首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Mammalian WNT genes encode secreted glycoproteins that are conserved homologues of the Drosophila Wingless gene, which plays a crucial role in Drosophila development. Recently, WNT pathway signaling has been implicated in ovarian development, oogenesis, and early development. We sought to evaluate whether these genes may contribute to the formation of healthy human oocytes or embryos, and whether the expression of these genes could provide informative markers of human oocyte and embryo quality. To do this, we employed the primate embryo gene expression resource (PREGER; www.preger.org) to examine expression of mRNAs encoding 38 components of the WNT signaling pathway in rhesus monkey oocytes and embryos as a nonhuman primate model. We observed considerable conservation between rhesus monkey and mouse of expression of WNT, FZD, and effector gene mRNAs, and a generalized downregulation of genes encoding key components of the WNT signaling pathway during preimplantation development. Our results support a role for WNT signaling during oocyte growth or maturation, but not during preimplantation development. Additionally, we observed differences between in vitro cultured and in vivo developing blastocysts, indicating possible effects of culture on WNT signaling during the peri-implantation period.  相似文献   

4.
瘦蛋白(leptin)通过结合瘦蛋白受体,启动信号转导,发挥控制摄食和调节能量代谢等重要神经内分泌调节功能。肥胖症患者血浆瘦蛋白水平普遍升高,存在瘦蛋白抵抗,瘦蛋白抵抗是导致肥胖症的关键因素。本文综述了瘦蛋白信号转导作用及瘦蛋白抵抗可能的机制。  相似文献   

5.
《Developmental cell》2021,56(15):2145-2159.e7
  1. Download : Download high-res image (124KB)
  2. Download : Download full-size image
  相似文献   

6.
The abi1-1 mutation blocks ABA signaling downstream of cADPR action   总被引:1,自引:0,他引:1  
Arabidopsis thaliana abscisic acid insensitive 1-1 (abi1-1) is a dominant mutant that is insensitive to the inhibition of germination and growth by the plant hormone, abscisic acid (ABA). The mutation severely decreases the catalytic activity of the ABI1 type 2C protein phosphatase (PP2C). However, the site of action of the abi1-1/ABI1 in the ABA signal transduction pathway has not yet been determined. Using single cell assays, we showed that microinjecting mutant abi1-1 protein inhibited the activation of RD29A-GUS and KIN2-GUS in response to ABA, cyclic ADP-ribose (cADPR), and Ca2+. The inhibitory effect of the mutant protein, however, was reversed by co-microinjection of an excess amount of the ABI1 protein. In transgenic Arabidopsis plants, overexpression of abi1-1 rendered the plants insensitive to ABA during germination, whereas overexpression of ABI1 did not have any apparent effect. Moreover, transgenic plants overexpressing abi1-1 were blocked in the induction of ABA-responsive genes; however, overexpression of ABI1 did not affect gene expression. Taken together, our results demonstrate that abi1-1 is likely to be a dominant negative mutation and ABI1 likely acts downstream of cADPR in the ABA-signaling pathway. Our results on ABI1 overexpression in Arabidopsis are not compatible with a negative regulatory role of this phosphatase in ABA responses.  相似文献   

7.
8.
Rcs双组分调节系统对细菌环境应答的分子调控研究进展   总被引:1,自引:0,他引:1  
荚膜异多糖酸合成调节(Regulator of Capsule Synthesis,Rcs)系统是存在于许多肠杆菌科细菌中非典型的双组分调节系统,由3种核心蛋白(跨膜感应激酶RcsC、跨膜蛋白RcsD和响应调节剂RcsB)及多种辅助蛋白共同构成.Rcs系统能整合环境信号、调节基因表达并改变细菌的生理行为.近年来,对细菌...  相似文献   

9.
周萍萍  王涛  孙元  仇华吉 《微生物学报》2021,61(7):1882-1895
免疫系统识别病原微生物的主要机制之一是识别其核酸。环磷酸鸟苷-腺苷合成酶(cGAS)是一种胞质DNA感受器,感知病原DNA后激活cGAS-STING通路。该通路不仅介导天然免疫应答以抵抗多种含DNA的病原微生物感染,还能感知肿瘤来源的DNA而产生抗肿瘤免疫应答。然而,自体DNA对cGAS-STING通路的异常激活也会导致自身免疫性和炎症性疾病。本文综述了cGAS-STING信号通路及其在抗病毒天然免疫中的调控作用与功能,阐述了cGAS-STING通路在抗病毒感染和疾病中发挥的作用。  相似文献   

10.
11.
Large‐scale protein signalling networks are useful for exploring complex biochemical pathways but do not reveal how pathways respond to specific stimuli. Such specificity is critical for understanding disease and designing drugs. Here we describe a computational approach—implemented in the free CNO software—for turning signalling networks into logical models and calibrating the models against experimental data. When a literature‐derived network of 82 proteins covering the immediate‐early responses of human cells to seven cytokines was modelled, we found that training against experimental data dramatically increased predictive power, despite the crudeness of Boolean approximations, while significantly reducing the number of interactions. Thus, many interactions in literature‐derived networks do not appear to be functional in the liver cells from which we collected our data. At the same time, CNO identified several new interactions that improved the match of model to data. Although missing from the starting network, these interactions have literature support. Our approach, therefore, represents a means to generate predictive, cell‐type‐specific models of mammalian signalling from generic protein signalling networks.  相似文献   

12.
The receptor tyrosine kinase (RTK) signaling network plays a central role in regulating cellular differentiation, proliferation, and survival in all metazoan animals. Excessive or continuous activation of the RTK pathway has been linked to carcinogenesis in mammals, underscoring the importance of preventing uncontrolled signaling. This review will focus on the inhibitory mechanisms that keep RTK-mediated signals in check, with emphasis on conserved principles discerned from studies using Drosophila as a model system. Two general strategies of inhibition will be discussed. The first, threshold regulation, postulates that an effective way of antagonizing RTK signaling is to erect and maintain high threshold barriers that prevent inappropriate responses to moderate signaling levels. Activation of the pathway above this level overcomes the inhibitory blocks and shifts the balance to allow a positive flow of inductive information. A second layer of negative regulation involving induction of negative feedback loops that limit the extent, strength, or duration of the signal prevents runaway signaling in response to the high levels of activation required to surmount the threshold barriers. Such autoinhibitory mechanisms attenuate signaling at critical points throughout the network, from the receptor to the downstream effectors.  相似文献   

13.
14.
In the present study the hypothesis that the ?433 to ?664 bp negative regulatory region (NRR) of the Brassica napus extA extensin promoter controls extA activation in response to externally applied weight loads was tested. When weight loads were applied to the nodal regions of transgenic tobacco plants containing extA promoter deletions fused to GUS, repression controlled by the NRR was overcome and GUS expression was induced only in the transgenics carrying the NRR. This proves that extensin expression in nodal regions is not developmentally controlled, but is induced in response to mechanical stresses, and is controlled by the NRR. It was also shown that the activation of the extA promoter during the development of lateral roots is a stress‐related response that is also under the control of the NRR but that the constitutive expression of extensin mRNA in the phloem of roots is not due to the mechanical forces the root experiences as it forces it way through the soil. Electrophoretic mobility shift assays using a 25 bp oligonucleotide have been used to show that an 8 bp consensus sequence from the NRR binds nuclear proteins. Wound‐induced signals regulating extensin gene expression are shown to travel bi‐directionally through the plant, from root to leaf and vice versa.  相似文献   

15.
Insulin stimulation of adipocytes resulted in the recruitment of atypical PKC (PKCzeta/lambda) to plasma membrane lipid raft microdomains. This redistribution of PKCzeta/lambda was prevented by Clostridium difficile toxin B and by cholesterol depletion, but was unaffected by inhibition of phosphatidylinositol (PI) 3-kinase activity. Expression of the constitutively active GTP-bound form of TC10 (TC10Q/75L), but not the inactive GDP-bound mutant (TC10/T31N), targeted PKCzeta/lambda to the plasma membrane through an indirect association with the Par6-Par3 protein complex. In parallel, insulin stimulation as well as TC10/Q75L resulted in the activation loop phosphorylation of PKCzeta. Although PI 3-kinase activation also resulted in PKCzeta/lambda phosphorylation, it was not recruited to the plasma membrane. Furthermore, insulin-induced GSK-3beta phosphorylation was mediated by both PI 3-kinase-PKB and the TC10-Par6-atypical PKC signaling pathways. Together, these data demonstrate that PKCzeta/lambda can serve as a convergent downstream target for both the PI 3-kinase and TC10 signaling pathways, but only the TC10 pathway induces a spatially restricted targeting to the plasma membrane.  相似文献   

16.
GPR17 is a G-protein-coupled receptor (GPCR) implicated in the regulation of glucose metabolism and energy homeostasis. Such evidence is primarily drawn from mouse knockout studies and suggests GPR17 as a potential novel therapeutic target for the treatment of metabolic diseases. However, links between human GPR17 genetic variants, downstream cellular signaling, and metabolic diseases have yet to be reported. Here, we analyzed GPR17 coding sequences from control and disease cohorts consisting of individuals with adverse clinical metabolic deficits including severe insulin resistance, hypercholesterolemia, and obesity. We identified 18 nonsynonymous GPR17 variants, including eight variants that were exclusive to the disease cohort. We characterized the protein expression levels, membrane localization, and downstream signaling profiles of nine GPR17 variants (F43L, V96M, V103M, D105N, A131T, G136S, R248Q, R301H, and G354V). These nine GPR17 variants had similar protein expression and subcellular localization as wild-type GPR17; however, they showed diverse downstream signaling profiles. GPR17-G136S lost the capacity for agonist-mediated cAMP, Ca2+, and β-arrestin signaling. GPR17-V96M retained cAMP inhibition similar to GPR17-WT, but showed impaired Ca2+ and β-arrestin signaling. GPR17-D105N displayed impaired cAMP and Ca2+ signaling, but unaffected agonist-stimulated β-arrestin recruitment. The identification and functional profiling of naturally occurring human GPR17 variants from individuals with metabolic diseases revealed receptor variants with diverse signaling profiles, including differential signaling perturbations that resulted in GPCR signaling bias. Our findings provide a framework for structure–function relationship studies of GPR17 signaling and metabolic disease.  相似文献   

17.
Proline‐rich tyrosine kinase 2 (Pyk2) is a member of focal adhesion kinase (FAK) non‐receptor tyrosine kinase family and has been found to promote cancer cell survival, proliferation, migration, invasion, and metastasis. Pyk2 takes part in different carcinogenic signaling pathways to promote cancer progression, including epidermal growth factor receptor (EGFR) signaling pathway. EGFR signaling pathway is a traditional carcinogenic signaling pathway, which plays a critical role in tumorigenesis and tumor progression. FAK inhibitors have been reported to fail to get the ideal anti‐cancer outcomes because of activation of EGFR signaling pathway. Better understanding of Pyk2 downstream targets and interconnectivity between Pyk2 and carcinogenic EGFR signaling pathway will help finding more effective targets for clinical anti‐cancer combination therapies. Thus, the interconnectivity between Pyk2 and EGFR signaling pathway, which regulates tumor development and metastasis, needs to be elucidated. In this review, we summarized the downstream targets of Pyk2 in cancers, focused on the connection between Pyk2 and EGFR signaling pathway in different cancer types, and provided a new overview of the roles of Pyk2 in EGFR signaling pathway and cancer development.  相似文献   

18.
Fox (Forkhead box)蛋白家族有19个亚族, 它们通过结合DNA, 激活或抑制目的基因的转录活性, 同时还能参与细胞信号转导、 细胞周期调控和新陈代谢的调节, 在生物体发育及其成熟的组织器官中均能发挥重要作用, 目前, 有关Fox蛋白家族的功能及分子机制已逐步成为免疫学、 遗传学、 医学以及肿瘤学领域的研究热点。本文综述了Fox家族成员的命名及分类、 蛋白结构及其DNA识别机制以及该家族成员如何参与Hh, TGF-β/SMAD, MAPK, Wnt/β-catenin和IGF信号通路的调控。Fox家族可调控线虫的咽、 果蝇的唾液腺以及哺乳动物的肝脏和眼睛等器官的发育, 能够影响细胞周期, 其家族成员FoxA可以和CREB、 GR结合调控新陈代谢。不同物种的Fox家族成员个数存在差异, 并且受到严格的进化选择。对其功能和分子进化机制进一步研究可为阐明生物的发育机理和人类疾病的防治提供新的思路。  相似文献   

19.
20.
宋娟  楚雍烈 《生命科学》2012,(5):463-469
金黄色葡萄球菌是人类的一种重要病原菌,可以引起许多临床表现不同的感染性疾病。它所致感染的多样性和严重度取决于不同毒力因子的协同表达,而这些数量众多的毒力因子的表达会受到不同调节系统的控制,同时这些调节系统之间也存在着复杂的相互作用关系。这些基因调节系统主要有两大类:一类是双组分信号转导系统(如Agr、SaeRS、SrrAB、ArlSR、LytRS、WalKR);另一类是转录因子f如Sar、Rot、MgrA、SigmaB)。它们的协同作用有助于金黄色葡萄球菌对外界环境信号做出反应,调节致病过程中毒力因子在不同情况下的表达。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号