首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Abstract

Aquaporin (AQP) 1 and AQP 4 are members of the aquaporin water channel family that play an important role in reabsorption of water from the renal tubular fluid to concentrate urine. Studies of renal AQPs have been performed in human, rodents, sheep, dogs and horses. We studied nephron segment-specific expression of AQP 1 and AQP 4 using immunohistochemical staining on paraffin sections of bovine kidneys. AQP 1 was moderately expressed in endothelium of the cortical capillary network, vasa recta, and glomerular capillaries. AQP 4 was moderately expressed only in cytoplasm of epithelial cells in proximal tubules. We concluded that AQP 1 and AQP 4 in the bovine kidney showed some differences from other species in renal trans-epithelial water transport.  相似文献   

3.
In plants, the vacuole is a multifunctional organelle with an important role in the maintenance of the intracellular space. Tonoplast membranes are highly permeable to water due to their content in aquaporins TIPs (Tonoplast Intrinsic Proteins) that allow the rapid water influx creating an internal turgor pressure responsible for cell expansion, elongation and shape.  相似文献   

4.
5.
Routing of the aquaporin-2 water channel in health and disease   总被引:4,自引:0,他引:4  
The identification of the first water channel in 1991 opened up a new field in cell biology and physiology that significantly increased our understanding of mammalian water balance regulation. Since then, nine other mammalian aquaporins have been identified. Although the physiological significance of many aquaporins is still to be elucidated, it has been clearly established for aquaporin-2. This water channel, which is expressed in the renal collecting duct, is redistributed to the apical membrane in response to a intracellular signaling cascade, initiated by binding of the antidiuretic hormone vasopressin to its receptor. In pathological conditions, characterized by a reduced reabsorption of water from urine, the expression of aquaporin-2 and the apical targeting is always found to be reduced or absent. Naturally-occurring AQP2 mutations that cause Nephrogenic Diabetes Insipidus, a disease in which the kidney is unable to concentrate urine in response to vasopressin, are extreme examples of this condition. In contrast, in diseases with increased renal water uptake, total and apical membrane expression of aquaporin-2 is increased. Since most aquaporins, including aquaporin-2, are considered to be constitutively open channels, much attention has been given to the regulation of the shuttling of aquaporin-2 to the apical membrane. This review focusses on the present understanding of the regulation of the routing of aquaporin-2 in collecting duct cells and the misrouting of aquaporin-2 mutants in Nephrogenic Diabetes Insipidus.  相似文献   

6.
The mechanism of proton exclusion in the aquaporin-1 water channel   总被引:11,自引:0,他引:11  
Aquaporins are efficient, yet strictly selective water channels. Remarkably, proton permeation is fully blocked, in contrast to most other water-filled pores which are known to conduct protons well. Blocking of protons by aquaporins is essential to maintain the electrochemical gradient across cellular and subcellular membranes. We studied the mechanism of proton exclusion in aquaporin-1 by multiple non-equilibrium molecular dynamics simulations that also allow proton transfer reactions. From the simulations, an effective free energy profile for the proton motion along the channel was determined with a maximum-likelihood approach. The results indicate that the main barrier is not, as had previously been speculated, caused by the interruption of the hydrogen-bonded water chain, but rather by an electrostatic field centered around the fingerprint Asn-Pro-Ala (NPA) motif. Hydrogen bond interruption only forms a secondary barrier located at the ar/R constriction region. The calculated main barrier height of 25-30 kJ mol(-1) matches the barrier height for the passage of protons across pure lipid bilayers and, therefore, suffices to prevent major leakage of protons through aquaporins. Conventional molecular dynamics simulations additionally showed that negatively charged hydroxide ions are prevented from being trapped within the NPA region by two adjacent electrostatic barriers of opposite polarity.  相似文献   

7.
Brassinolide may control aquaporin activities in Arabidopsis thaliana   总被引:8,自引:0,他引:8  
 It is usually assumed that aquaporins present in the cellular membranes could be an important route in the control of water flux in plants, but evidence for this hypothesis is scarce. In this paper, we report measurements of the osmotic permeability (P os ) of protoplasts isolated from hypocotyls of wild-type and mutant Arabidopsis thaliana (L.) Heynh. Mutants were affected in their growth and exhibited different sensitivities to the phytohormone, brassinolide. For the two mutants studied (cpd: constitutive photomorphogenesis and dwarfism; bri1: brassinosteroid insensitive), hypocotyl length was correlated to P os for the protoplasts. Under experimental conditions where hypocotyl growth had ceased, restoration of root, hypocotyl and petiole growth by brassinolide was correlated with an increase in P os of the hypocotyl protoplasts. We consider that the increase in P os of the hypocotyl cells was needed because these cells were part of the transcellular water pathway of the plant. This is the first time, to our knowledge, that brassinolide has been shown to be involved in the modification of the water-transport properties of cell membranes. Our results also emphasize the importance of aquaporins and the transcellular pathway in water transport under normal growth conditions. Received: 15 January 2000 / Accepted: 18 May 2000  相似文献   

8.
9.
Cell swelling has been shown to increase the permeability of the plasma membrane to ions such as K+, Na+, Ca2+ or Cl in many types of cells. In cardiac cells, swelling has been reported to increase Cl conductance, but whether cation-selective currents are activated by swelling is not known. Low Cl or Cl-free solutions were used to study the presence of such currents. Lowering the osmolarity of the extracellular medium from 299 to 219 mOsm resulted in cell swelling and concurrent activation of a cation-selective whole-cell current. When cell-attached patches were formed on swollen cells, opening of bursting single channel currents were observed in 18% of the patches studied. Ion substitution experiments indicated that the channel discriminated poorly among monovalent cations, and was impermeable to Cl. The channel was permeable to Ca2+. In symmetrical 140 mM K+, the current-voltage relation was linear with a single channel conductance of 36 ± 3 pS. Depolarization increased channel open probability. Interestingly, depending on the membrane patch studied, application of negative pressure to the pipette caused either an increase or a decrease in the open probability of the channel already activated by swelling. Thus, the sensitivity to tension of the swelling-activated channel was different from those of previously reported stretch-activated channels. These findings suggest that nonselective cation channels exist in rat atrial cells and may be involved in swelling-induced changes in cell function.Dr. Kim is an Established Investigator of the American Heart Association.  相似文献   

10.
C Maurel  R T Kado  J Guern    M J Chrispeels 《The EMBO journal》1995,14(13):3028-3035
The vacuolar membrane protein alpha-TIP is a seed-specific protein of the Major Intrinsic Protein family. Expression of alpha-TIP in Xenopus oocytes conferred a 4- to 8-fold increase in the osmotic water permeability (Pf) of the oocyte plasma membrane, showing that alpha-TIP forms water channels and is thus a new aquaporin. alpha-TIP has three putative phosphorylation sites on the cytoplasmic side of the membrane (Ser7, Ser23 and Ser99), one of which (Ser7) has been shown to be phosphorylated. We present several lines of evidence that the activity of this aquaporin is regulated by phosphorylation. First, mutation of the putative phosphorylation sites in alpha-TIP (Ser7Ala, Ser23Ala and Ser99Ala) reduced the apparent water transport activity of alpha-TIP in oocytes, suggesting that phosphorylation of alpha-TIP occurs in the oocytes and participates in the control of water channel activity. Second, exposure of oocytes to the cAMP agonists 8-bromoadenosine 3',5'-cyclic monophosphate, forskolin and 3-isobutyl-1-methylxanthine, which stimulate endogenous protein kinase A (PKA), increased the water transport activity of alpha-TIP by 80-100% after 60 min. That the protein can be phosphorylated by PKA was demonstrated by phosphorylating alpha-TIP in isolated oocyte membranes with the bovine PKA catalytic subunit. Third, the integrity of the three sites at positions 7, 23 and 99 was necessary for the cAMP-dependent increase in the Pf of oocytes expressing alpha-TIP, as well as for in vitro phosphorylation of alpha-TIP. These findings demonstrate that the alpha-TIP water channel can be modulated via phosphorylation of Ser7, Ser23 and Ser99.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Summary We have studied a 25-pS nonselective cation channel from the apical membranes of cell line ST885, derived from neonatal mouse mandibular glands. Its Cl permeability was not significantly different from zero. The permeabilities (relative to Na+) for inorganic cations were NH 4 + (1.87)>K+(1.12)>Li+ (1.02)>Na+(1)>Rb+(0.81)>Mg2+(0.07)>Ca2+(0.002), and for organic cations, guanidinium (1.61)4-aminopyridine (0.66)>diethylamine (0.54)>piperazine (0.25)>Tris (0.18)>N-methylglucamine (0.12). The Tris and N-methylglucamine permeabilities differed significantly from zero. Fitting the Renkin equation indicated that the channel had an equivalent pore radius of 0.49 nm. The channel was activated by Ca2+ on the cytosolic surface (>0.1 mmol/liter) with a Hill coefficient of 1.2; it was also activated by depolarization. Open- and closed-time histograms indicated that it had at least two open and two closed states. The channel was blocked by cytosolic AMP or ATP (0.1 mmol/liter). It was also blocked by the Cl channel blocker, diphenylamine-2-carboxylate (DPC; 0.1 mmol/liter), applied to the extracellular but not the cytosolic surface. 4-Aminopyridine, which permeated the channel when applied to the extracellular surface, blocked it when applied in low concentrations (5 mmol/liter) to the cytosolic surface. Quinine (0.1 mmol/liter) blocked from both the extracellular and cytosolic surfaces, blockade from either side being enhanced by depolarization. The channel was held open by application of SITS (0.1 mmol/liter) to the cytosolic surface. The channel shows striking similarities to the nicotinic acetylcholine receptor channel,viz., both channel types are abnormally permeable to 4-aminopyridine applied externally, and their selectivity sequences for inorganic ions are similar and for organic cations are identical.  相似文献   

12.
HCN4 is a hyperpolarization-activated nucleotide-gated cation channel involved in the generation of the I(f) current that drives cardiac pacemaker activity. Previous studies have demonstrated that HCN4 is highly expressed in a restricted manner in adult sinoatrial (SA) node [Eur. J. Biochem. 268 (2001) 1646]. However, its developmental expression pattern is unknown. We have examined expression of HCN4 mRNA during mouse heart development. HCN4 mRNA was first detected in the cardiac crescent at embryonic day (ED) 7.5. At ED 8 it was symmetrically located in the most caudal portion of the heart tube, the sinus venosus where pacemaker activity has previously been reported [Am. J. Physiol. 212 (1967) 407]. With further development, HCN4 expression became asymmetrically distributed, occupying the dorsal wall of the right atria, and was progressively restricted to the junction of the right atrial appendage and the superior vena cava. The site of HCN4 expression in late embryonic heart coincided with the location of the SA node in postnatal and adult heart [Cardiovasc. Res. 52 (2001) 51]. Our results suggest that HCN4 may be a unique marker of the developing SA node.  相似文献   

13.
Boron (B) toxicity to plants is responsible for low crop productivity in many regions of the world. Here we report a novel and effective means to alleviate the B toxicity to plants under high B circumstance. Functional characterization of AtTIP5;1, an aquaporin gene, revealed that overexpression of AtTIP5; 1(OxAtTIP5;1) in Arabidopsis significantly increased its tolerance to high B toxicity. Compared to wild-type plants, OxAtTIP5;1 plants exhibited longer hypocotyls, accelerated development, increased silique production under high B treatments. GUS staining and quantitative RT-PCR(qRT-PCR) results demonstrated that the expression of AtTIP5;l was induced by high B concentration treatment. Subcellular localization analysis revealed that the AtTIP5; 1-GFP fusion protein was localized on the tonoplast membrane, which was consistent with the prediction based on bioinformatics. Taken together, our results suggest that AtTIP5;I is involved in B transport pathway possibly via vacuolar compartmentation for B, and that overexpression of AtTIP5;1 in plants may provide an effective way to overcome the problem resulting from high B concentration toxicity.  相似文献   

14.
In plants, vacuoles are essential organelles that undergo dynamic volume changes during cell growth due to rapid and high flow of water through tonoplast water-carrying channels composed of integral proteins (tonoplast aquaporins). The tonoplast BobTIP26-1 from cauliflower has previously been shown to be an efficient active aquaporin in Xenopus leavis oocytes. In this study we used tobacco (Nicotiana tabacum cv. Wisconsin 38) suspension cells to examine the effect of BobTIP26-1 expression. In order to follow the intracellular localisation of the protein in real time, the gfp sequence was fused downstream to the BobTIP26-1 coding region. The fusion protein BobTIP26-1::GFP is less active than BobTIP26-1 by itself when expressed in Xenopus oocytes. Nevertheless, this fusion protein is well targeted to the tonoplast of the plant suspension cell when expressed via Agrobacterium co-cultivation. A complex tonoplast labelling is shown when young vacuolated cells are observed. The expression of the fusion protein does not affect the growth rate of the cells but increases their volume. We postulate that the increase in cell volume is triggered by the fusion protein allowing vacuolar volume increase.  相似文献   

15.
Sinorhizobium fredii RT19 can tolerate up to 0.6 M NaCl, whereas all its pha2-disrupted mutants, constructed by Tn5 mutagenesis, failed to grow in even the presence of 0.1 M NaCl. No growth difference was detected in pha2 mutants at a pH<7.5 in the presence or absence of K+, but growth reduction was observed in the presence of K+ when pH>7.5. The pha2 gene cluster was able to completely restore the growth of the pha2 mutants of S. fredii RT19 in 0.6 M NaCl. Measurement of monovalent cation intracellular content suggested that pha2 was involved in both Na+ (Li+) and K+ efflux. The pha2 mutants exhibited K+/H+, but no apparent Na+(Li+)/H+ antiporter activity in everted membrane vesicles. Taken together, these results indicated that the pha2 cluster of S. fredii RT19 encodes a monovalent cation/proton antiporter involved in resistance to Na+ and adaption to pH, which was very different from the pha1 cluster of Sinorhizobium meliloti, which encodes a K+/H+ antiporter.  相似文献   

16.
17.
Both mammals and birds can concentrate urine hyperosmotic to plasma via a countercurrent multiplier mechanism, although evolutionary lines leading to mammals and birds diverged at an early stage of tetrapod evolution. We reported earlier (Nishimura H, Koseki C, and Patel TB. Am J Physiol Regul Integr Comp Physiol 271: R1535-R1543, 1996) that arginine vasotocin (AVT; avian antidiuretic hormone) increases diffusional water permeability in the isolated, perfused medullary collecting duct (CD) of the quail kidney. In the present study, we have identified an aquaporin (AQP) 2 homolog water channel in the medullary cones of Japanese quail, Coturnix coturnix (qAQP2), by RT-PCR-based cloning techniques. A full-length cDNA contains an 822-bp open reading frame that encodes a 274-amino acid sequence with 75.5% identity to rat AQP2. The qAQP2 has six transmembrane domains, two asparagine-proline-alanine (NPA) sequences, and putative N-glycosylation (asparagine-124) and phosphorylation sites (serine-257) for cAMP-dependent protein kinase. qAQP2 is expressed in the membrane of Xenopus laevis oocytes and significantly increased its osmotic water permeability (P(f)), inhibitable (P < 0.01) by mercury chloride. qAQP2 mRNA (RT-PCR) was detected in the kidney; medullary mRNA levels were higher than cortical levels. qAQP2 protein that binds to rabbit anti-rat AQP2 antibody is present in the apical/subapical regions of both cortical and medullary CDs from normally hydrated quail, and the intensity of staining increased only in the medullary CDs after water deprivation or AVT treatment. The relative density of the approximately 29-kDa protein band detected by immunoblot from the medullary cones was modestly higher in water-deprived/AVT-treated quail. The results suggest that 1) medullary CDs of quail kidneys express a mercury-sensitive functioning qAQP2 water channel, and 2) qAQP2 is at least partly regulated by an AVT-dependent mechanism. This is the first clear identification of AQP2 homolog in nonmammalian vertebrates.  相似文献   

18.
The change in the composition of atmospheric deposition as it passes through the forest canopy on two 10-year-old Pinus radiata D. Don forests (Manzanal and Posadero) was studied in the Basque Country, analysing the concentration of different constituents in bulk precipitation and throughfall. The precipitation at the study sites was bimodal with two maxima in the year; one in late spring and another one in late autumn. Posadero had a mean annual precipitation of 1223.6 mm with an interception loss of 27.5% by the forest canopy and Manzanal had a mean annual precipitation of 978.6 mm with the interception loss being 22.2% of it. Constituent concentrations followed a similar seasonal variation, increasing during the summer when precipitation decreases. At both study sites the chemical species analysed in bulk precipitation and throughfall were characterised by the fact that they came from three distinct sources: acidic pollution, marine and terrestrial origin. Concentration of constituents in bulk precipitation in Manzanal was higher than in Posadero, most probably due to the smaller amount of precipitation that falls in this study site. The precipitation at Manzanal had a significantly lower pH than at Posadero. The amounts of sulphate, nitrate-nitrogen, organic nitrogen and protons that fell in the bulk precipitation at Manzanal (the polluted site) were higher than those that fell at Posadero (less polluted site). The concentration of organic nitrogen in the bulk precipitation of the polluted site was significantly related to the hydrocarbon concentration measured in the atmosphere in the nearby town of Muskiz. Throughfall in Manzanal had higher amounts of sulphate, nitrate-nitrogen, calcium, magnesium, sodium, potassium and chloride than in Posadero. This fact suggests that both dry deposition and canopy leaching were an important source of throughfall constituents in Manzanal. The amount of manganese measured in Posadero throughfall was higher than that found in Manzanal throughfall. The pH in the throughfall did not show any significant difference between sites and was significantly higher than in bulk precipitation. Thus, canopies in the study sites seem to be able to neutralise very efficiently the acidic load of bulk deposition. Despite this buffering capacity of the canopies, the soil at Manzanal appeared to be more acidic than at Posadero, probably due to the liberation of protons in the rhizosphere when the neutralising pacity of the canopy is `recharged'. This soil acidification may be leading to a greater solubilization of aluminium in the polluted site which could suffer from cation nutrient deficiencies in the future.  相似文献   

19.
20.
Epinastic leaf movement of tobacco is based on differential growth of the upper and lower leaf surface and is distinct from the motor organ-driven mechanism of nyctinastic leaf movement of, for example, mimosa species. The epinastic leaf movement of tobacco is observed not only under diurnal light regimes but also in continuous light, indicating a control by light and the circadian clock. As the transport of water across membranes by aquaporins is an important component of rapid plant cell elongation, the role of the tobacco aquaporin Nt aquaporin (AQP)1 in the epinastic response was studied in detail. In planta NtAQP1-luciferase (LUC) activity studies, Northern and Western blot analyses demonstrated a diurnal and circadian oscillation in the expression of this plasma membrane intrinsic protein (PIP)1-type aquaporin in leaf petioles, exhibiting peaks of expression coinciding with leaf unfolding. Cellular water permeability of protoplasts isolated from leaf petioles was found to be high in the morning, i.e. during the unfolding reaction, and low in the evening. Moreover, diurnal epinastic leaf movement was shown to be reduced in transgenic tobacco lines with an impaired expression of NtAQP1. It is concluded that the cyclic expression of PIP1-aquaporin represents an important component of the leaf movement mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号