首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cyclic nucleotide-sensitive ion channels, known as HCN and CNG channels play crucial roles in neuronal excitability and signal transduction of sensory cells. These channels are activated by binding of cyclic nucleotides to their intracellular cyclic nucleotide-binding domain (CNBD). A comparison of the structures of wildtype ligand-free and ligand-bound CNBD is essential to elucidate the mechanism underlying nucleotide-dependent activation of CNBDs. We recently reported the solution structure of the Mesorhizobium loti K1 (MloK1) channel CNBD in complex with cAMP. We have now extended these studies and achieved nearly complete assignments of 1H, 13C and 15N resonances of the nucleotide-free CNBD. A completely new assignment of the nucleotide-free wildtype CNBD was necessary due to the sizable chemical shift differences as compared to the cAMP bound CNBD and the slow exchange behaviour between both forms. Scattering of these chemical shift differences over the complete CNBD suggests that nucleotide binding induces significant overall conformational changes.  相似文献   

2.
Cyclic nucleotide-sensitive ion channels are molecular pores that open in response to cAMP or cGMP, which are universal second messengers. Binding of a cyclic nucleotide to the carboxyterminal cyclic nucleotide binding domain (CNBD) of these channels is thought to cause a conformational change that promotes channel opening. The C-linker domain, which connects the channel pore to this CNBD, plays an important role in coupling ligand binding to channel opening. Current structural insight into this mechanism mainly derives from X-ray crystal structures of the C-linker/CNBD from hyperpolarization-activated cyclic nucleotide-modulated (HCN) channels. However, these structures reveal little to no conformational changes upon comparison of the ligand-bound and unbound form. In this study, we take advantage of a recently identified prokaryote ion channel, SthK, which has functional properties that strongly resemble cyclic nucleotide-gated (CNG) channels and is activated by cAMP, but not by cGMP. We determined X-ray crystal structures of the C-linker/CNBD of SthK in the presence of cAMP or cGMP. We observe that the structure in complex with cGMP, which is an antagonist, is similar to previously determined HCN channel structures. In contrast, the structure in complex with cAMP, which is an agonist, is in a more open conformation. We observe that the CNBD makes an outward swinging movement, which is accompanied by an opening of the C-linker. This conformation mirrors the open gate structures of the Kv1.2 channel or MthK channel, which suggests that the cAMP-bound C-linker/CNBD from SthK represents an activated conformation. These results provide a structural framework for better understanding cyclic nucleotide modulation of ion channels, including HCN and CNG channels.  相似文献   

3.
Hyperpolarization-activated cyclic nucleotide-modulated (HCN) channels and cyclic nucleotide-gated (CNG) channels are activated by the direct binding of cyclic nucleotides. The intracellular COOH-terminal regions exhibit high sequence similarity in all HCN and CNG channels. This region contains the cyclic nucleotide-binding domain (CNBD) and the C-linker region, which connects the CNBD to the pore. Recently, the structure of the HCN2 COOH-terminal region was solved and shown to contain intersubunit interactions between C-linker regions. To explore the role of these intersubunit interactions in intact channels, we studied two salt bridges in the C-linker region: an intersubunit interaction between C-linkers of neighboring subunits, and an intrasubunit interaction between the C-linker and its CNBD. We show that breaking these salt bridges in both HCN2 and CNGA1 channels through mutation causes an increase in the favorability of channel opening. The wild-type behavior of both HCN2 and CNGA1 channels is rescued by switching the position of the positive and negative residues, thus restoring the salt bridges. These results suggest that the salt bridges seen in the HCN2 COOH-terminal crystal structure are also present in the intact HCN2 channel. Furthermore, the similar effects of the mutations on HCN2 and CNGA1 channels suggest that these salt bridge interactions are also present in the intact CNGA1 channel. As disrupting the interactions leads to channels with more favorable opening transitions, the salt bridges appear to stabilize a closed conformation in both the HCN2 and CNGA1 channels. These results suggest that the HCN2 COOH-terminal crystal structure contains the C-linker regions in the resting configuration even though the CNBD is ligand bound, and channel opening involves a rearrangement of the C-linkers and, thus, disruption of the salt bridges. Discovering that one portion of the COOH terminus, the CNBD, can be in the activated configuration while the other portion, the C-linker, is not activated has lead us to suggest a novel modular gating scheme for HCN and CNG channels.  相似文献   

4.
Cyclic nucleotide binding domain (CNBD) is a ubiquitous domain of effector proteins involved in signalling cascades of prokaryota and eukaryota. CNBD activation by cyclic nucleotide monophosphate (cNMP) is studied well in the case of several proteins. However, this knowledge is hardly applicable to cNMP-modulated cation channels. Despite the availability of CNBD crystal structures of bacterial cyclic nucleotide-gated (CNG) and mammalian hyperpolarization-activated cyclic nucleotide-modulated (HCN) channels in presence and absence of the cNMP, the full understanding of CNBD conformational changes during activation is lacking. Here, we describe a novel CNBD dimerization interface found in crystal structures of bacterial CNG channel MlotiK1 and mammalian cAMP-activated guanine nucleotide-exchange factor Epac2. Molecular dynamics simulations show that the found interface is stable on the studied timescale of 100?ns, in contrast to the dimerization interface, reported previously. Comparisons with cN-bound structures of CNBD show that the dimerization is incompatible with cAMP binding. Thus, the cAMP-dependent monomerization of CNBD may be an alternative mechanism of the cAMP sensing. Based on these findings, we propose a model of the bacterial CNG channel modulation by cAMP.  相似文献   

5.
The hyperpolarization-activated cyclic nucleotide-modulated (HCN) channels are pacemaker channels whose currents contribute to rhythmic activity in the heart and brain. HCN channels open in response to hyperpolarizing voltages, and the binding of cAMP to their cyclic nucleotide-binding domain (CNBD) facilitates channel opening. Here, we report that, like cAMP, the flavonoid fisetin potentiates HCN2 channel gating. Fisetin sped HCN2 activation and shifted the conductance-voltage relationship to more depolarizing potentials with a half-maximal effective concentration (EC50) of 1.8 μm. When applied together, fisetin and cAMP regulated HCN2 gating in a nonadditive fashion. Fisetin did not potentiate HCN2 channels lacking their CNBD, and two independent fluorescence-based binding assays reported that fisetin bound to the purified CNBD. These data suggest that the CNBD mediates the fisetin potentiation of HCN2 channels. Moreover, binding assays suggest that fisetin and cAMP partially compete for binding to the CNBD. NMR experiments demonstrated that fisetin binds within the cAMP-binding pocket, interacting with some of the same residues as cAMP. Together, these data indicate that fisetin is a partial agonist for HCN2 channels.  相似文献   

6.
A family of plant ligand gated nonselective cation channels (cngcs) can be activated by direct, and reversible binding of cyclic nucleotide. These proteins have a cytoplasm-localized cyclic nucleotide binding domain (CNBD) at the carboxy-terminus of the polypeptide. A portion of the cngc CNBD also acts as a calmodulin (CaM) binding domain (CaMBD). The objective of this work is to further characterize interaction of cyclic nucleotide and CaM in gating plant cngc currents. The three-dimensional structure of an Arabidopsis thaliana cngc (Atcngc2) CNBD was modeled, indicating cAMP binding to the Atcngc2 CNBD in a pocket formed by a β barrel structure appressing a shortened (relative to animal cngc CNBDs) αC helix. The Atcngc2 CaMBD was expressed as a fusion peptide linking blue and green fluorescent proteins, and used to quantify CaM (A. thaliana CaM isoform 4) binding. CaM bound the fusion protein in a Ca2+–dependent manner with a Kd of 7.6 nM and a Ca2+ binding Kd of 200 nM. Functional characterization (voltage clamp analysis) of Atcngc2 was undertaken by expression in human embryonic kidney cells. CaM reversed cAMP activation of Atcngc2 currents. This functional interaction was dependent on free cytosolic Ca2+. Increasing cytosolic Ca2+ was found to inhibit cAMP activation of the channel in the absence of added CaM. We conclude that the physical interaction of Ca2+/CaM with plant cngcs blocks cyclic nucleotide activation of these channels. Thus, the cytosolic secondary messengers CaM, cAMP, and Ca2+ can act in an integrated fashion to gate currents through these plant ion channels.  相似文献   

7.
Similar to CNG and HCN channels, EAG and ERG channels contain a cyclic nucleotide binding domain (CNBD) in their C terminus. While cyclic nucleotides have been shown to facilitate opening of CNG and HCN channels, their effect on EAG and ERG channels is less clear. Here we explored cyclic nucleotide binding and modulation of mEAG1 and hERG1 channels with fluorescence and electrophysiology. Binding of cyclic nucleotides to the isolated CNBD of mEAG1 and hERG1 channels was examined with two independent fluorescence-based methods: changes in tryptophan fluorescence and fluorescence of an analog of cAMP, 8-NBD-cAMP. As a positive control for cyclic nucleotide binding we used changes in the fluorescence of the isolated CNBD of mHCN2 channels. Our results indicated that cyclic nucleotides do not bind to the isolated CNBD domain of mEAG1 channels and bind with low affinity (Kd ≥ 51 μm) to the isolated CNBD of hERG1 channels. Consistent with the results on the isolated CNBD, application of cyclic nucleotides to inside-out patches did not affect currents recorded from mEAG1 channels. Surprisingly, despite its low affinity binding to the isolated CNBD, cAMP also had no effect on currents from hERG1 channels even at high concentrations. Our results indicate that cyclic nucleotides do not directly modulate mEAG1 and hERG1 channels. Further studies are necessary to determine if the CNBD in the EAG family of K+ channels might harbor a binding site for a ligand yet to be uncovered.The EAG family of K+ channels comprises ether-à-go-go (EAG),2 EAG-related gene (ERG), and EAG-like (ELK) K+ channel subfamilies (1) with diverse tissue expression patterns and physiological functions (reviewed in Ref. 2). mEAG channels are overexpressed in tumor tissues (3, 4), where they are involved in regulation of tumor progression (5, 6). Inhibition of the EAG channel expression by RNAi interference (7), application of channel blockers (8, 9), and monoclonal antibody that selectively inhibits currents from EAG channels (10) decreased cell proliferation in tumor tissues.ERG channels are best known for their function in the heart. Because of their unique physiological properties, fast inactivation, and slow deactivation, ERG channels are major contributors to the repolarization phase of the cardiac action potential (1114). Mutations in the ERG channels and administration of ERG channel blockers, such as class III antiarrhythmic drugs, cause long QT syndrome, a potentially lethal cardiac arrhythmia characterized by a prolonged cardiac action potential (1519). In addition to their role in cardiac excitability, ERG channels also regulate proliferation of tumor cells (2022). The physiological role of ELK channels is not well understood, however, early reports suggest their possible involvement in the regulation of neuronal excitability (23).K+ channels in the EAG family are structurally related to the cyclic nucleotide-gated (CNG) and hyperpolarization-activated cyclic nucleotide-modulated (HCN) K+ channels (1, 24). All of these channels contain a CNBD in their C-terminal region. Unlike HCN and CNG channels whose regulation by direct binding of cyclic nucleotides to the CNBD is well established (2532), regulation of the EAG family of K+ channels by the direct binding of cyclic nucleotides is controversial. It has been reported that EAG channels in mouse (33), rat (34), and bovine retina (35) and ERG channels in humans (36) are not regulated by cyclic nucleotides. However, in similar studies other groups have shown that EAG channels in Drosophila (37, 38) and ERG channels in humans (39, 40) are regulated by cAMP. Most of the above mentioned studies were performed in a whole-cell or two-electrode voltage clamp configuration. In either of these configurations it is difficult if not impossible to control the concentration of the applied cyclic nucleotides and differentiate between direct effect of cyclic nucleotides on the EAG and ERG channels and secondary effects through signaling pathways regulated by cyclic nucleotides.To resolve this controversy we took a direct approach by applying cyclic nucleotides directly to the isolated CNBD and membrane patches expressing channels in the inside-out configuration. The direct binding of cAMP and cGMP to the isolated CNBD of the mEAG1 (also known as KCNH1 and Kv10.1) and hERG1 (also known as KCNH2 and Kv11.1) channels was examined with fluorescence-based methods. To demonstrate the validity of our approach, the fluorescence methods were also applied to the isolated CNBD of mHCN2 channels. The effect of cAMP and cGMP on full-length channels was examined by direct application of cyclic nucleotides to inside-out patches expressing mEAG1 and hERG1 channels. The fluorescent-based experiments indicated no binding of the cyclic nucleotides to the CNBD of mEAG1 and only low affinity binding (Kd ≥ 51 μm) of cAMP to the CNBD of hERG1 channels. Direct application of cAMP and cGMP had no effect on the currents recorded from mEAG1 and hERG1 channels. Our results indicate that cAMP and cGMP do not regulate mEAG1 and hERG1 channels by direct binding to the CNBD.  相似文献   

8.
Ion channel trafficking and gating are often influenced by interactions with auxiliary subunits. Tetratricopeptide repeat-containing Rab8b-interacting protein (TRIP8b) is an auxiliary subunit for neuronal hyperpolarization-activated cyclic nucleotide-gated (HCN) channels. TRIP8b interacts directly with two distinct sites of HCN channel pore-forming subunits to control channel trafficking and gating. Here we use mutagenesis combined with electrophysiological studies to define and distinguish the functional importance of the HCN/TRIP8b interaction sites. Interaction with the last three amino acids of the HCN1 C terminus governed the effect of TRIP8b on channel trafficking, whereas TRIP8b interaction with the HCN1 cyclic nucleotide binding domain (CNBD) affected trafficking and gating. Biochemical studies revealed that direct interaction between TRIP8b and the HCN1 CNBD was disrupted by cAMP and that TRIP8b binding to the CNBD required an arginine residue also necessary for cAMP binding. In accord, increasing cAMP levels in cells antagonized the up-regulation of HCN1 channels mediated by a TRIP8b construct binding the CNBD exclusively. These data illustrate the distinct roles of the two TRIP8b-HCN interaction domains and suggest that TRIP8b and cAMP may directly compete for binding the HCN CNBD to control HCN channel gating, kinetics, and trafficking.  相似文献   

9.
Hyperpolarization-activated cyclic nucleotide-gated (HCN) ion channels play an important role in regulating electrical activity in the heart and brain. They are gated by the binding of cyclic nucleotides to a conserved, intracellular cyclic nucleotide-binding domain (CNBD), which is connected to the channel pore by a C-linker region. Binding of cyclic nucleotides increases the rate and extent of channel activation and shifts it to less hyperpolarized voltages. We probed the allosteric mechanism of different cyclic nucleotides on the CNBD and on channel gating. Electrophysiology experiments showed that cAMP, cGMP, and cCMP were effective agonists of the channel and produced similar increases in the extent of channel activation. In contrast, electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) on the isolated CNBD indicated that the induced conformational changes and the degrees of stabilization of the active conformation differed for the three cyclic nucleotides. We explain these results with a model where different allosteric mechanisms in the CNBD all converge to have the same effect on the C-linker and render all three cyclic nucleotides similarly potent activators of the channel.  相似文献   

10.
Opening of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels is facilitated by direct binding of cyclic nucleotides to a cyclic nucleotide-binding domain (CNBD) in the C-terminus. Here, we show for the first time that in the HCN2 channel cGMP can also exert an inhibitory effect on gating via cGMP-dependent protein kinase II (cGKII)-mediated phosphorylation. Using coimmunoprecipitation and immunohistochemistry we demonstrate that cGKII and HCN2 interact and colocalize with each other upon heterologous expression as well as in native mouse brain. We identify the proximal C-terminus of HCN2 as binding region of cGKII and show that cGKII phosphorylates HCN2 at a specific serine residue (S641) in the C-terminal end of the CNBD. The cGKII shifts the voltage-dependence of HCN2 activation to 2-5 mV more negative voltages and, hence, counteracts the stimulatory effect of cGMP on gating. The inhibitory cGMP effect can be either abolished by mutation of the phosphorylation site in HCN2 or by impairing the catalytic domain of cGKII. By contrast, the inhibitory effect is preserved in a HCN2 mutant carrying a CNBD deficient for cGMP binding. Our data suggest that bidirectional regulation of HCN2 gating by cGMP contributes to cellular fine-tuning of HCN channel activity.  相似文献   

11.
Hyperpolarization-activated, cyclic nucleotide–sensitive (HCN) channels produce the If and Ih currents, which are critical for cardiac pacemaking and neuronal excitability, respectively. HCN channels are modulated by cyclic AMP (cAMP), which binds to a conserved cyclic nucleotide–binding domain (CNBD) in the C terminus. The unliganded CNBD has been shown to inhibit voltage-dependent gating of HCNs, and cAMP binding relieves this “autoinhibition,” causing a depolarizing shift in the voltage dependence of activation. Here we report that relief of autoinhibition can occur in the absence of cAMP in a cellular context- and isoform-dependent manner: when the HCN4 isoform was expressed in Chinese hamster ovary (CHO) cells, the basal voltage dependence was already shifted to more depolarized potentials and cAMP had no further effect on channel activation. This “pre-relief” of autoinhibition was specific both to HCN4 and to CHO cells; cAMP shifted the voltage dependence of HCN2 in CHO cells and of HCN4 in human embryonic kidney (HEK) cells. The pre-relief phenotype did not result from different concentrations of soluble intracellular factors in CHO and HEK cells, as it persisted in excised cell-free patches. Likewise, it did not arise from a failure of cAMP to bind to the CNBD of HCN4 in CHOs, as indicated by cAMP-dependent slowing of deactivation. Instead, a unique ∼300–amino acid region of the distal C terminus of HCN4 (residues 719–1012, downstream of the CNBD) was found to be necessary, but not sufficient, for the depolarized basal voltage dependence and cAMP insensitivity of HCN4 in CHO cells. Collectively, these data suggest a model in which multiple HCN4 channel domains conspire with membrane-associated intracellular factors in CHO cells to relieve autoinhibition in HCN4 channels in the absence of cAMP. These findings raise the possibility that such ligand-independent regulation could tune the activity of HCN channels and other CNBD-containing proteins in many physiological systems.  相似文献   

12.
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are dually activated by hyperpolarization and binding of cAMP to their cyclic nucleotide binding domain (CNBD). HCN isoforms respond differently to cAMP; binding of cAMP shifts activation of HCN2 and HCN4 by 17 mV but shifts that of HCN1 by only 2-4 mV. To explain the peculiarity of HCN1, we solved the crystal structures and performed a biochemical-biophysical characterization of the C-terminal domain (C-linker plus CNBD) of the three isoforms. Our main finding is that tetramerization of the C-terminal domain of HCN1 occurs at basal cAMP concentrations, whereas those of HCN2 and HCN4 require cAMP saturating levels. Therefore, HCN1 responds less markedly than HCN2 and HCN4 to cAMP increase because its CNBD is already partly tetrameric. This is confirmed by voltage clamp experiments showing that the right-shifted position of V(½) in HCN1 is correlated with its propensity to tetramerize in vitro. These data underscore that ligand-induced CNBD tetramerization removes tonic inhibition from the pore of HCN channels.  相似文献   

13.
Many receptors and ion channels are activated by ligands. One key question concerns the binding mechanism. Does the ligand induce conformational changes in the protein via the induced-fit mechanism? Or does the protein preexist as an ensemble of conformers and the ligand selects the most complementary one, via the conformational selection mechanism? Here, we study ligand binding of a tetrameric cyclic nucleotide-gated channel from Mesorhizobium loti and of its monomeric binding domain (CNBD) using rapid mixing, mutagenesis, and structure-based computational biology. Association rate constants of ∼107 M−1 s−1 are compatible with diffusion-limited binding. Ligand binding to the full-length CNG channel and the isolated CNBD differ, revealing allosteric control of the CNBD by the effector domain. Finally, mutagenesis of allosteric residues affects only the dissociation rate constant, suggesting that binding follows the induced-fit mechanism. This study illustrates the strength of combining mutational, kinetic, and computational approaches to unravel important mechanistic features of ligand binding.  相似文献   

14.
In mammalian heart and brain, pacemaker currents are produced by hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels, which probably exist as heteromeric assemblies of different subunit isoforms. To investigate the molecular domains that participate in assembly and membrane trafficking of HCN channels, we have used the yeast two-hybrid system, patch clamp electrophysiology, and confocal microscopy. We show here that the N termini of the HCN1 and HCN2 isoforms interacted and were essential for expression of functional homo- or heteromeric channels on the plasma membrane of Chinese hamster ovary cells. We also show that the cyclic nucleotide binding domain (CNBD) of HCN2 was required for the expression of functional homomeric channels. This expression was dependent on a 12-amino acid domain corresponding to the B-helix in the CNBD of the catabolite activator protein. However, co-expression with HCN1 of an HCN2 deletion mutant lacking the CNBD rescued surface immunofluorescence and currents, indicating that a CNBD need not be present in each subunit of a heteromeric HCN channel. Furthermore, neither CNBDs nor other COOH-terminal domains of HCN1 and HCN2 interacted in yeast two-hybrid assays. Thus, interaction between NH(2)-terminal domains is important for HCN subunit assembly, whereas the CNBD is important for functional expression, but its absence from some subunits will still allow for the assembly of functional channels.  相似文献   

15.
Opening of hyperpolarization-activated cyclic nucleotide-modulated (HCN) channels is controlled by membrane hyperpolarization and binding of cyclic nucleotides to the tetrameric cyclic nucleotide-binding domain (CNBD), attached to the C-linker (CL) disk. Confocal patch-clamp fluorometry revealed pronounced cooperativity of ligand binding among protomers. However, by which pathways allosteric signal transmission occurs remained elusive. Here, we investigate how changes in the structural dynamics of the CL-CNBD of mouse HCN2 upon cAMP binding relate to inter- and intrasubunit signal transmission. Applying a rigidity-theory-based approach, we identify two intersubunit and one intrasubunit pathways that differ in allosteric coupling strength between cAMP-binding sites or toward the CL. These predictions agree with results from electrophysiological and patch-clamp fluorometry experiments. Our results map out distinct routes within the CL-CNBD that modulate different cAMP-binding responses in HCN2 channels. They signify that functionally relevant submodules may exist within and across structurally discernable subunits in HCN channels.  相似文献   

16.
Members of the hyperpolarization-activated cation (HCN) channel family generate HCN currents (I(h)) that are directly regulated by cAMP and contribute to pacemaking activity in heart and brain. The four different HCN isoforms show distinct biophysical properties. In cell-free patches from Xenopus oocytes, the steady-state activation curve of HCN2 channels is 20 mV more hyperpolarized compared with HCN1. Whereas the binding of cAMP to a COOH-terminal cyclic nucleotide binding domain (CNBD) markedly shifts the activation curve of HCN2 by 17 mV to more positive potentials, the response of HCN1 is much less pronounced (4 mV shift). A previous deletion mutant study suggested that the CNBD inhibits hyperpolarization-gating in the absence of cAMP; the binding of cAMP shifts gating to more positive voltages by relieving this inhibition. The differences in basal gating and cAMP responsiveness between HCN1 and HCN2 were proposed to result from a greater inhibitory effect of the CNBD in HCN2 compared with HCN1. Here, we use a series of chimeras between HCN1 and HCN2, in which we exchange the NH(2) terminus, the transmembrane domain, or distinct domains of the COOH terminus, to investigate further the molecular bases for the modulatory action of cAMP and for the differences in the functional properties of the two channels. Differences in cAMP regulation between HCN1 and HCN2 are localized to sequence differences within the COOH terminus of the two channels. Surprisingly, exchange of the CNBDs between HCN1 and HCN2 has little effect on basal gating and has only a modest one on cAMP modulation. Rather, differences in cAMP modulation depend on the interaction between the CNBD and the C-linker, a conserved 80-amino acid region that connects the last (S6) transmembrane segment to the CNBD. Differences in basal gating depend on both the core transmembrane domain and the COOH terminus. These data, taken in the context of the previous data on deletion mutants, suggest that the inhibitory effect of the CNBD on basal gating depends on its interactions with both the C-linker and core transmembrane domain of the channel. The extent to which cAMP binding is able to relieve this inhibition is dependent on the interaction between the C-linker and the CNBD.  相似文献   

17.
In plants, cyclic GMP is involved in signal transduction in response to light and gibberellic acid. For cyclic AMP, a potential role during the plant cell cycle was recently reported. However, cellular targets for cyclic nucleotides in plants are largely unknown. Here we report on the identification and characterisation of a new gene family in Arabidopsis, which share features with cyclic nucleotide-gated channels from animals and inward-rectifying K+ channels from plants. The identified gene family comprises six members (Arabidopsis thaliana cyclic nucleotide-gated channels, AtCNGC1–6) with significant homology among the deduced proteins. Hydrophobicity analysis predicted six membrane-spanning domains flanked by hydrophilic amino and carboxy termini. A putative cyclic nucleotide binding domain (CNBD) which contains several residues that are invariant in other CNBDs was located in the carboxy terminus. This domain overlaps with a predicted calmodulin (CaM) binding site, suggesting interaction between cyclic nucleotide and CaM regulation. We demonstrated interaction of the carboxy termini of AtCNGC1 and AtCNGC2 with CaM in yeast, indicating that the CaM binding sites are functional. Furthermore, it was shown that both AtCNGC1 and AtCNGC2 can partly complement the K+-uptake-deficient yeast mutant CY162. Therefore, we propose that the identified genes constitute a family of plant cyclic nucleotide- and CaM-regulated ion channels.  相似文献   

18.
The functionally diverse cyclic nucleotide binding domain (CNBD) superfamily of cation channels contains both depolarization-gated (e.g., metazoan EAG family K+ channels) and hyperpolarization-gated channels (e.g., metazoan HCN pacemaker cation channels and the plant K+ channel KAT1). In both types of CNBD channels, the S4 transmembrane helix of the voltage sensor domain (VSD) moves outward in response to depolarization. This movement opens depolarization-gated channels and closes hyperpolarization-gated channels. External divalent cations and protons prevent or slow movement of S4 by binding to a cluster of acidic charges on the S2 and S3 transmembrane domains of the VSD and therefore inhibit activation of EAG family channels. However, a similar divalent ion/proton binding pocket has not been described for hyperpolarization-gated CNBD family channels. We examined the effects of external Cd2+ and protons on Arabidopsis thaliana KAT1 expressed in Xenopus oocytes and found that these ions strongly potentiate voltage activation. Cd2+ at 300 µM depolarizes the V50 of KAT1 by 150 mV, while acidification from pH 7.0 to 4.0 depolarizes the V50 by 49 mV. Regulation of KAT1 by Cd2+ is state dependent and consistent with Cd2+ binding to an S4-down state of the VSD. Neutralization of a conserved acidic charge in the S2 helix in KAT1 (D95N) eliminates Cd2+ and pH sensitivity. Conversely, introduction of acidic residues into KAT1 at additional S2 and S3 cluster positions that are charged in EAG family channels (N99D and Q149E in KAT1) decreases Cd2+ sensitivity and increases proton potentiation. These results suggest that KAT1, and presumably other hyperpolarization-gated plant CNBD channels, can open from an S4-down VSD conformation homologous to the divalent/proton-inhibited conformation of EAG family K+ channels.  相似文献   

19.
Cyclic nucleotide-gated (CNG) channels are nonselective cation channels that are activated by the direct binding of the cyclic nucleotides cAMP and cGMP. The region linking the last membrane-spanning region (S6) to the cyclic nucleotide binding domain in the COOH terminus, termed the C-linker, has been shown to play an important role in coupling cyclic nucleotide binding to opening of the pore. In this study, we explored the intersubunit proximity between the A' helices of the C-linker regions of CNGA1 in functional channels using site-specific cysteine substitution. We found that intersubunit disulfide bonds can be formed between the A' helices in open channels, and that inducing disulfide bonds in most of the studied constructs resulted in potentiation of channel activation. This suggests that the A' helices of the C-linker regions are in close proximity when the channel is in the open state. Our finding is not compatible with a homology model of the CNGA1 C-linker made from the recently published X-ray crystallographic structure of the hyperpolarization-activated, cyclic nucleotide-modulated (HCN) channel COOH terminus, and leads us to suggest that the C-linker region depicted in the crystal structure may represent the structure of the closed state. The opening conformational change would then involve a movement of the A' helices from a position parallel to the axis of the membrane to one perpendicular to the axis of the membrane.  相似文献   

20.
Cyclic nucleotide-gated (CNG) channels mediate sensory signal transduction in retinal and olfactory cells. The channels are activated by the binding of cyclic nucleotides to a cyclic nucleotide-binding domain (CNBD) in the C-terminus that is located at the intracellular side. The molecular events translating the ligand binding to the pore opening are still unknown. We investigated the role of the S4-S5 linker in the activation process by quantifying its interaction with other intracellular regions. To this end, we constructed chimeric channels in which the N-terminus, the S4-S5 linker, the C-linker, and the CNBD of the retinal CNGA1 subunit were systematically replaced by the respective regions of the olfactory CNGA2 subunit. Macroscopic concentration-response relations were analyzed, yielding the apparent affinity to cGMP and the Hill coefficient. The degree of functional coupling of intracellular regions in the activation gating was determined by thermodynamic double-mutant cycle analysis. We observed that all four intracellular regions, including the relatively short S4-S5 linker, are involved in controlling the apparent affinity of the channel to cGMP and, moreover, in determining the degree of cooperativity between the subunits, as derived from the Hill coefficient. The interaction energies reveal an interaction of the S4-S5 linker with both the N-terminus and the C-linker, but no interaction with the CNBD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号