首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Objective: African Americans (AAs) have less visceral and more subcutaneous fat than whites, thus the relationship of adiponectin and leptin to body fat and insulin sensitivity in AA may be different from that in whites. Methods and Procedures: Sixty‐nine non‐diabetic AA (37 men and 32 women), aged 33 ± 1 year participated. The percent fat was determined by dual‐energy X‐ray absorptiometry, abdominal visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) volume by computerized tomography (CT), and insulin sensitivity by homeostasis model assessment (HOMA). Results: VAT was greater in men (1,619 ± 177 cm3 vs. 1,022 ± 149 cm3; P = 0.01); women had a higher percentage of body fat (34.1 ± 1.4 vs. 24.0 ± 1.2; P < 0.0001), adiponectin (15.8 ± 1.2 μg/ml vs. 10.4 ± 0.8 μg/ml; P = 0.0004) and leptin (23.2 ± 15.8 ng/ml vs. 9.2 ± 7.2 ng/ml; P < 0.0001). SAT and HOMA did not differ because of the sex. Adiponectin negatively correlated with VAT (r = ?0.41, P < 0.05) in men, and with VAT (r = ?0.55, P < 0.01), and SAT (r = ?0.35, P < 0.05) in women. Adiponectin negatively correlated with HOMA in men (r = ?0.38, P < 0.05) and women (r = ?0.44, P < 0.05). In multiple regression, sex (P = 0.02), HOMA (P = 0.03) and VAT (P = 0.003) were significant predictors of adiponectin (adj R 2 = 0.38, P < 0.0001). Leptin positively correlated with VAT, SAT, percent fat and HOMA in men (r = 0.79, r = 0.86, r = 0.89, and r = 0.53; P < 0.001) and women (r = 0.62, r = 0.75, r = 0.83, and r = 0.55; P < 0.01). In multiple regression VAT (P = 0.04), percent body fat (P < 0.0001) and sex (P = 0.01), but not HOMA were significant predictors of serum leptin (adj R 2= 0.82, P < 0.0001). Discussion: The relationship of adiponectin and leptin to body fat content and distribution in AA is dependent on sex. Although VAT and insulin sensitivity are significant determinants of adiponectin, VAT and percent body fat determine leptin.  相似文献   

2.
Higher levels of the adipocyte‐specific hormone adiponectin have been linked to increased high‐density lipoprotein (HDL) and lower insulin resistance. This study was conducted to determine the influence of macronutrient intake on adiponectin levels. One hundred and sixty‐four pre‐ and stage‐1 hypertensive adults participated in the Optimal Macro‐Nutrient Intake Heart (OMNI‐Heart) trial, a crossover feeding study originally testing the effects of macronutrients on blood pressure. Participants underwent three 6‐week feeding periods: one rich in carbohydrates (CARB), one rich in monounsaturated fat (MUFA), and one rich in protein (PROT), while maintaining body weight. Their median plasma high molecular weight (HMW) and total adiponectin levels were 2.3 and 8.2 µg/ml, respectively, resulting in an average of 27% HMW adiponectin. Both HMW and total adiponectin levels decreased after baseline while the percent HMW adiponectin remained unchanged. Between diets, the MUFA diet maintained a higher level of both HMW and total adiponectin levels than either the CARB (HMW: +6.8%, P = 0.02; total: +4.5%, P = 0.001) or PROT (HMW: +8.4%, P = 0.003; total: +5.6%, P < 0.001) diets. Changes in total adiponectin levels were positively correlated to changes in HDL cholesterol irrespective of diets (Spearman r = 0.22–0.40). No correlation was found between changes in lipids, blood pressure, or insulin resistance by the homeostasis model assessment (HOMAIR). Macronutrient intake has effects on HMW and total adiponectin levels independent of weight loss. A diet rich in MUFA was associated with higher levels of total and HMW adiponectin in comparison to a carbohydrate‐ or protein‐rich diet. Effects seen in adiponectin paralleled those found with HDL cholesterol.  相似文献   

3.
We aimed at determining which circulating forms of the adipokine adiponectin that increases lipid oxidation in liver and skeletal muscle are related to ectopic fat in these depots in humans. Plasma total‐, high‐molecular weight (HMW)‐, middle‐molecular weight (MMW)‐, and low‐molecular weight (LMW) adiponectin were quantified by an enzyme‐linked immunosorbent assay. Their relationships with liver‐ and intramyocellular fat, measured using 1H magnetic resonance spectroscopy, were investigated in 54 whites without type 2 diabetes. Liver fat, adjusted for gender, age, and total body fat, was associated only with HMW adiponectin (r = ?0.35, P = 0.012), but not with total‐, MMW‐, or LMW adiponectin. In addition, subjects with fatty liver (liver fat ≥5.56%, n = 15) had significantly lower HMW‐ (P = 0.04), but not total‐, MMW‐, or LMW adiponectin levels, compared to controls (n = 39). Similarly, intramyocellular fat correlated only with HMW (r = ?0.32, P = 0.039), but not with the other circulating forms of adiponectin. These data indicate that, among circulating forms of adiponectin, HMW is strongly related to ectopic fat, thus possibly representing the form of adiponectin regulating lipid oxidation in liver and skeletal muscle.  相似文献   

4.
The size of adipocytes influences their function suggesting a differential responsiveness to intervention. We hypothesized that weight loss in patients with type 2 diabetes mellitus (T2DM) predominantly decreases the size of large and very‐large adipocyte subfractions in parallel with beneficial changes in serum adipokines and improved insulin sensitivity. A total of 44 volunteers from the Look Action for Health in Diabetes trial, who lost weight after 1‐year of intense lifestyle intervention, were included. Insulin sensitivity (hyperinsulinemic–euglycemic clamp), size of subcutaneous abdominal adipocytes (osmium fixation), and selected serum adipokines were measured. A 13% weight loss was accompanied by 46% improvement in insulin sensitivity (increased glucose disposal rate from 5.9 ± 2.2 to 8.6 ± 2.7 mg/min/kg fat‐free mass, P < 0.05) in parallel with a 36% increase in plasma adiponectin concentration (6.1 ± 3.1 to 8.3 ± 3.9 µg/ml, P < 0.05], but no changes in the proinflammatory cytokines interleukin‐6 and tumor necrosis factor‐α. Change in adiponectin correlated with changes in glucose disposal rate (r = 0.34, P < 0.05). Mean adipocyte size decreased (0.84 ± 0.25 to 0.64 ± 0.23 µl, P < 0.05), mainly due to changes in the large adipocyte subfraction (size 0.75–0.44 µl, relative number 19–26%; P < 0.05). Our data suggest that change in the large adipocyte subfraction may contribute to the improvement in insulin sensitivity via an increase in serum adiponectin. Such a relationship, which does not imply cause and effect, could not be obtained by measuring only mean adipocyte size. These data provide support for the measures of adipocyte size distribution in concert with in vitro adipokine secretion and lipolysis in future studies.  相似文献   

5.
Objective: To test the hypothesis that low adiponectin is associated with low fat oxidation in humans. Research Methods and Procedures: We measured plasma adiponectin concentrations in 75 healthy, nondiabetic Pima Indians (age, 28 ± 7 years; 55 men and 20 women; body fat, 29.7 ± 7.5%) and 18 whites [(age, 33 ± 8 years; 14 men and 4 women; body fat, 28.2 ± 10.8% (means ± SD)] whose body composition was measured by DXA and 24-hour energy expenditure (24-hour EE) by a respiratory chamber. Respiratory quotient (an estimate of whole-body carbohydrate/lipid oxidation rate) was calculated over 24 hours (24-hour RQ). Results: Before correlational analyses, waist-to-thigh ratio (WTR) and percentage of body fat (PFAT) were adjusted for age, sex, and race; 24-hour EE was adjusted for fat mass and fat-free mass, and 24-hour RQ were adjusted for energy balance. Plasma adiponectin concentrations were negatively correlated with WTR (r = −0.42, p < 0.0001) and PFAT (r = −0.46, p < 0.0001). There was no correlation between plasma adiponectin concentrations and 24-hour RQ, (r = 0.09, p = 0.36) before or after adjustment for PFAT (r = 0.001, p = 0.99, respectively, partial correlation), and no correlation was found between plasma adiponectin concentrations and 24-hour EE (r = −0.12, p = 0.27). Discussion: Our cross-sectional data do not suggest physiological concentrations of fasting plasma adiponectin play a role in the regulation of whole-body fat oxidation or energy expenditure in resting conditions. Whether administration of adiponectin to individuals with low levels of this hormone will increase their fat oxidation rates/energy expenditure remains to be established.  相似文献   

6.
Objective: In humans, low plasma adiponectin concentrations precede a decrease in insulin sensitivity and predict type 2 diabetes independently of obesity. However, it is possible that the contribution of adiponectin to insulin sensitivity is not equally strong over the whole range of obesity. Research Methods and Procedures: We investigated the cross‐sectional association between plasma adiponectin levels and insulin sensitivity in different ranges of body fat content [expressed as percentage of body fat (PFAT)] in a large cohort of normal glucose‐tolerant subjects (n = 900). All individuals underwent an oral glucose tolerance test (OGTT), and 299 subjects additionally a euglycemic hyperinsulinemic clamp. In longitudinal analyses, the association of adiponectin at baseline with change in insulin sensitivity was investigated in a subgroup of 108 subjects. Results: In cross‐sectional analyses, the association between plasma adiponectin and insulin sensitivity, adjusted for age, gender, and PFAT, depended on whether subjects were lean or obese [p for interaction adiponectin × PFAT = <0.001 (OGTT) and 0.002 (clamp)]. Stratified by quartiles of PFAT, adiponectin did not correlate significantly with insulin sensitivity in subjects in the lowest PFAT quartile (R2 = 0.10, p = 0.13, OGTT; and R2 = 0.10, p = 0.57, clamp), whereas the association in the upper PFAT quartile was rather strong (R2 = 0.36, p < 0.0001, OGTT; and R2 = 0.48, p = 0.003, clamp). In longitudinal analyses, plasma adiponectin at baseline preceded change in insulin sensitivity in obese (n = 54, p = 0.03) but not in lean (n = 54, p = 0.68) individuals. Discussion: These data suggest that adiponectin is especially critical in sustaining insulin sensitivity in obese subjects. Thus, interventions to reduce insulin resistance by increasing adiponectin concentrations may be effective particularly in obese, insulin‐resistant individuals.  相似文献   

7.
The prevalence of type 2 diabetes is greater among African Americans (AA) vs. European Americans (EA), independent of obesity and lifestyle. We tested the hypothesis that intramyocellular lipid (IMCL) or extramycellular lipid (EMCL) would be associated with insulin sensitivity among healthy young women, and that the associations would differ with ethnic background. We also explored the hypothesis that adipokines and estradiol would be associated with muscle lipid content. Participants were 57 healthy, normoglycemic, women and girls mean age 26 (±10) years; mean BMI 27.3 (±4.8) kg/m2; 32 AA, 25 EA. Soleus IMCL and EMCL were assessed with 1H magnetic resonance spectroscopy (MRS); insulin sensitivity with an insulin‐modified frequently sampled intravenous glucose tolerance test and minimal modeling; body composition with dual‐energy X‐ray absorptiometry; and intra‐abdominal adipose tissue (IAAT) with computed tomography. Adiponectin, leptin, and estradiol were assessed in fasting sera. Analyses indicated that EMCL, but not IMCL, was greater in AA vs. EA (2.55 ± 0.16 vs. 1.98 ± 0.18 arbitrary units, respectively, P < 0.05; adjusted for total body fat). IMCL was associated with insulin sensitivity in EA (r = ?0.54, P < 0.05, adjusted for total fat, IAAT, and age), but not AA (r = 0.16, P = 0.424). IMCL was inversely associated with adiponectin (r = ?0.31, P < 0.05, adjusted for ethnicity, age, total fat, and IAAT). In conclusion, IMCL was a significant determinant of insulin sensitivity among healthy, young, EA but not AA women. Further research is needed to determine whether the component lipids of IMCL (e.g., diacylglycerol (DAG) or ceramide) are associated with insulin sensitivity in an ethnicity specific manner.  相似文献   

8.

Objective:

It remains uncertain whether leptin and adiponectin levels are correlated in maternal vs. fetal circulations. Little is known about whether leptin and adiponectin affect insulin sensitivity during fetal life.

Design and Methods:

In a prospective singleton pregnancy cohort (n = 248), we investigated leptin and adiponectin concentrations in maternal (at 24‐28 and 32‐35 weeks of gestation) and fetal circulations, and their associations with fetal insulin sensitivity (glucose/insulin ratio, proinsulin level).

Results:

Comparing concentrations in cord vs. maternal blood, leptin levels were 50% lower, but adiponectin levels more than doubled. Adjusting for gestational age at blood sampling, consistent and similar positive correlations (correlation coefficients: 0.31‐0.34, all P < 0.0001) were observed in leptin or adiponectin levels in maternal (at 24‐28 or 32‐25 weeks of gestation) vs. fetal circulations. For each SD increase in maternal plasma concentration at 24‐28 weeks, cord plasma concentration increased by 12.7 (95% confidence interval 6.8‐18.5) ng/ml for leptin, and 2.9 (1.8‐4.0) µg/ml for adiponectin, respectively (adjusted P < 0.0001). Fetal insulin sensitivity was negatively associated with cord blood leptin (each SD increase was associated with a 5.4 (2.1‐8.7) mg/dl/µU/ml reduction in cord plasma glucose/insulin ratio, and a 5.6 (3.9, 7.4) pmol/l increase in proinsulin level, all adjusted P < 0.01) but not adiponectin (P > 0.4) levels). Similar associations were observed in nondiabetic full‐term pregnancies (n = 211).

Conclusions:

The results consistently suggest a maternal impact on fetal leptin and adiponectin levels, which may be an early life pathway in maternal‐fetal transmission of the propensity to obesity and insulin resistance.  相似文献   

9.
Objective: We studied plasma adiponectin, insulin sensitivity, and insulin secretion before and after oral glucose challenge in normal glucose tolerant, impaired glucose tolerant, and type 2 diabetic first degree relatives of African‐American patients with type 2 diabetes. Research Methods and Procedures: We studied 19 subjects with normal glucose tolerance (NGT), 8 with impaired glucose tolerance (IGT), and 14 with type 2 diabetes. Serum glucose, insulin, C‐peptide, and plasma adiponectin levels were measured before and 2 hours after oral glucose tolerance test. Homeostasis model assessment‐insulin resistance index (HOMA‐IR) and HOMA‐β cell function were calculated in each subject using HOMA. We empirically defined insulin sensitivity as HOMA‐IR < 2.68 and insulin resistance as HOMA‐IR > 2.68. Results: Subjects with IGT and type 2 diabetes were more insulin resistant (as assessed by HOMA‐IR) when compared with NGT subjects. Mean plasma fasting adiponectin levels were significantly lower in the type 2 diabetes group when compared with NGT and IGT groups. Plasma adiponectin levels were 2‐fold greater (11.09 ± 4.98 vs. 6.42 ± 3.3811 μg/mL) in insulin‐sensitive (HOMA‐IR, 1.74 ± 0.65) than in insulin‐resistant (HOMA‐IR, 5.12 ± 2.14) NGT subjects. Mean plasma adiponectin levels were significantly lower in the glucose tolerant, insulin‐resistant subjects than in the insulin sensitive NGT subjects and were comparable with those of the patients with newly diagnosed type 2 diabetes. We found significant inverse relationships of adiponectin with HOMA‐IR (r = ?0.502, p = 0.046) and with HOMA‐β cell function (r = ?0.498, p = 0.042) but not with the percentage body fat (r = ?0.368, p = 0.063), serum glucose, BMI, age, and glycosylated hemoglobin A1C (%A1C). Discussion: In summary, we found that plasma adiponectin levels were significantly lower in insulin‐resistant, non‐diabetic first degree relatives of African‐American patients with type 2 diabetes and in those with newly diagnosed type 2 diabetes. We conclude that a decreased plasma adiponectin and insulin resistance coexist in a genetically prone subset of first degree African‐American relatives before development of IGT and type 2 diabetes.  相似文献   

10.
Objective: To investigate the effect of moderate alcohol consumption on fat distribution, adipose tissue secreted proteins (adiponectin and resistin), and insulin sensitivity in healthy middle‐aged men with abdominal obesity. Research Methods and Procedures: Thirty‐four healthy men between 35 and 70 years old, with increased waist circumference (≥94 cm), participated in a randomized, controlled cross‐over design trial. They drank 450 mL of red wine (40 grams of alcohol) or 450 mL of de‐alcoholized red wine daily during 4 weeks. At the end of each treatment period, fat distribution, adipose tissue proteins, and insulin sensitivity index (ISI) were measured. Results: Subcutaneous and abdominal fat contents and body weight did not change after 4 weeks of moderate alcohol consumption. Liver fat (quip index) was slightly higher after consumption of red wine (6.8 ± 0.1) as compared with de‐alcoholized red wine (6.5 ± 0.1) but not significantly different (p = 0.09). Plasma adiponectin concentration increased (p < 0.01) to 6.0 ± 0.1 μg/mL after 28 days of moderate alcohol consumption compared with de‐alcoholized red wine (5.5 ± 0.1 μg/mL). Serum resistin concentrations and ISI were not affected by alcohol consumption. Percentage changes in serum resistin correlated significantly with changes in ISI (r = ?0.69, p < 0.01), whereas this correlation was not present between changes in plasma adiponectin and ISI (r = 0.31, p = 0.22). Discussion: Moderate alcohol consumption for 4 weeks is not associated with differences in subcutaneous and abdominal fat contents or body weight. Thus, the 10% increase in adiponectin was not associated with a change in fat distribution or body weight change.  相似文献   

11.
The rise in obesity‐related morbidity in children and adolescents requires urgent prevention and treatment strategies. Currently, only limited data are available on the effects of exercise programs on insulin resistance, and visceral, hepatic, and intramyocellular fat accumulation. We hypothesized that a 12‐week controlled aerobic exercise program without weight loss reduces visceral, hepatic, and intramyocellular fat content and decreases insulin resistance in sedentary Hispanic adolescents. Twenty‐nine postpubertal (Tanner stage IV and V), Hispanic adolescents, 15 obese (7 boys, 8 girls; 15.6 ± 0.4 years; 33.7 ± 1.1 kg/m2; 38.3 ± 1.5% body fat) and 14 lean (10 boys, 4 girls; 15.1 ± 0.3 years; 20.6 ± 0.8 kg/m2; 18.9 ± 1.5% body fat), completed a 12‐week aerobic exercise program (4 × 30 min/week at ≥70% of peak oxygen consumption (VO2peak)). Measurements of cardiovascular fitness, visceral, hepatic, and intramyocellular fat content (magnetic resonance imaging (MRI)/magnetic resonance spectroscopy (MRS)), and insulin resistance were obtained at baseline and postexercise. In both groups, fitness increased (obese: 13 ± 2%, lean: 16 ± 4%; both P < 0.01). In obese participants, intramyocellular fat remained unchanged, whereas hepatic fat content decreased from 8.9 ± 3.2 to 5.6 ± 1.8%; P < 0.05 and visceral fat content from 54.7 ± 6.0 to 49.6 ± 5.5 cm2; P < 0.05. Insulin resistance decreased indicated by decreased fasting insulin (21.8 ± 2.7 to 18.2 ± 2.4 µU/ml; P < 0.01) and homeostasis model assessment of insulin resistance (HOMAIR) (4.9 ± 0.7 to 4.1 ± 0.6; P < 0.01). The decrease in visceral fat correlated with the decrease in fasting insulin (R2 = 0.40; P < 0.05). No significant changes were observed in any parameter in lean participants except a small increase in lean body mass (LBM). Thus, a controlled aerobic exercise program, without weight loss, reduced hepatic and visceral fat accumulation, and decreased insulin resistance in obese adolescents.  相似文献   

12.

Objective:

Regulators of adipose tissue hormones remain incompletely understood, but may include sex hormones. As adipose tissue hormones have been shown to contribute to numerous metabolic and cardiovascular disorders, understanding their regulation in midlife women is of clinical importance. Therefore, we assessed the associations between testosterone (T) and sex hormone binding globulin (SHBG) with leptin, high molecular weight (HMW) adiponectin, and the soluble form of the leptin receptor (sOB‐R) in healthy midlife women.

Design and Methods:

Cross‐sectional analyses were performed using data from 1,881 midlife women (average age 52.6 (±2.7) years) attending the sixth Annual follow‐up visit of the multiethnic Study of Women's Health Across the Nation.

Results:

T was weakly negatively associated with both HMW adiponectin and sOB‐R (r = ?0.12 and r = ?0.10, respectively; P < 0.001 for both), and positively associated with leptin (r = 0.17; P < 0.001). SHBG was more strongly and positively associated with both HMW adiponectin and sOB‐R (r = 0.29 and r = 0.24, respectively; P < 0.001 for both), and more strongly and negatively associated with leptin (r = ?0.27; P < 0.001). Adjustment for fat mass, insulin resistance, or waist circumference only partially diminished associations with HMW adiponectin and sOB‐R, but attenuated associations with leptin. In conclusion, in these midlife women, lower SHBG values, and to a lesser extent, higher T levels, were associated with lower, or less favorable, levels of adiponectin and sOB‐R, independent of fat mass.

Conclusions:

These data suggest that variation in these adipose hormones resulting from lower SHBG levels, and possibly, though less likely, greater androgenicity, may contribute to susceptibility for metabolic and cardiovascular outcomes during midlife in women.
  相似文献   

13.
Our objective was to examine omental and subcutaneous adipocyte adiponectin release in women. We tested the hypothesis that adiponectin release would be reduced to a greater extent in omental than in subcutaneous adipocytes of women with visceral obesity. Omental and subcutaneous adipose tissue samples were obtained from 52 women undergoing abdominal hysterectomies (age: 47.1 ± 4.8 years; BMI: 26.7 ± 4.7 kg/m2). Adipocytes were isolated and their adiponectin release in the medium was measured over 2 h. Measures of body fat accumulation and distribution were obtained using dual‐energy X‐ray absorptiometry and computed tomography, respectively. Adiponectin release by omental and subcutaneous adipocytes was similar in lean individuals; however, in subsamples of obese or visceral obese women, adiponectin release by omental adipocytes was significantly reduced while that of subcutaneous adipocytes was not affected. Omental adipocyte adiponectin release was significantly and negatively correlated with total body fat mass (r = ?0.47, P < 0.01), visceral adipose tissue area (r = ?0.50, P < 0.01), omental adipocyte diameter (r = ?0.43, P < 0.01), triglyceride levels (r = ?0.32, P ≤ 0.05), cholesterol/high‐density lipoprotein (HDL)‐cholesterol (r = ?0.31, P ≤ 0.05), fasting glucose (r = ?0.39, P ≤ 0.01), fasting insulin (r = ?0.36, P ≤ 0.05), homeostasis model assessment index (r = ?0.39, P ≤ 0.01), and positively associated with HDL‐cholesterol concentrations (r = 0.33, P ≤ 0.05). Adiponectin release from subcutaneous cells was not associated with any measure of adiposity, lipid profile, or glucose homeostasis. In conclusion, compared to subcutaneous adipocyte adiponectin release, omental adipocyte adiponectin release is reduced to a greater extent in visceral obese women and better predicts obesity‐associated metabolic abnormalities.  相似文献   

14.
Objective: Previous research has suggested a genetic contribution to the development of insulin resistance and obesity. We hypothesized that the same genes influencing insulin resistance might also contribute to the variation in adiposity. Research Methods and Procedures: A total of 601 (200 male, 401 female) adult baboons (Papio hamadryas) from nine families with pedigrees ranging in size from 43 to 121 were used in this study. Plasma insulin, glucose, C‐peptide, and adiponectin were analyzed, and homeostasis model assessment of insulin resistance (HOMA IR) was calculated. Fat biopsies were collected from omental fat tissue, and triglyceride concentration per gram of fat tissue was determined. Body weight and length were measured, and BMI was derived. Univariate and bivariate quantitative genetic analyses were performed using SOLAR. Results: Insulin, glucose, C‐peptide, and adiponectin levels, HOMA IR, triglyceride concentration of fat tissue, body weight, and BMI were all found to be significantly heritable, with heritabilities ranging from 0.15 to 0.80. Positive genetic correlations (rGs) were observed for HOMA IR with C‐peptide (rG = 0.88 ± 0.10, p = 0.01), triglyceride concentration in fat tissue (rG = 0.86 ± 0.33, p = 0.02), weight (rG = 0.50 ± 0.20, p = 0.03), and BMI (rG = 0.64 ± 0.22, p = 0.02). Discussion: These results suggest that a set of genes contributing to insulin resistance also influence general and central adiposity phenotypes. Further genetic research in a larger sample size is needed to identify the common genes that constitute the genetic basis for the development of insulin resistance and obesity.  相似文献   

15.
This study tests the hypothesis that a high‐fat postnatal diet increases fat mass and reduces improved insulin sensitivity (IS) found in the low‐protein model of maternal undernutrition. Offspring from Wistar dams fed either a 20% (control (CON)) or 8% (low protein (LP)) protein diet during gestation and lactation were randomly assigned to a control (con) or cafeteria (caf) diet at weaning (21 days) until 3 months of age at which point IS was measured (hyperinsulinemic–euglycemic clamp). Fat mass, growth, energy intake (EI) and expenditure (EE), fuel utilization, insulin secretion, and leptin and adiponectin levels were measured to identify a possible role in any changes in IS. IS was increased in LP‐con in comparison to CON‐con animals. Cafeteria feeding prevented this increase in LP animals but had no effect in CON animals (insulin‐stimulated glucose infusion rates (GIRs; mg/min/kg); CON‐con: 13.9 ± 1.0, CON caf: 12.1 ± 2.1, LP‐con: 25.4 ± 2.0, LP‐caf: 13.7 ± 3.7, P < 0.05). CON‐caf animals had similar percent epididymal white adipose tissue (%EWAT; CON‐con: 1.71 ± 0.09 vs. CON‐caf: 1.66 ± 0.08) and adiponectin (µg/ml: CON‐con: 4.61 ± 0.34 vs. CON‐caf: 3.67 ± 0.18) except hyperinsulinemia and relative hyperleptinemia in comparison to CON‐con. Differently, LP‐caf animals had increased %EWAT (LP‐con: 1.11 ± 0.06 vs. LP‐caf: 1.44 ± 0.08, P < 0.05) and adiponectin (µg/ml: LP‐con: 5.38 ± 0.39 vs. LP‐caf: 3.75 ± 0.35, P < 0.05) but did not show cafeteria‐induced hyperinsulinemia or relative hyperleptinemia. An increased propensity to store visceral fat in LP animals may prevent the elevated IS in LP offspring.  相似文献   

16.
17.
Objective: We investigated whether serum concentrations of adiponectin are determined by body fat distribution and compared the findings with leptin. Research Methods and Procedures: Serum concentrations of adiponectin and leptin were measured by radioimmunoassay (n = 394) and analyzed for correlation with sex, age, and body fat distribution, i.e., waist‐to‐hip ratio, waist and hip circumference, and subcutaneous adipose tissue area of the lower leg as assessed by magnetic resonance imaging. Results: After adjusting for sex and percentage of body fat, adiponectin was negatively (r = ?0.17, p < 0.001) and leptin was positively (r = 0.22, p < 0.001) correlated with waist‐to‐hip ratio. Leptin, but not adiponectin, correlated with both waist (r = 0.49, p < 0.001) and hip circumference (r = 0.46, p < 0.001). Furthermore, leptin, but not adiponectin, correlated with the proportion of subcutaneous fat of the lower leg cross‐sectional area (r = 0.37, p < 0.001). Discussion: These data suggest that both adipocytokines are associated with central body fat distribution, and serum adiponectin concentrations are determined predominantly by the visceral fat compartment.  相似文献   

18.
This investigation was designed to determine the relationship of leptin concentration to gender, sex hormones, menopause, age, diabetes, and fat mass in African Americans. Participants included 101 African Americans, 38 men (mean age, 34. 2 ± 7. 4 years), 29 age-matched premenopausal women (mean age, 32. 6 ± 3. 7 years), and 36 postmenopausal women (mean age, 57. 8 ± 5. 9 years). The women were not taking exogenous sex hormones, and 12 subjects were diabetic. Percent body fat was calculated with the Siri formula, fat mass (FM) was calculated as weight x percent body fat, and Fat-free mass (FFM) was calculated as weight minus FM. Fasting plasma was assayed for leptin, estradiol, free testosterone, glucose, and insulin concentrations. The nondiabetics had an oral glucose tolerance test (OGTT). The diabetics compared with the non-diabetics had a higher central fat index (P=0. 04) but otherwise were similar to nondiabetics in all parameters measured. Body mass index, percent body fat, and FM were greater in women than men (p<0. 001). Leptin concentrations in men, premenopausal, and postmenopausal women were: 7. 51 ± 8. 5, 33. 9 ± 17. 3, 31. 4 ± 22. 3 ng/mL. Leptin/FM x 100 in the three groups were: 28. 9 ± 16. 1, 98. 65 ± 44. 9, 77. 1 ± 44. 5 ng/mL/kg. The gender difference in leptin concentration and leptin/FM was significant (p<0. 001), but the difference between premenopausal and postmenopausal women was not. In each group, weight, percent body fat, and FM were highly correlated with leptin concentration. Multiple regression analyses with leptin concentration as the dependent variable and age, diabetic status, percent body fat, weight, FM, FFM, estradiol, and free testosterone concentrations as independent variables demonstrated that the determinants of leptin concentration in men was weight only (R=0. 83,p<0. 001), in premenopausal women it was FM only (R=0. 57,P<0. 001), and in postmenopausal women it was weight only (R=0. 67, p<0. 001). With diabetics excluded, the multiple regression analysis was repeated with fasting insulin concentration and the area under the insulin curve during the OGTT included as independent variables. The results for this multiple regression analyses were the same as the first. Therefore, leptin concentration in African Americans is determined by gender and fat mass. Menopause, age, and diabetes do not affect leptin concentration.  相似文献   

19.
Objective: To determine whether serum adiponectin is decreased in obesity and is restored toward normal level after treatment in children. Research Methods and Procedures: Subjects were 53 Japanese obese children, 33 boys and 20 girls (6 to 14 years old), and 30 age‐matched nonobese controls for measuring adiponectin (16 boys and 14 girls). Blood was drawn after an overnight fast, and the obese children were subjected to anthropometric measurements including waist and hip circumferences and skinfold thicknesses. Paired samples were obtained from 21 obese children who underwent psychoeducational therapy. Visceral adipose tissue area was measured by computed tomography. Adiponectin was assayed by an enzyme‐linked immunosorbent assay. Results: The serum levels of alanine aminotransferase, uric acid, triglyceride, total cholesterol, low‐density lipoprotein‐cholesterol, total cholesterol/high‐density lipoprotein‐cholesterol, apo B, apo B/apo A1, and insulin in obese children were higher than the reference values. Serum adiponectin level was lower in the obese children than in the controls (6.4 ± 0.6 vs. 10.2 ± 0.8 mg/L, means ± SEM, p < 0.001). In 21 obese children whose percent overweight declined during therapy, the adiponectin level increased (p = 0.002). The adiponectin level was correlated inversely with visceral adipose tissue area in obese children (r = ?0.531, p < 0.001). The inverse correlations of adiponectin with alanine aminotransferase, uric acid, and insulin were significant after being adjusted for percentage overweight, percentage body fat, or sex. Discussion: Serum adiponectin level is decreased in obese children depending on the accumulation of visceral fat and is restored toward normal level by slimming.  相似文献   

20.
Body composition assessment during infancy is important because it is a critical period for obesity risk development, thus valid tools are needed to accurately, precisely, and quickly determine both fat and fat‐free mass. The purpose of this study was to compare body composition estimates using dual‐energy x‐ray absorptiometry (DXA) and air displacement plethysmography (ADP) at 6 months old. We assessed the agreement between whole body composition using DXA and ADP in 84 full‐term average‐for‐gestational‐age boys and girls using DXA (Lunar iDXA v11–30.062; Infant whole body analysis enCore 2007 software, GE, Fairfield, CT) and ADP (Infant Body Composition System v3.1.0, COSMED USA, Concord, CA). Although the correlations between DXA and ADP for %fat (r = 0.925), absolute fat mass (r = 0.969), and absolute fat‐free mass (r = 0.945) were all significant, body composition estimates by DXA were greater for both %fat (31.1 ± 3.6% vs. 26.7 ± 4.7%; P < 0.001) and absolute fat mass (2,284 ± 449 vs. 1,921 ± 492 g; P < 0.001), and lower for fat‐free mass (5,022 ± 532 vs. 5,188 ± 508 g; P < 0.001) vs. ADP. Inter‐method differences in %fat decreased with increasing adiposity and differences in fat‐free mass decreased with increasing infant age. Estimates of body composition determined by DXA and ADP at 6 months of age were highly correlated, but did differ significantly. Additional work is required to identify the technical basis for these rather large inter‐method differences in infant body composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号