首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
Biocatalysis is nowadays considered as one of the most important tools in green chemistry. The elimination of multiple steps involved in some of the most complex chemical synthesis, reducing the amounts of wastes and hazards, thus increasing the reaction yields and decreasing the intrinsic costs, are the major advantages of biocatalysis. This work aims at improving the enzymatic hydrolysis of olive oil to produce valuable fatty acids through emulsion systems formed by long alkyl chain ionic liquids (ILs). The optimization of the emulsion and the best conditions to maximize the production of fatty acids were investigated. The stability of the emulsion was characterized considering the effect of several parameters, namely, the IL and its concentration and different water/olive oil volumetric ratios. ILs from the imidazolium and phosphonium families were evaluated. The results suggest that the ILs effect on the hydrolysis performance varies with the water concentration and the emulsion system formed, that is, water‐in‐oil or oil‐in‐water emulsion. Although at low water concentrations, the presence of ILs does not present any advantages for the hydrolysis reaction, at high water contents (in oil‐in‐water emulsions), the imidazolium‐based IL acts as an enhancer of the lipase catalytic capacity, super‐activating 1.8 times the enzyme, and consequently promoting the complete hydrolysis of the olive oil for the highest water contents [85% (v/v)]. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:1473–1480, 2015  相似文献   

7.
Multivariate statistical process monitoring (MSPM) is becoming increasingly utilized to further enhance process monitoring in the biopharmaceutical industry. MSPM can play a critical role when there are many measurements and these measurements are highly correlated, as is typical for many biopharmaceutical operations. Specifically, for processes such as cleaning‐in‐place (CIP) and steaming‐in‐place (SIP, also known as sterilization‐in‐place), control systems typically oversee the execution of the cycles, and verification of the outcome is based on offline assays. These offline assays add to delays and corrective actions may require additional setup times. Moreover, this conventional approach does not take interactive effects of process variables into account and cycle optimization opportunities as well as salient trends in the process may be missed. Therefore, more proactive and holistic online continued verification approaches are desirable. This article demonstrates the application of real‐time MSPM to processes such as CIP and SIP with industrial examples. The proposed approach has significant potential for facilitating enhanced continuous verification, improved process understanding, abnormal situation detection, and predictive monitoring, as applied to CIP and SIP operations. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:505–515, 2014  相似文献   

8.
9.
10.
Bacteriophage therapy is a promising new treatment that may help overcome the threat posed by antibiotic‐resistant pathogenic bacteria, which are increasingly identified in hospitalized patients. The development of biocompatible and sustainable vehicles for incorporation of viable bacterial viruses into a wound dressing is a promising alternative. This article evaluates the antimicrobial efficacy of Bacteriophage K against Staphylococcus aureus over time, when stabilized and delivered via an oil‐in‐water nano‐emulsion. Nano‐emulsions were formulated via thermal phase inversion emulsification, and then bacterial growth was challenged with either native emulsion, or emulsion combined with Bacteriophage K. Bacteriophage infectivity, and the influence of storage time of the preparation, were assessed by turbidity measurements of bacterial samples. Newly prepared Bacteriophage K/nano‐emulsion formulations have greater antimicrobial activity than freely suspended bacteriophage. The phage‐loaded emulsions caused rapid and complete bacterial death of three different strains of S. aureus. The same effect was observed for preparations that were either stored at room temperature (18–20°C), or chilled at 4°C, for up to 10 days of storage. A response surface design of experiments was used to gain insight on the relative effects of the emulsion formulation on bacterial growth and phage lytic activity. More diluted emulsions had a less significant effect on bacterial growth, and diluted bacteriophage‐emulsion preparations yielded greater antibacterial activity. The enhancement of bacteriophage activity when delivered via nano‐emulsions is yet to be reported. This prompts further investigation into the use of these formulations for the development of novel anti‐microbial wound management strategies. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:932–944, 2014  相似文献   

11.
12.
Determination of protease specificity is of crucial importance for understanding protease function. We have developed the first gel‐based label‐free proteomic approach (DIPPS—direct in‐gel profiling of protease specificity) that enables quick and reliable determination of protease cleavage specificities under large variety of experimental conditions. The methodology is based on in‐gel digestion of the gel‐separated proteome with the studied protease, enrichment of cleaved peptides by gel extraction, and subsequent mass spectrometry analysis combined with a length‐limited unspecific database search. We applied the methodology to profile ten proteases ranging from highly specific (trypsin, endoproteinase GluC, caspase‐7, and legumain) to broadly specific (matrix‐metalloproteinase‐3, thermolysin, and cathepsins K, L, S, and V). Using DIPPS, we were able to perform specificity profiling of thermolysin at its optimal temperature of 75°C, which confirmed the applicability of the method to extreme experimental conditions. Moreover, DIPPS enabled the first global specificity profiling of legumain at pH as low as 4.0, which revealed a pH‐dependent change in the specificity of this protease, further supporting its broad applicability.  相似文献   

13.
This article demonstrates the application of time‐lapsed imaging and image processing to inform the supercritical processing of tissue scaffolds that are integral to many regenerative therapies. The methodology presented provides online quantitative evaluation of the complex process of scaffold formation in supercritical environments. The capabilities of the developed system are demonstrated through comparison of scaffolds formed from polymers with different molecular weight and with different venting times. Visual monitoring of scaffold fabrication enabled key events in the supercritical processing of the scaffolds to be identified including the onset of polymer plasticization, supercritical points and foam formation. Image processing of images acquired during the foaming process enabled quantitative tracking of the growing scaffold boundary that provided new insight into the nature of scaffold foaming. Further, this quantitative approach assisted in the comparison of different scaffold fabrication protocols. Observed differences in scaffold formation were found to persist, post‐fabrication as evidenced by micro x‐ray computed tomography (μ x‐ray CT) images. It is concluded that time‐lapsed imaging in combination with image processing is a convenient and powerful tool to provide insight into the scaffold fabrication process. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

14.
Pro‐apoptotic Bax induces mitochondrial outer membrane permeabilization (MOMP) by forming oligomers through a largely undefined process. Using site‐specific disulfide crosslinking, compartment‐specific chemical labeling, and mutational analysis, we found that activated integral membrane Bax proteins form a BH3‐in‐groove dimer interface on the MOM surface similar to that observed in crystals. However, after the α5 helix was released into the MOM, the remaining interface with α2, α3, and α4 helices was rearranged. Another dimer interface was formed inside the MOM by two intersected or parallel α9 helices. Combinations of these interfaces generated oligomers in the MOM. Oligomerization was initiated by BH3‐in‐groove dimerization, without which neither the other dimerizations nor MOMP occurred. In contrast, α9 dimerization occurred downstream and was required for release of large but not small proteins from mitochondria. Moreover, the release of large proteins was facilitated by α9 insertion into the MOM and localization to the pore rim. Therefore, the BH3‐in‐groove dimerization on the MOM nucleates the assembly of an oligomeric Bax pore that is enlarged by α9 dimerization at the rim.  相似文献   

15.
1. Naturally variable river flows are considered to be important for structuring riparian vegetation. However, while the importance of floods for the ecology of riparian vegetation is well recognised, much less is known about the importance of small fluctuations in river flows. 2. We investigated the effect of water supply diversion weirs on the riparian vegetation of upland streams. These weirs remove within‐channel fluctuations in flow but do not prevent large floods downstream. We surveyed the in‐channel and banktop vegetation of five streams, three of which were regulated by weirs and two of which acted as controls. 3. Unexpectedly, we observed greater species richness within the channel downstream of the weirs. This was because of increased numbers of exotic and terrestrial (‘dry’) plant species. Grass cover was also greater downstream of the weirs. There were no significant differences in the banktop vegetation between the upstream and downstream sites of the regulated streams. 4. Our results highlight the role of within‐channel flow variability in maintaining the composition of vegetation within the stream channel. We suggest that greater species richness does not necessarily indicate a less‐disturbed environment. Rather, a greater number of ‘dry’ species is indicative of the impacts of flow regulation. 5. Small fluctuations in river flows are probably necessary to protect the ecosystem structure and function of regulated streams. It is recommended that variable within‐channel flows be provided in regulated streams.  相似文献   

16.
Wild arable plants can be an economic burden but they also support diverse arable food webs and contribute to valuable ecosystem functions. These benefits may have been compromised over recent decades by declining weed diversity. The decline in wild arable plant diversity has been viewed predominantly in terms of species shifts a view that ignores the genetic and functional variation existing within species and the impact on ecological and evolutionary processes which this may have. To examine within‐species diversity, ISSR markers were used in parallel with environmental and phenotypic characterisation, to investigate the population structure and diversity of Capsella bursa‐pastoris (shepherd's purse) from arable fields in the UK. Analysis of 338 ISSR products for 109 individuals from 51 accessions obtained from the seed banks of 33 arable fields showed that in‐field populations of shepherd's purse were genetically differentiated between individuals, and among accessions and fields. In addition, cluster analysis identified three genetically distinct regional‐scale populations. Phenotypic variation was present at all scales of genetic differentiation, including the regional scale where populations differed in their key life‐history traits: flowering time, fecundity and dormancy. Genetic drift is proposed as a contributor to differentiation among genetically isolated but locally co‐occurring accessions. In addition, the genetic and phenotypic variation in shepherd's purse exhibited large scale, spatial trends and showed statistically significant associations with cropping intensity and soil‐pH. These results suggest that adaptation as a result of selection by cropping practise and soil‐pH has played a role in the ability of shepherd's purse to colonise and persist in arable fields.  相似文献   

17.
18.
19.
Aims: The capacity for Lactobacillus johnsonii and an organic acid (OA) blend to prevent Clostridium perfringens‐induced clinical necrotic enteritis (NE) in chickens was studied. Methods and Results: Cobb 500 birds were allocated into six groups (n = 25 birds/pen, eight pens/treatment); Unchallenged, Challenged, Antimicrobial (zinc bacitracin (ZnB)/monensin), OA, probiotic Lact. johnsonii and probiotic sham (Phosphate–buffered saline). All birds were challenged with Eimeria spp. and Cl. perfringens except for unchallenged controls. Birds fed antimicrobials were protected from NE development as indicated by maintenance of body weight, low mortality and clostridium levels, and decreased intestinal macroscopic lesion scores compared to challenged controls (P < 0·05). Lactobacillus johnsonii‐fed birds had reduced lesion scores, whilst OA‐fed birds had decreased Cl. perfringens levels. Both Lact. johnsonii and OA‐fed birds had improved feed efficiency between days 0 and 28 compared to challenged controls; however, mortality and body weights were not improved by either treatment. Microbial profiling indicated that the challenge procedure significantly altered the jejunal microbiota. The microbiota of antimicrobial‐fed birds was significantly different from all other groups. Conclusions: Whilst Lact. johnsonii and OA altered specific intestinal parameters, significant protection against NE was not observed. Significance and Impact of the Study: Lactobacillus johnsonii and OA did not prevent NE; however, some improvements were evident. Other related treatments, or combinations of these two treatments, may provide greater protection.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号