首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 0 毫秒
1.
Riboswitches are RNA molecules that regulate gene expression using conformation change, affected by binding of small molecule ligands. Although a number of ligand‐bound aptamer complex structures have been solved, it is important to know ligand‐free conformations of the aptamers in order to understand the mechanism of specific binding by ligands. In this paper, we use dynamics simulations on a series of models to characterize the ligand‐free and ligand‐bound aptamer domain of the c‐di‐GMP class I (GEMM‐I) riboswitch. The results revealed that the ligand‐free aptamer has a stable state with a folded P2 and P3 helix, an unfolded P1 helix and open binding pocket. The first Mg ions binding to the aptamer is structurally favorable for the successive c‐di‐GMP binding. The P1 helix forms when c‐di‐GMP is successive bound. Three key junctions J1/2, J2/3 and J1/3 in the GEMM‐I riboswitch contributing to the formation of P1 helix have been found. The binding of the c‐di‐GMP ligand to the GEMM‐I riboswitch induces the riboswitch's regulation through the direct allosteric communication network in GEMM‐I riboswitch from the c‐di‐GMP binding sites in the J1/2 and J1/3 junctions to the P1 helix, the indirect ones from those in the J2/3 and P2 communicating to P1 helix via the J1/2 and J1/3 media.  相似文献   

2.
PA4608 is a single PilZ domain protein from Pseudomonas aeruginosa that binds to cyclic dimeric guanosine monophosphate (c-di-GMP). Although the monomeric structure of unbound PA4608 has been studied in detail, the molecular details of c-di-GMP binding to this protein are still uncharacterized. Hence, we determined the solution structure of c-di-GMP bound PA4608. We found that PA4608 undergoes conformational changes to expose the c-di-GMP binding site by ejection of the C-terminal 3(10) helix. A dislocation of the C-terminal tail in the presence of c-di-GMP implies that this region acts as a lid that alternately covers and exposes the hydrophobic surface of the binding site. In addition, mutagenesis and NOE data for PA4608 revealed that conserved residues are in contact with the c-di-GMP molecule. The unique structural characteristics of PA4608, including its monomeric state and its ligand binding characteristics, yield insight into its function as a c-di-GMP receptor.  相似文献   

3.
Bacterial biofilms are multicellular aggregates encased in an extracellular matrix mainly composed of exopolysaccharides (EPSs), protein and nucleic acids, which determines the architecture of the biofilm. Erwinia amylovora Ea1189 forms a biofilm inside the xylem of its host, which results in vessel plugging and water transport impairment. The production of the EPSs amylovoran and levan is critical for the formation of a mature biofilm. In addition, cyclic dimeric GMP (c‐di‐GMP) has been reported to positively regulate amylovoran biosynthesis and biofilm formation in E. amylovora Ea1189. In this study, we demonstrate that cellulose is synthesized by E. amylovora Ea1189 and is a major modulator of the three‐dimensional characteristics of biofilms formed by this bacterium, and also contributes to virulence during systemic host invasion. In addition, we demonstrate that the activation of cellulose biosynthesis in E. amylovora is a c‐di‐GMP‐dependent process, through allosteric binding to the cellulose catalytic subunit BcsA. We also report that the endoglucanase BcsZ is a key player in c‐di‐GMP activation of cellulose biosynthesis. Our results provide evidence of the complex composition of the extracellular matrix produced by E. amylovora and the implications of cellulose biosynthesis in shaping the architecture of the biofilm and in the expression of one of the main virulence phenotypes of this pathogen.  相似文献   

4.
In a recent screen for novel virulence factors involved in the interaction between Pseudomonas savastanoi pv. savastanoi and the olive tree, a mutant was selected that contained a transposon insertion in a putative cyclic diguanylate (c‐di‐GMP) phosphodiesterase‐encoding gene. This gene displayed high similarity to bifA of Pseudomonas aeruginosa and Pseudomonas putida. Here, we examined the role of BifA in free‐living and virulence‐related phenotypes of two bacterial plant pathogens in the Pseudomonas syringae complex, the tumour‐inducing pathogen of woody hosts, P. savastanoi pv. savastanoi NCPPB 3335, and the pathogen of tomato and Arabidopsis, P. syringae pv. tomato DC3000. We showed that deletion of the bifA gene resulted in decreased swimming motility of both bacteria and inhibited swarming motility of DC3000. In contrast, overexpression of BifA in P. savastanoi pv. savastanoi had a positive impact on swimming motility and negatively affected biofilm formation. Deletion of bifA in NCPPB 3335 and DC3000 resulted in reduced fitness and virulence of the microbes in olive (NCPPB 3335) and tomato (DC3000) plants. In addition, real‐time monitoring of olive plants infected with green fluorescent protein (GFP)‐tagged P. savastanoi cells displayed an altered spatial distribution of mutant ΔbifA cells inside olive knots compared with the wild‐type strain. All free‐living phenotypes that were altered in both ΔbifA mutants, as well as the virulence of the NCPPB 3335 ΔbifA mutant in olive plants, were fully rescued by complementation with P. aeruginosa BifA, whose phosphodiesterase activity has been demonstrated. Thus, these results suggest that P. syringae and P. savastanoi BifA are also active phosphodiesterases. This first demonstration of the involvement of a putative phosphodiesterase in the virulence of the P. syringae complex provides confirmation of the role of c‐di‐GMP signalling in the virulence of this group of plant pathogens.  相似文献   

5.
6.
We report for the first time a hydrolysis mechanism of the cyclic dimeric guanosine monophosphate (c‐di‐GMP) by the EAL domain phosphodiesterases as revealed by molecular simulations. A model system for the enzyme‐substrate complex was prepared on the base of the crystal structure of the EAL domain from the BlrP1 protein complexed with c‐di‐GMP. The nucleophilic hydroxide generated from the bridging water molecule appeared in a favorable position for attack on the phosphorus atom of c‐di‐GMP. The most difficult task was to find a pathway for a proton transfer to the O3' atom of c‐di‐GMP to promote the O3'? P bond cleavage. We show that the hydrogen bond network extended over the chain of water molecules in the enzyme active site and the Glu359 and Asp303 side chains provides the relevant proton wires. The suggested mechanism is consistent with the structural, mutagenesis, and kinetic experimental studies on the EAL domain phosphodiesterases. Proteins 2016; 84:1670–1680. © 2016 Wiley Periodicals, Inc.  相似文献   

7.
8.
PA4608 is a 125 residue protein from Pseudomonas aeruginosa with a recent identification as a PilZ domain and putative bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) adaptor protein that plays a role in bacterial second-messenger regulated processes. The nuclear magnetic resonance (NMR) structure of PA4608 has been determined and c-di-GMP binding has been confirmed by NMR titration studies. The monomeric core structure of PA4608 contains a six-stranded anti-parallel beta barrel flanked by three helices. Conserved surface residues among PA4608 homologs suggest the c-di-GMP binding site is at one end of the barrel and includes residues in the helices as well as in the unstructured N-terminus. Chemical shift changes in PA4608 resonances upon titration with c-di-GMP confirm binding. This evidence supports the hypothesis that proteins containing PilZ domains are the long-sought c-di-GMP adaptor proteins.  相似文献   

9.
10.
11.
12.
Arabidopsis thaliana gene At5g06450 encodes a putative DnaQ‐like 3′‐5′ exonuclease domain‐containing protein (AtDECP). The DnaQ‐like 3′‐5′ exonuclease domain is often found as a proofreading domain of DNA polymerases. The overall structure of AtDECP adopts an RNase H fold that consists of a mixed β‐sheet flanked by α‐helices. Interestingly, AtDECP forms a homohexameric assembly with a central six fold symmetry, generating a central cavity. The ring‐shaped structure and comparison with WRN‐exo, the best structural homologue of AtDECP, suggest a possible mechanism for implementing its exonuclease activity using positively charged patch on the N‐terminal side of the homohexameric assembly. The homohexameric structure of AtDECP provides unique information about the interaction between the DnaQ‐like 3′‐5′ exonuclease and its substrate nucleic acids.Proteins 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

13.
Leptospiral immunoglobulin‐like (Lig) proteins are surface proteins expressed in pathogenic strains of Leptospira. LigB, an outer membrane protein containing tandem repeats of bacterial Ig‐like (Big) domains and a no‐repeat tail, has been identified as a virulence factor involved in adhesion of pathogenic Leptospira interrogans to host cells. A Big domain of LigB, LigBCen2R, was reported previously to bind the GBD domain of fibronectin, suggesting its important role in leptospiral infections. In this study, we determined the solution structure of LigBCen2R by nuclear magnetic resonance (NMR) spectroscopy. LigBCen2R adopts a canonical immunoglobulin‐like fold which is comprised of a beta‐sandwich of ten strands in three sheets. We indicated that LigBCen2R is able to bind to Ca2+ with a high affinity by isothermal titration calorimetry assay. NMR perturbation experiment identified a number of residues responsible for Ca2+ binding. Structural comparison of it with other Big domains demonstrates that they share a similar fold pattern, but vary in some structural characters. Since Lig proteins play a vital role in the infection to host cells, our study will contribute a structural basis to understand the interactions between Leptospira and host cells. Proteins 2015; 83:195–200. © 2014 Wiley Periodicals, Inc.  相似文献   

14.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号