-2 family members act at the level of the mitochondria to regulate apoptosis, although the founding anti-apoptotic family member, Bcl-2 is localized to the endoplasmic reticulum (ER), mitochondrial, and nuclear membranes. In order to better understand the effect of Bcl-2 localization on its activity, we have utilized a Bcl-2 mutant that localizes only to the ER membrane, designated Bcl-2Cb5. Bcl-2Cb5 was expressed in MDA-MB-468 cells, which protected against apoptosis induced by the kinase inhibitor, staurosporine. Data presented here show that Bcl-2Cb5 inhibits this process by blocking Bax activation and cytochrome c release. Furthermore, we show that Bcl-2Cb5 can inhibit the activation of a constitutively mitochondrial mutant of Bax, indicating that an intermediate between Bcl-2 on the ER and Bax on the mitochondria must exist. We demonstrate that this intermediate is likely a BH3-only subfamily member. Data presented here show that Bcl-2Cb5 can sequester a constitutively active form of Bad (Bad3A) from the mitochondria and prevent it from activating Bax. These data suggest that Bcl-2 indirectly protects mitochondrial membranes from Bax, via BH3-only proteins.  相似文献   

5.
During apoptotic cell death, Bax and Bak change conformation and homo-oligomerize to permeabilize mitochondria. We recently reported that Bak homodimerizes via an interaction between the BH3 domain and hydrophobic surface groove, that this BH3:groove interaction is symmetric, and that symmetric dimers can be linked via the α6-helices to form the high order oligomers thought responsible for pore formation. We now show that Bax also dimerizes via a BH3:groove interaction after apoptotic signaling in cells and in mitochondrial fractions. BH3:groove dimers of Bax were symmetric as dimers but not higher order oligomers could be linked by cysteine residues placed in both the BH3 and groove. The BH3:groove interaction was evident in the majority of mitochondrial Bax after apoptotic signaling, and correlated strongly with cytochrome c release, supporting its central role in Bax function. A second interface between the Bax α6-helices was implicated by cysteine linkage studies, and could link dimers to higher order oligomers. We also found that a population of Bax:Bak heterodimers generated during apoptosis formed via a BH3:groove interaction, further demonstrating that Bax and Bak oligomerize via similar mechanisms. These findings highlight the importance of BH3:groove interactions in apoptosis regulation by the Bcl-2 protein family.  相似文献   

6.
The Bcl‐2 family proteins Bax and Bak are essential for the execution of many apoptotic programs. During apoptosis, Bax translocates to the mitochondria and mediates the permeabilization of the outer membrane, thereby facilitating the release of pro‐apoptotic proteins. Yet the mechanistic details of the Bax‐induced membrane permeabilization have so far remained elusive. Here, we demonstrate that activated Bax molecules, besides forming large and compact clusters, also assemble, potentially with other proteins including Bak, into ring‐like structures in the mitochondrial outer membrane. STED nanoscopy indicates that the area enclosed by a Bax ring is devoid of mitochondrial outer membrane proteins such as Tom20, Tom22, and Sam50. This strongly supports the view that the Bax rings surround an opening required for mitochondrial outer membrane permeabilization (MOMP). Even though these Bax assemblies may be necessary for MOMP, we demonstrate that at least in Drp1 knockdown cells, these assemblies are not sufficient for full cytochrome c release. Together, our super‐resolution data provide direct evidence in support of large Bax‐delineated pores in the mitochondrial outer membrane as being crucial for Bax‐mediated MOMP in cells.  相似文献   

7.
Procaspase-activating compound-1 (PAC-1) is the first direct caspase-activating compound discovered; using an in vitro cell-free system of caspase activation. Subsequently, this compound was shown to induce apoptosis in a variety of cancer cells with promising in vivo antitumor activity in canine lymphoma model. Recently, we have reported its ability to kill drug-resistant, Bcl-2/Bcl-xL overexpressing and Bax/Bak-deficient cells despite the essential requirement of mitochondrial cytochrome c (cyt. c) release for caspase activation, indicating that the key molecular targets of PAC-1 in cancer cells are yet to be identified. Here, we have identified Ero1α-dependent endoplasmic reticulum (ER) calcium leakage to mitochondria through mitochondria-associated ER membranes (MAM) and ER luminal hyper-oxidation as the critical events of PAC-1-mediated cell death. PAC-1 treatment upregulated Ero1α in multiple cell lines, whereas silencing of Ero1α significantly inhibited calcium release from ER and cell death. Loss of ER calcium and hyper-oxidation of ER lumen by Ero1α collectively triggered ER stress. Upregulation of GRP78 and splicing of X-box-binding protein 1 (XBP1) mRNA in multiple cancer cells suggested ER stress as the general event triggered by PAC-1. XBP1 mRNA splicing and GRP78 upregulation confirmed ER stress even in Bax/Bak double knockout and PAC-1-resistant Apaf-1-knockout cells, indicating an induction of ER stress-mediated mitochondrial apoptosis by PAC-1. Furthermore, we identified BH3-only protein p53 upregulated modulator of apoptosis (PUMA) as the key molecular link that orchestrates overwhelmed ER stress to mitochondria-mediated apoptosis, involving mitochondrial reactive oxygen species, in a p53-independent manner. Silencing of PUMA in cancer cells effectively reduced cyt. c release and cell death by PAC-1.  相似文献   

8.
Although murine embryonic fibroblasts (MEFs) with Bax or Bak deleted displayed no defect in apoptosis signaling, MEFs with Bax and Bak double knock-out (DKO) showed dramatic resistance to diverse apoptotic stimuli, suggesting that Bax and Bak are redundant but essential regulators for apoptosis signaling. Chelerythrine has recently been identified as a Bcl-xL inhibitor that is capable of triggering apoptosis via direct action on mitochondria. Here we report that in contrast to classic apoptotic stimuli, chelerythrine is fully competent in inducing apoptosis in the DKO MEFs. Wild-type and DKO MEFs are equally sensitive to chelerythrine-induced morphological and biochemical changes associated with apoptosis phenotype. Interestingly, chelerythrine-mediated release of cytochrome c is rapid and precedes Bax translocation and integration. Although the BH3 peptide of Bim is totally inactive in releasing cytochrome c from isolated mitochondria of DKO MEFs, chelerythrine maintains its potency and efficacy in inducing direct release of cytochrome c from these mitochondria. Furthermore, chelerythrine-mediated mitochondrial swelling and loss in mitochondrial membrane potential (DeltaPsi(m)) are inhibited by cyclosporine A, suggesting that mitochondrial permeability transition pore is involved in chelerythrine-induced apoptosis. Although certain apoptotic stimuli have been shown to elicit cytotoxic effect in the DKO MEFs through alternate death mechanisms, chelerythrine does not appear to engage necrotic or autophagic death mechanism to trigger cell death in the DKO MEFs. These results, thus, argue for the existence of an alternative Bax/Bak-independent apoptotic mechanism that involves cyclosporine A-sensitive mitochondrial membrane permeability.  相似文献   

9.
Herein, we investigated the protective effect of Salvia sahendica against H2O2-induced cell death in rat pheochromocytoma (PC12) cells. Our data show that S. sahendica blocks apoptosis pathway by inhibition of cytochrome c release from mitochondria and leakage of calcium from endoplasmic reticulum. It also activates/inactivates two members of Bcl-2 family, Bax and Bcl-2. Bax inhibition and Bcl-2 activation suppress release of cytochrome c from mitochondria that prevents cleavage of caspase-3. Besides S. sahendica suppresses ER stress via attenuation of intracellular levels of calcium. Suppression of ER stress decreased calpain activation and subsequently cleavage of caspase-12. Altogether, these results indicate that S. sahendica protects PC12 cells treated with H2O2 via suppression of upstream factors of apoptosis pathway. While oxidative stress is an early event in Alzheimer disease, it seems that S. sahendica prevents deleterious effects of reactive oxygen species by stabilizing mitochondrial membranes and inhibiting ER stress.  相似文献   

10.
The Bcl-2 family regulates apoptosis by controlling mitochondrial integrity. To clarify whether its prosurvival members function by sequestering their Bcl-2 homology 3 (BH3)-only ligands or their multidomain relatives Bak and Bax, we analyzed whether four prosurvival proteins differing in their ability to bind specific BH3 peptides or Bak could protect isolated mitochondria. Most BH3 peptides could induce temperature-dependent cytochrome c release, but permeabilization was prevented by Bcl-x(L), Bcl-w, Mcl-1, or BHRF1. However, their protection correlated with the ability to bind Bak rather than the added BH3 peptide and could be overcome only by BH3 peptides that bind directly to the appropriate prosurvival member. Mitochondria protected by both Bcl-x(L)-like and Mcl-1 proteins were disrupted only by BH3 peptides that engage both. BH3-only reagents freed Bak from Bcl-x(L) and Mcl-1 in mitochondrial and cell lysates. The findings support a model for the control of apoptosis in which certain prosurvival proteins sequester Bak/Bax, and BH3-only proteins must neutralize all protective prosurvival proteins to allow Bak/Bax to induce mitochondrial disruption.  相似文献   

11.

Background

The pro-apoptotic effector Bid induces mitochondrial apoptosis in synergy with Bax and Bak. In response to death receptors activation, Bid is cleaved by caspase-8 into its active form, tBid (truncated Bid), which then translocates to the mitochondria to trigger cytochrome c release and subsequent apoptosis. Accumulating evidence now indicate that the binding of tBid initiates an ordered sequences of events that prime mitochondria from the action of Bax and Bak: (1) tBid interacts with mitochondria via a specific binding to cardiolipin (CL) and immediately disturbs mitochondrial structure and function idependently of its BH3 domain; (2) Then, tBid activates through its BH3 domain Bax and/or Bak and induces their subsequent oligomerization in mitochondrial membranes. To date, the underlying mechanism responsible for targeting tBid to mitochondria and disrupting mitochondrial bioenergetics has yet be elucidated.

Principal Findings

The present study investigates the mechanism by which tBid interacts with mitochondria issued from mouse hepatocytes and perturbs mitochondrial function. We show here that the helix αH6 is responsible for targeting tBid to mitochondrial CL and disrupting mitochondrial bioenergetics. In particular, αH6 interacts with mitochondria through electrostatic interactions involving the lysines 157 and 158 and induces an inhibition of state-3 respiration and an uncoupling of state-4 respiration. These changes may represent a key event that primes mitochondria for the action of Bax and Bak. In addition, we also demonstrate that tBid required its helix αH6 to efficiently induce cytochrome c release and apoptosis.

Conclusions

Our findings provide new insights into the mechanism of action of tBid, and particularly emphasize the importance of the interaction of the helix αH6 with CL for both mitochondrial targeting and pro-apoptotic activity of tBid. These support the notion that tBid acts as a bifunctional molecule: first, it binds to mitochondrial CL via its helix αH6 and destabilizes mitochondrial structure and function, and then it promotes through its BH3 domain the activation and oligomerization of Bax and/or Bak, leading to cytochrome c release and execution of apoptosis. Our findings also imply an active role of the membrane in modulating the interactions between Bcl-2 proteins that has so far been underestimated.  相似文献   

12.
Apoptosis triggered by endoplasmic reticulum (ER) stress is associated with various pathophysiological conditions including neurodegenerative diseases and ischemia. However, the mechanism by which ER stress induces neuronal apoptosis remains controversial. Here we identify the pathway of apoptosis carried out in sympathetic neurons triggered to die by ER stress-inducing agent tunicamycin. We find that ER stress induces a neuronal apoptotic pathway which upregulates BH3-only genes DP5 and Puma. Importantly, we show that ER stress commits neurons to die before cytochrome c release and this commitment requires Bax activation and c-jun N-terminal kinase signaling. Furthermore, ER stress engages the mitochondrial pathway of death as neurons release cytochrome c and Apaf-1 deficiency is sufficient to block apoptosis. Our findings identify a critical function of Bax in committing neurons to ER stress-induced apoptosis and clarify the importance of the apoptosome as the non-redundant caspase activation pathway to execute neuronal apoptosis in response to ER stress.  相似文献   

13.

Background

One of two proapoptotic Bcl-2 proteins, Bak or Bax, is required to permeabilize the mitochondrial outer membrane during apoptosis. While Bax is mostly cytosolic and translocates to mitochondria following an apoptotic stimulus, Bak is constitutively integrated within the outer membrane. Membrane anchorage occurs via a C-terminal transmembrane domain that has been studied in Bax but not in Bak, therefore what governs their distinct subcellular distribution is uncertain. In addition, whether the distinct subcellular distributions of Bak and Bax contributes to their differential regulation during apoptosis remains unclear.

Methodology/Principal Findings

To gain insight into Bak and Bax targeting to mitochondria, elements of the Bak C-terminus were mutated, or swapped with those of Bax. Truncation of the C-terminal six residues (C-segment) or substitution of three basic residues within the C-segment destabilized Bak. Replacing the Bak C-segment with that from Bax rescued stability and function, but unexpectedly resulted in a semi-cytosolic protein, termed Bak/BaxCS. When in the cytosol, both Bax and Bak/BaxCS sequestered their hydrophobic transmembrane domains in their hydrophobic surface groove. Upon apoptotic signalling, Bak/BaxCS translocated to the mitochondrial outer membrane, inserted its transmembrane domain, oligomerized, and released cytochrome c. Despite this Bax-like subcellular distribution, Bak/BaxCS retained Bak-like regulation following targeting of Mcl-1.

Conclusions/Significance

Residues in the C-segment of Bak and of Bax contribute to their distinct subcellular localizations. That a semi-cytosolic form of Bak, Bak/BaxCS, could translocate to mitochondria and release cytochrome c indicates that Bak and Bax share a conserved mode of activation. In addition, the differential regulation of Bak and Bax by Mcl-1 is predominantly independent of the initial subcellular localizations of Bak and Bax.  相似文献   

14.
Bcl‐2 family proteins are critical for the regulation of apoptosis, with the pro‐apoptotic members Bax essential for the release of cytochrome c from mitochondria in many instances. However, we found that Bax was activated after mitochondrial depolarization and the completion of cytochrome c release induced by photodynamic therapy (PDT) with the photosensitizer Photofrin in human lung adenocarcinoma cells (ASTC‐a‐1). Besides, knockdown of Bax expression by gene silencing had no effect on mitochondrial depolarization and cytochrome c release, indicating that Bax makes no contribution to mitochondrial outer membrane permeabilization (MOMP) following PDT. Further study revealed that Bax knockdown only slowed down the speed of cell death induced by PDT, indicating that Bax is not essential for PDT‐induced apoptosis. The fact that Bax knockdown totally inhibited the mitochondrial accumulation of dynamin‐related protein (Drp1) and Drp1 knockdown attenuated cell apoptosis suggest that Bax can promote PDT‐induced apoptosis through promoting Drp1 activation. Besides, Drp1 knockdown also failed to inhibit PDT‐induced cell death finally, indicating that Bax‐mediated Drp1's mitochondrial translocation is not essential for PDT‐induced cell apoptosis. On the other hand, we found that protein kinase Cδ (PKCδ), Bim L and glycogen synthase kinase 3β (GSK3β) were activated upon PDT treatment and might contribute to the activation of Bax under the condition. Taken together, Bax activation is not essential for MOMP but essential for Drp1‐mediated mitochondrial fission during the apoptosis caused by Photofrin‐PDT. J. Cell. Physiol. 226: 530–541, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

15.
Neuronal Apoptosis: BH3-Only Proteins the Real Killers?   总被引:2,自引:0,他引:2  
At present there is a poor understanding of the events that lead up to neuronal apoptosis that occurs in neurodegenerative diseases and following acute ischemic episodes. Apoptosis is critical for the elimination of unwanted neurons within the developing nervous system. The Bcl-2 family of proteins contains pro- and anti-apoptotic proteins that regulate the mitochondrial pathway of apoptosis. There is increasing interest in a subfamily of the Bcl-2 family, the BH3-only proteins, and their pro-apoptotic effects within neurons. Recently ischemic and seizure-induced neuronal injury has been shown to result in the activation of the BH3-only protein, Bid. This protein is cleaved and the truncated protein (tBid) translocates to the mitochondria. The translocation of tBid to the mitochondria is associated with the activation of outer mitochondrial membrane proteins Bax/Bak and the release of cytochrome C from the mitochondria. ER stress also has been implicated as a factor for the induction of apoptosis in ischemic neuronal injury. The induction of ER stress in hippocampal neurons has been shown to activate expression of bb3/PUMA, a member of the BH3-only gene family. Activation of PUMA is associated with the activation and clustering of the pro-apoptotic Bcl-2 family member Bax and the loss of cytochrome C from the mitochondria.  相似文献   

16.
Efficient apoptosis requires Bax/Bak-mediated mitochondrial outer membrane permeabilization (MOMP), which releases death-promoting proteins cytochrome c and Smac to the cytosol, which activate apoptosis and inhibit X-linked inhibitor of apoptosis protein (XIAP) suppression of executioner caspases, respectively. We recently identified that in response to Bcl-2 homology domain 3 (BH3)-only proteins and mitochondrial depolarization, XIAP can permeabilize and enter mitochondria. Consequently, XIAP E3 ligase activity recruits endolysosomes into mitochondria, resulting in Smac degradation. Here, we explored mitochondrial XIAP action within the intrinsic apoptosis signaling pathway. Mechanistically, we demonstrate that mitochondrial XIAP entry requires Bax or Bak and is antagonized by pro-survival Bcl-2 proteins. Moreover, intramitochondrial Smac degradation by XIAP occurs independently of Drp1-regulated cytochrome c release. Importantly, mitochondrial XIAP actions are activated cell-intrinsically by typical apoptosis inducers TNF and staurosporine, and XIAP overexpression reduces the lag time between the administration of an apoptotic stimuli and the onset of mitochondrial permeabilization. To elucidate the role of mitochondrial XIAP action during apoptosis, we integrated our findings within a mathematical model of intrinsic apoptosis signaling. Simulations suggest that moderate increases of XIAP, combined with mitochondrial XIAP preconditioning, would reduce MOMP signaling. To test this scenario, we pre-activated XIAP at mitochondria via mitochondrial depolarization or by artificially targeting XIAP to the intermembrane space. Both approaches resulted in suppression of TNF-mediated caspase activation. Taken together, we propose that XIAP enters mitochondria through a novel mode of mitochondrial permeabilization and through Smac degradation can compete with canonical MOMP to act as an anti-apoptotic tuning mechanism, reducing the mitochondrial contribution to the cellular apoptosis capacity.  相似文献   

17.
Bax is a key regulator of apoptosis that, under cell stress, accumulates at mitochondria, where it oligomerizes to mediate the permeabilization of the mitochondrial outer membrane leading to cytochrome c release and cell death. However, the underlying mechanism behind Bax function remains poorly understood. Here, we studied the spatial organization of Bax in apoptotic cells using dual‐color single‐molecule localization‐based super‐resolution microscopy. We show that active Bax clustered into a broad distribution of distinct architectures, including full rings, as well as linear and arc‐shaped oligomeric assemblies that localized in discrete foci along mitochondria. Remarkably, both rings and arcs assemblies of Bax perforated the membrane, as revealed by atomic force microscopy in lipid bilayers. Our data identify the supramolecular organization of Bax during apoptosis and support a molecular mechanism in which Bax fully or partially delineates pores of different sizes to permeabilize the mitochondrial outer membrane.  相似文献   

18.
14-3-3 Interacts directly with and negatively regulates pro-apoptotic Bax   总被引:19,自引:0,他引:19  
The Bcl-2 family of proteins comprises well characterized regulators of apoptosis, consisting of anti-apoptotic members and pro-apoptotic members. Pro-apoptotic members possessing BH1, BH2, and BH3 domains (such as Bax and Bak) act as a gateway for a variety of apoptotic signals. Bax is normally localized to the cytoplasm in an inactive form. In response to apoptotic stimuli, Bax translocates to the mitochondria and undergoes oligomerization to induce the release of apoptogenic factors such as cytochrome c, but it is still largely unknown how the mitochondrial translocation and pro-apoptotic activity of Bax is regulated. Here we report that cytoplasmic protein 14-3-3 theta binds to Bax and, upon apoptotic stimulation, releases Bax by a caspase-independent mechanism, as well as through direct cleavage of 14-3-3 theta by caspases. Unlike Bad, the interaction with 14-3-3 theta is not dependent on the phosphorylation of Bax. In isolated mitochondria, we found that 14-3-3 theta inhibited the integration of Bax and Bax-induced cytochrome c release. Bax-induced apoptosis was inhibited by overexpression of either 14-3-3 theta or its mutant (which lacked the ability to bind to various phosphorylated targets but still bound to Bax), whereas overexpression of 14-3-3 theta was unable to inhibit apoptosis induced by a Bax mutant that did not bind to 14-3-3 theta. These findings indicate that 14-3-3 theta plays a crucial role in negatively regulating the activity of Bax.  相似文献   

19.
Vaccinia virus, the prototypic member of the orthopoxvirus genus, encodes the mitochondrial-localized protein F1L that functions to protect cells from apoptotic death and inhibits cytochrome c release. We previously showed that F1L interacts with the pro-apoptotic Bcl-2 family member Bak and inhibits activation of Bak following an apoptotic stimulus (Wasilenko, S. T., Banadyga, L., Bond, D., and Barry, M. (2005) J. Virol. 79, 14031-14043). In addition to Bak, the pro-apoptotic protein Bax is also capable of initiating cytochrome c release suggesting that vaccinia virus infection could also inhibit Bax activity. Here we show that F1L inhibits the activity of the pro-apoptotic protein Bax by inhibiting oligomerization and N-terminal activation of Bax. F1L expression also inhibited the subcellular redistribution of Bax to the mitochondria and the insertion of Bax into the outer mitochondrial membrane. The ability of F1L to inhibit Bax activation does not require Bak, because F1L expression inhibited cytochrome c release and Bax activation in Bak-deficient cells. No interaction between Bax and F1L was detected during infection, suggesting that F1L functions upstream of Bax activation. Notably, F1L was capable of interacting with the BH3-only protein BimL as shown by co-immunoprecipitation, and F1L expression inhibited apoptosis induced by BimL. These studies suggest that, in addition to interacting with the pro-apoptotic protein Bak, F1L also functions to indirectly inhibit the activation of Bax, likely by interfering with the pro-apoptotic activity of BH3-only proteins such as BimL.  相似文献   

20.
The cross-talk between endoplasmic reticulum (ER) and mitochondria was investigated during apoptosis in a breast cancer cell line (MCF-7) in culture. The effect of camptothecin, an inducer of apoptosis and a specific inhibitor of topoisomerase I, was investigated by morphological, immunocytochemical and histochemical techniques for electron microscopy. Our ultrastructural morphological data demonstrate alterations in ER configuration and communication with neighbouring mitochondria early after stimulation by camptothecin. Immunoelectron studies have demonstrated that Bax and Bid translocate from cytoplasm to mitochondria where they initiate mitochondrial dysfunction and cytochrome c release. Bax and Bid were also localized in ER and nuclear envelope. Since ER and mitochondria function as intracellular Ca2+ storage, we hypothesize that Bax and Bid are involved in the emptying of ER Ca2+ pool, triggers secondary changes in mitochondrial Ca2+ levels that contribute to cytochrome c release and cell death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号