首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To understand the terminal effect of chiral residue for determining a helical screw sense, we adopted five kinds of peptides IV containing N‐ and/or C‐terminal chiral Leu residue(s): Boc–L ‐Leu–(Aib–ΔPhe)2–Aib–OMe ( I ), Boc–(Aib–ΔPhe)2–L ‐Leu–OMe ( II ), Boc–L ‐Leu–(Aib–ΔPhe)2–L ‐Leu–OMe ( III ), Boc–D ‐Leu–(Aib–ΔPhe)2–L ‐Leu–OMe ( IV ), and Boc–D ‐Leu–(Aib–ΔPhe)2–Aib–OMe ( V ). The segment –(Aib–ΔPhe)2– was used for a backbone composed of two “enantiomeric” (left‐/right‐handed) helices. Actually, this could be confirmed by 1H‐nmr [nuclear Overhauser effect (NOE) and solvent accessibility of NH resonances] and CD spectroscopy on Boc–(Aib–ΔPhe)2–Aib–OMe, which took a left‐/right‐handed 310‐helix. Peptides IV were also found to take 310‐type helical conformations in CDCl3, from difference NOE measurement and solvent accessibility of NH resonances. Chloroform, acetonitrile, methanol, and tetrahydrofuran were used for CD measurement. The CD spectra of peptides IIII in all solvents showed marked exciton couplets with a positive peak at longer wavelengths, indicating that their main chains prefer a left‐handed screw sense over a right‐handed one. Peptide V in all solvents showed exciton couplets with a negative peak at longer wavelengths, indicating it prefers a right‐handed screw sense. Peptide IV in chloroform showed a nonsplit type CD pattern having only a small negative signal around 280 nm, meaning that left‐ and right‐handed helices should exist with almost the same content. In the other solvents, peptide IV showed exciton couplets with a negative peak at longer wavelengths, corresponding to a right‐handed screw sense. From conformational energy calculation and the above 1H‐nmr studies, an N‐ or C‐terminal L ‐Leu residue in the lowest energy left‐handed 310‐helical conformation was found to take an irregular conformation that deviates from a left‐handed helix. The positional effect of the L ‐residue on helical screw sense was discussed based on CD data of peptides IV and of Boc–(L ‐Leu–ΔPhe)n–L ‐Leu–OMe (n = 2 and 3). © 1999 John Wiley & Sons, Inc. Biopoly 49: 551–564, 1999  相似文献   

2.
One chiral L ‐valine (L ‐Val) was inserted into the C‐terminal position of achiral peptide segments constructed from α‐aminoisobutyric acid (Aib) and α,β‐dehydrophenylalanine (ΔZPhe) residues. The IR, 1H NMR and CD spectra indicated that the dominant conformations of the pentapeptide Boc‐Aib‐ΔPhe‐(Aib)2‐L ‐Val‐NH‐Bn (3) and the hexapeptide Boc‐Aib‐ΔPhe‐(Aib)3‐L ‐Val‐NH‐Bn (4) in solution were both right‐handed (P) 310‐helical structures. X‐ray crystallographic analyses of 3 and 4 revealed that only a right‐handed (P) 310‐helical structure was present in their crystalline states. The conformation of 4 was also studied by molecular‐mechanics calculations. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

3.
A pair of l ‐leucine (l ‐Leu) and d ‐leucine (d ‐Leu) was incorporated into α‐aminoisobutyric acid (Aib) peptide segments. The dominant conformations of four hexapeptides, Boc‐l ‐Leu‐Aib‐Aib‐Aib‐Aib‐l ‐Leu‐OMe (1a), Boc‐d ‐Leu‐Aib‐Aib‐Aib‐Aib‐l ‐Leu‐OMe (1b), Boc‐Aib‐Aib‐l ‐Leu‐l ‐Leu‐Aib‐Aib‐OMe (2a), and Boc‐Aib‐Aib‐d ‐Leu‐l ‐Leu‐Aib‐Aib‐OMe (2b), were investigated by IR, 1H NMR, CD spectra, and X‐ray crystallographic analysis. All peptides 1a,b and 2a,b formed 310‐helical structures in solution. X‐ray crystallographic analysis revealed that right‐handed (P) 310‐helices were present in 1a and 1b and a mixture of right‐handed (P) and left‐handed (M) 310‐helices was present in 2b in their crystalline states. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

4.
A single chiral cyclic α,α‐disubstituted amino acid, (3S,4S)‐1‐amino‐(3,4‐dimethoxy)cyclopentanecarboxylic acid [(S,S)‐Ac5cdOM], was placed at the N‐terminal or C‐terminal positions of achiral α‐aminoisobutyric acid (Aib) peptide segments. The IR and 1H NMR spectra indicated that the dominant conformations of two peptides Cbz‐[(S,S)‐Ac5cdOM]‐(Aib)4‐OEt ( 1) and Cbz‐(Aib)4‐[(S,S)‐Ac5cdOM]‐OMe (2) in solution were helical structures. X‐ray crystallographic analysis of 1 and 2 revealed that a left‐handed (M) 310‐helical structure was present in 1 and that a right‐handed (P) 310‐helical structure was present in 2 in their crystalline states. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

5.
Protein folding problem remains a formidable challenge as main chain, side chain and solvent interactions remain entangled and have been difficult to resolve. Alanine‐based short peptides are promising models to dissect protein folding initiation and propagation structurally as well as energetically. The effect of N‐terminal diproline and charged side chains is assessed on the stabilization of helical conformation in alanine‐based short peptides using circular dichroism (CD) with water and methanol as solvent. A1 (Ac–Pro–Pro–Ala–Lys–Ala–Lys–Ala–Lys–Ala–NH2) is designed to assess the effect of N‐terminal homochiral diproline and lysine side chains to induce helical conformation. A2 (Ac–Pro–Pro–Glu–Glu–Ala–Ala–Lys–Lys–Ala–NH2) and A3 (Ac–d Pro–Pro–Glu–Glu–Ala–Ala–Lys–Lys–Ala–NH2) with N‐terminal homochiral and heterochiral diproline, respectively, are designed to assess the effect of Glu...Lys (i , i  + 4) salt bridge interactions on the stabilization of helical conformation. The CD spectra of A1 , A2 and A3 in water manifest different amplitudes of the observed polyproline II (PPII) signals, which indicate different conformational distributions of the polypeptide structure. The strong effect of solvent substitution from water to methanol is observed for the peptides, and CD spectra in methanol evidence A2 and A3 as helical folds. Temperature‐dependent CD spectra of A1 and A2 in water depict an isodichroic point reflecting coexistence of two conformations, PPII and β‐strand conformation, which is consistent with the previous studies. The results illuminate the effect of N‐terminal diproline and charged side chains in dictating the preferences for extended‐β, semi‐extended PPII and helical conformation in alanine‐based short peptides. The results of the present study will enhance our understanding on stabilization of helical conformation in short peptides and hence aid in the design of novel peptides with helical structures. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

6.
The synthetic peptide Z‐(Aib)10‐OH was crystallized from hot methanol by slow evaporation. The crystal used for data collection reflected synchrotron radiation to sub‐atomic resolution, where the bonding electron density becomes visible between the non‐hydrogen atoms. Crystals belong to the centrosymmetric space group P . Both molecules in the asymmetric unit form regular 310‐helices. All residues in each molecule possess the same handedness, which is in contrast to all other crystal structure determined to date of longer Aib‐homopeptides. These other peptides are C‐terminal protected by OtBu or OMe. In these cases, because of the missing ability of the C‐terminal protection group to form a hydrogen bond to the residue i‐3, the sense of the helix is reversed in the last residue. Here, the C‐terminal OH‐groups form hydrogen bonds to the residues i‐3, in part mediated by water molecules. This makes Z‐(Aib)10‐OH an Aib‐homopeptide with three complete 310‐helical turns in spite of the shorter length it has compared with Z‐(Aib)11‐OtBu, the only homopeptide to date with three complete turns.  相似文献   

7.
The crystal structure of Ton1535, a hypothetical protein from Thermococcus onnurineus NA1, was determined at 2.3 Å resolution. With two antiparallel α‐helices in a helix‐turn‐helix motif as a repeating unit, Ton1535 consists of right‐handed coiled N‐ and C‐terminal regions that are stacked together using helix bundles containing a left‐handed helical turn. One left‐handed helical turn in the right‐handed coiled structure produces two unique structural properties. One is the presence of separated concave grooves rather than one continuous concave groove, and the other is the contribution of α‐helices on the convex surfaces of the N‐terminal region to the extended surface of the concave groove of the C‐terminal region and vice versa. Proteins 2014; 82:1072–1078. © 2013 Wiley Periodicals, Inc.  相似文献   

8.
The synthetic peptide Z‐Gly‐Aib‐Gly‐Aib‐OtBu was dissolved in methanol and crystallized in a mixture of ethyl acetate and petroleum ether. The crystals belong to the centrosymmetric space group P4/n that is observed less than 0.3% in the Cambridge Structural Database. The first Gly residue assumes a semi‐extended conformation (φ ±62°, ψ ?131°). The right‐handed peptide folds in two consecutive β‐turns of type II' and type I or an incipient 310‐helix, and the left‐handed counterpart folds accordingly in the opposite configuration. In the crystal lattice, one molecule is linked to four neighbors in the ab‐plane via hydrogen bonds. These bonds form a continuous network of left‐ and right‐handed molecules. The successive ab‐planes stack via apolar contacts in the c‐direction. An ethyl acetate molecule is situated on and close to the fourfold axis. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

9.
Four diastereomeric‐Leu‐Leu‐Aib‐Leu‐Leu‐Aib‐peptides, Boc‐D ‐Leu‐L ‐Leu‐Aib‐L ‐Leu‐L ‐Leu‐Aib‐OMe (1), Boc‐L ‐Leu‐D ‐Leu‐Aib‐L ‐Leu‐L ‐Leu‐Aib‐OMe (2), Boc‐L ‐Leu‐L ‐Leu‐Aib‐D ‐Leu‐L ‐Leu‐Aib‐OMe (3), and Boc‐L ‐Leu‐L ‐Leu‐Aib‐L ‐Leu‐D ‐Leu‐Aib‐OMe (4), were synthesized. The crystals of the four hexapeptides were characterized by X‐ray crystallographic analysis. Two diastereomeric hexapeptides 1 and 2 having D ‐Leu(1) or D ‐Leu(2) were folded into right‐handed (P) 3 10 ‐helical structures, while peptide 3 having D ‐Leu(4) was folded into a turn structure nucleated by type III′ and I$' \bf{\beta}$ ‐turns, and peptide 4 having D ‐Leu(5) was folded into a left‐handed (M) 3 10 ‐helical structure. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

10.
Nucleic acid recognition is often mediated by α‐helices or disordered regions that fold into α‐helix on binding. A peptide bearing the DNA recognition helix of HPV16 E2 displays type II polyproline (PII) structure as judged by pH, temperature, and solvent effects on the CD spectra. NMR experiments indicate that the canonical α‐helix is stabilized at the N‐terminus, while the PII forms at the C‐terminus half of the peptide. Re‐examination of the dihedral angles of the DNA binding helix in the crystal structure and analysis of the NMR chemical shift indexes confirm that the N‐terminus half is a canonical α‐helix, while the C‐terminal half adopts a 310 helix structure. These regions precisely match two locally driven folding nucleii, which partake in the native hydrophobic core and modulate a conformational switch in the DNA binding helix. The peptide shows only weak and unspecific residual DNA binding, 104‐fold lower affinity, and 500‐fold lower discrimination capacity compared with the domain. Thus, the precise side chain conformation required for modulated and tight physiological binding by HPV E2 is largely determined by the noncanonical strained α‐helix conformation, “presented” by this unique architecture. © 2009 Wiley Periodicals, Inc. Biopolymers 91: 432–443, 2009. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

11.
The conformational preferences of helix foldamers having different sizes of the H‐bonded pseudocycles have been studied for di‐ to octa‐γ2,3‐peptides based on 2‐(aminomethyl)cyclohexanecarboxylic acid (γAmc6) with a cyclohexyl constraint on the Cα–Cβ bond using density functional methods. The helical structures of the γAmc6 oligopeptides with homochiral configurations are known to be much stable than those with heterochiral configurations in the gas phase and in solution (chloroform and water). In particular, it is found that the (P/M)?2.514‐helices are most preferred in the gas phase and in chloroform, whereas the (P/M)?2.312‐helices become most populated in water due to the larger helix dipole moments. As the peptide sequence becomes longer, the helix propensities of 14‐ and 12‐helices are found to increase both in the gas phase and in solution. The γAmc6 peptides longer than octapeptide are expected to exist as a mixture of 12‐ and 14‐helices with the similar populations in water. The mean backbone torsion angles and helical parameters of the 14‐helix foldamers of γAmc6 oligopeptides are quite similar to those of 2‐aminocyclohexylacetic acid oligopeptides and γ2,3,4‐aminobutyric acid tetrapeptide in the solid state, despite the different substituents on the backbone. © 2013 Wiley Periodicals, Inc. Biopolymers 101: 87–95, 2014.  相似文献   

12.
Clostridium histolyticum collagenase causes extensive degradation of collagen in connective tissue that results in gas gangrene. The C‐terminal collagen‐binding domain (CBD) of these enzymes is the minimal segment required to bind to a collagen fibril. CBD binds unidirectionally to the undertwisted C‐terminus of triple helical collagen. Here, we examine whether CBD could also target undertwisted regions even in the middle of the triple helix. Collageneous peptides with an additional undertwisted region were synthesized by introducing a Gly → Ala substitution [(POG)xPOA(POG)y]3, where x + y = 9 and x > 3). 1H–15N heteronuclear single quantum coherence nuclear magnetic resonance (HSQC NMR) titration studies with 15N‐labeled CBD demonstrated that the minicollagen binds to a 10 Å wide 25 Å long cleft. Six collagenous peptides each labeled with a nitroxide radical were then titrated with 15N‐labeled CBD. CBD binds to either the Gly → Ala substitution site or to the C‐terminus of each minicollagen. Small‐angle X‐ray scattering measurements revealed that CBD prefers to bind the Gly → Ala site to the C‐terminus. The HSQC NMR spectra of 15N‐labeled minicollagen and minicollagen with undertwisted regions were unaffected by the titration of unlabeled CBD. The results imply that CBD binds to the undertwisted region of the minicollagen but does not actively unwind the triple helix.  相似文献   

13.
A set of analogues of the 14‐residue peptaibol tylopeptin B, containing the stable free‐radical 4‐amino‐1‐oxyl‐2,2,6,6,‐tetramethylpiperidine‐4‐carboxylic acid (TOAC) at one or two selected positions, was synthesized by the solid‐phase methodology. A solution conformational analysis performed by FTIR absorption and CD suggests that, in membrane‐mimicking solvents, the labeled tylopeptin B analogues preserve the helical propensity of the parent peptide, with a preference for the α‐helix or the 310‐helix type depending upon the nature of the solvent. In aqueous environment, the spin‐labeled analogues present a higher content of helical conformation as a consequence of the strong helix promoter effect of the conformationally constrained TOAC residue. We observed a progressive increase of the quenching effect of the nitroxyl radical on the fluorescence of the N‐terminal tryptophan as TOAC replaces the Aib residue at positions 13, 8, and 4, respectively. A membrane permeabilization assay performed on two selected analogues, TOAC8‐ and TOAC13‐tylopeptin B, showed that the labeled peptides exhibit membrane‐modifying properties comparable with those of the natural peptaibiotic. We conclude that our TOAC paramagnetic analogues of tylopeptin B are good models for a detailed ESR investigation of the mechanism of membrane permeabilization induced by medium‐length peptaibiotics. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

14.
The Schellman motif is a widely observed helix terminating structural motif in proteins, which is generated when the C‐terminus residue adopts a left‐handed helical (αL) conformation. The resulting hydrogen‐bonding pattern involves the formation of an intramolecular 6 → 1 interaction. This helix terminating motif is readily mimicked in synthetic helical peptides by placing an achiral residue at the penultimate position of the sequence. Thus far, the Schellman motif has been characterized crystallographically only in peptide helices of length 7 residues or greater. The structure of the hexapeptide Boc–Pro–Aib–Gly–Leu–Aib–Leu–OMe in crystals reveal a short helical stretch terminated by a Schellman motif, with the formation of 6 → 1 C‐terminus hydrogen bond. The crystals are in the space group P212121 with a = 18.155(3) Å, b = 18.864(8) Å, c = 11.834(4) Å, and Z = 4 . The final R1 and wR2 values are 7.68 and 14.6%, respectively , for 1524 observed reflections [Fo ≥ 3ς(Fo)]. A 6 → 1 hydrogen bond between Pro(1)CO · · · Leu(6)NH and a 5 → 2 hydrogen bond between Aib(2)CO · · · Aib(5)NH are observed. An analysis of the available oligopeptides having an achiral Aib residue at the penultimate position suggests that chain length and sequence effects may be the other determining factors in formation of Schellman motifs. © 1999 John Wiley & Sons, Inc. Biopoly 50: 13–22, 1999  相似文献   

15.
The right‐handed α‐helix is the dominant helical fold of α‐peptides, whereas the left‐handed 314‐helix is the dominant helical fold of β‐peptides. Using molecular dynamics simulations, the properties of α‐helical α‐peptides and 314‐helical β‐peptides with different C‐terminal protonation states and in the solvents water and methanol are compared. The observed energetic and entropic differences can be traced to differences in the polarity of the solvent‐accessible surface area and, in particular, the solute dipole moments, suggesting different reasons for their stability.  相似文献   

16.
The N‐terminal 1–34 segments of both parathyroid hormone (PTH) and parathyroid hormone‐related protein (PTHrP) bind and activate the same membrane receptor in spite of major differences in their amino acid sequence. The hypothesis was made that they share the same bioactive conformation when bound to the receptor. A common structural motif in all bioactive fragments of the hormone in water/trifluoroethanol mixtures or in aqueous solution containing detergent micelles is the presence of two helical segments at the N‐ and C‐termini of the sequence. In order to stabilize the helical structures, we have recently synthesized and studied the PTHrP(1–34) analog [(Lys13–As p17, Lys26–As p30)]PTHrP(1–34)NH2, which contains lactam‐constrained Lys‐Asp side chains at positions i, i+4. This very potent agonist exhibits enhanced helix stability with respect to the corresponding linear peptide and also two flexible sites at positions 12 and 19 in 1:1 trifluoroethanol/water. These structural elements have been suggested to play a critical role in bioactivity. In the present work we have extended our conformational studies on the bicyclic lactam‐constrained analog to aqueous solution. By CD, 2D‐NMR and structure calculations we have shown that in water two helical segments are present in the region of the lactam bridges (13–18, and 26–31) with high flexibility around Gly12 and Arg19. Thus, the essential structural features observed in the aqueous‐organic medium are maintained in water even if, in this solvent, the overall structure is more flexible. Our findings confirm the stabilizing effect of side‐chain lactam constraints on the α‐helical structure. Copyright © 1999 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

17.
Young Kee Kang  In Kee Yoo 《Biopolymers》2014,101(11):1077-1087
Conformational preferences of 9‐ and 14‐helix foldamers have been studied for γ‐dipeptides of 2‐aminocyclohexylacetic acid (γAc6a) residues such as Ac‐(γAc6a)2‐NHMe ( 1 ), Ac‐(Cα‐Et‐γAc6a)2‐NHMe ( 2 ), Ac‐(γAc6a)2‐NHBn ( 3 ), and Ac‐(Cα‐Et‐γAc6a)2‐NHBn ( 4 ) at the M06‐2X/cc‐pVTZ//M06‐2X/6‐31 + G(d) level of theory to explore the influence of substituents on their conformational preferences. In the gas phase, the 9‐helix foldamer H9 and 14‐helix foldamer H14‐z are found to be most preferred for dipeptides 2 and 4 , respectively, as for dipeptides 1 and 3 , which indicates no remarkable influence of the Cα‐ethyl substitution on conformational preferences. The benzyl substitution at the C‐terminal end lead H14‐z to be the most preferred conformer for dipeptides 3 and 4 , whereas it is H9 for dipeptides 1 and 2 , which can be ascribed to the favored C? H···π interactions between the cyclohexyl group of the first residue and the C‐terminal benzyl group. There are only marginal changes in backbone structures and the distances and angles of H‐bonds for all local minima by Cα‐ethyl and/or benzyl substitutions. Although vibrational frequencies and intensities of the dipeptide 4 calculated at both M06‐2X/6‐31 + G(d) and M05‐2X/6‐31 + G(d) levels of theory are consistent with observed results in the gas phase, H14‐z is predicted to be most preferred by ΔG only at the former level of theory. Hydration did not bring the significant changes in backbone structures of helix foldamers for both dipeptide 1 and 4 . It is expected that the different substitutions at the C‐terminal end lead to the different helix foldamers, which may increase the resistance of helical structures to proteolysis and provide the more surface to the helical structures suitable for molecular recognition. © 2014 Wiley Periodicals, Inc. Biopolymers 101: 1077–1087, 2014.  相似文献   

18.
The three‐dimensional solution structure of harzianin HC IX, a peptaibol antibiotic isolated from the fungus Trichoderma harzianum, was determined using CD, homonuclear, and heteronuclear two‐dimensional nmr spectroscopy combined with molecular modeling. This 14‐residue peptide, Ac Aib1 Asn2 Leu3 Aib4 Pro5 Ala6 Ile7 Aib8 Pro9 Iva10 Leu11 Aib12 Pro13 Leuol14 (Aib, α‐aminoisobutyric acid; Iva, isovaline; Leuol, leucinol), is a main representative of a short‐sequence peptaibol class characterized by an acetylated N‐terminus, a C‐terminal amino alcohol, and the presence of three Aib‐L ‐Pro motifs at positions 4–5, 8–9, and 12–13, separated by two dipeptide units. In spite of a lower number of residues, compared to the 18/20‐residue peptaibols such as alamethicin, harzianin HC IX exhibits remarkable membrane‐perturbing properties. It interacts with phospholipid bilayers, increasing their permeability and forming voltage‐gated ion channels through a mechanism slightly differing from that proposed for alamethicin. Sequence‐specific 1H‐ and 13C‐nmr assignments and conformational nmr parameters (3JNHCαH coupling constants, quantitative nuclear Overhauser enhancement data, temperature coefficients of amide and carbonyl groups, NH–ND exchange rates) were obtained in methanol solution. Sixty structures were calculated based on 98 interproton distance restraints and 6 Φ dihedral angle restraints, using high temperature restrained molecular dynamics and energy minimization. Thirty‐seven out of the sixty generated structures were consistent with the nmr data and were convergent. The peptide backbone consists in a ribbon of overlapping β‐turns twisted into a continuous spiral from Asn2 to Leuol14 and forming a 26 Å long helix‐like structure. This structure is slightly amphipathic, with the three Aib–Pro motifs aligned on the less hydrophobic face of the spiral where the Asn2 side chain is also present, while the more hydrophobic bulky side chains of leucines, isoleucine, isovaline, and leucinol are located on the concave side. The repetitive (Xaa–Yaa–Aib–Pro) tetrapeptide subunit, making up the peptide sequence, is characterized by four sets of (Φ,Ψ) torsional angles, with the following mean values: Φi = −90°, Ψi = −27°; Φi+1 = −98°, Ψi+1 = −17°; Φi+2 = −49°, Ψi+2 = −50°; Φi+3 = −78°, Ψi+3 = +3°. We term this particular structure, specifically occurring in the case of (Xaa–Yaa–Aib–Pro)n sequences, the (Xaa–Yaa–Aib–Pro)‐β‐bend ribbon spiral. It is stabilized by 4 → 1 intramolecular hydrogen bonds and differs from both the canonical 310‐helix made of a succession of type III β‐turns and from the β‐bend ribbon spiral that has been described in the case of (Aib–Pro)n peptide segments. © 1999 John Wiley & Sons, Inc. Biopoly 50: 71–85, 1999  相似文献   

19.
Proper folding of the (Gly‐Xaa‐Yaa)n sequence of animal collagens requires adjacent N‐ or C‐terminal noncollagenous trimerization domains which often contain coiled‐coil or beta sheet structure. Collagen‐like proteins have been found recently in a number of bacteria, but little is known about their folding mechanism. The Scl2 collagen‐like protein from Streptococcus pyogenes has an N‐terminal globular domain, designated Vsp, adjacent to its triple‐helix domain. The Vsp domain is required for proper refolding of the Scl2 protein in vitro. Here, recombinant Vsp domain alone is shown to form trimers with a significant α‐helix content and to have a thermal stability of Tm = 45°C. Examination of a new construct shows that the Vsp domain facilitates efficient in vitro refolding only when it is located N‐terminal to the triple‐helix domain but not when C‐terminal to the triple‐helix domain. Fusion of the Vsp domain N‐terminal to a heterologous (Gly‐Xaa‐Yaa)n sequence from Clostridium perfringens led to correct folding and refolding of this triple‐helix, which was unable to fold into a triple‐helical, soluble protein on its own. These results suggest that placement of a functional trimerization module adjacent to a heterologous Gly‐Xaa‐Yaa repeating sequence can lead to proper folding in some cases but also shows specificity in the relative location of the trimerization and triple‐helix domains. This information about their modular nature can be used in the production of novel types of bacterial collagen for biomaterial applications.  相似文献   

20.
The conformational behaviour of delta Ala has been investigated by quantum mechanical method PCILO in the model dipeptide Ac-delta Ala-NHMe and in the model tripeptides Ac-X-delta Ala-NHMe with X = Gly, Ala, Val, Leu, Abu and Phe and is found to be quite different. The computational results suggest that in the model tripeptides the most stable conformation corresponds to phi 1 = -30 degrees, psi 1 = 120 degrees and phi 2 = psi 2 = 30 degrees in which the > C = 0 of the acetyl group is involved in hydrogen bond formation with N-H of the amide group. Similar results were obtained for the conformational behaviour of D-Ala in Ac-D-Ala-NHMe and Ac-Ala-D-Ala-NHMe. The conformational behaviour of the amino acids delta Ala, D-Ala, Val and Aib in model tripeptides have been utilized in the designing of left handed helical peptides. It is shown that the peptide HCO-(Ala-D-Ala)3-NHMe can adopt both left and right handed helix whereas in the peptide Ac-(Ala-delta Ala)3-NHMe the lowest energy conformer is beta-bend ribbon structure. Left handed helical structure with phi = 30 degrees, psi = 60 degrees for D-Ala residues and phi = psi = 30 degrees for delta Ala is found to be more stable by 4 kcal mole-1 than the corresponding right handed helical structure for the peptide Ac-(D-Ala-delta Ala)3-NHMe. In both the peptides Ac-(Val-delta Ala)3-NHMe and Ac-(D-Val-delta Ala)3-NHMe the most stable conformer is the left handed helix. Comparisons of results for Ac-(Ala-delta Ala)3-NHMe and Ac(Val-delta Ala)3-NHMe and Ac-(D-Ala-delta Ala)3-NHMe and Ac-(D-Val-delta Ala)3-NHMe also reveal that the Val residues facilitate the population of 3(10) left handed helix over the other conformers. It is also shown that the conformational behaviour of Aib residue depends on the chirality of neighbouring amino acids, i.e. Ac-(Aib-Ala)3-NHMe adopts right handed helical structure whereas Ac-(Aib-D-Ala)3-NHMe is found to be in left handed helical structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号