首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Platelet aggregation is the consequence of the binding of extracellular bivalent ligands such as fibrinogen and von Willebrand factor to the high affinity, active state of integrin αIIbβ3. This state is achieved through a so‐called “inside‐out” mechanism characterized by the membrane‐assisted formation of a complex between the F2 and F3 subdomains of intracellular protein talin and the integrin β3 tail. Here, we present the results of multi‐microsecond, all‐atom molecular dynamics simulations carried on the complete transmembrane (TM) and C‐terminal (CT) domains of αIIbβ3 integrin in an explicit lipid‐water environment, and in the presence or absence of the talin‐1 F2 and F3 subdomains. These large‐scale simulations provide unprecedented molecular‐level insights into the talin‐driven inside‐out activation of αIIbβ3 integrin. Specifically, they suggest a preferred conformation of the complete αIIbβ3 TM/CT domains in a lipid‐water environment, and testable hypotheses of key intermolecular interactions between αIIbβ3 integrin and the F2/F3 domains of talin‐1. Notably, not only do these simulations give support to a stable left‐handed reverse turn conformation of the αIIb juxtamembrane motif rather than a helical turn, but they raise the question as to whether TM helix separation is required for talin‐driven integrin activation. Proteins 2014; 82:3231–3240. © 2014 Wiley Periodicals, Inc.  相似文献   

2.
Integrins are a family of heterodimeric cell adhesion receptors expressed on most cells and are involved in many cellular functions including phagocytosis, a process by which professional phagocytes recognise, bind and internalise foreign materials larger than 0.5 µm in diameter. An example of a phagocytic integrin receptor is αMβ2, and this review seeks to provide fresh insights into the current knowledge of this subject. Key areas that this review will emphasise include, the classical understanding of bi‐directional signalling to and from αMβ2 (aka inside‐out and outside‐in signalling, respectively). For inside‐out signalling, we will review the involvement of the small GTPase, Rap1, FERM‐containing proteins such as talin and kindlin‐3, some of the kinases, and the GEF, cytohesin‐1 and vasodilator‐stimulated phosphoprotein (VASP). We also summarise studies into outside‐in signalling, focussing on the roles of RhoA and RhoG, and activation of Rac1 through the complex comprising TIAM, 14‐3‐3 and β2. We will also consider non‐classical signalling processes, which include integrin clustering and membrane ruffling. Through this review, we hope to highlight the importance of αMβ2 signalling mechanisms and their relevance to other integrin‐mediated events.  相似文献   

3.
Cell surface receptors of the integrin family are pivotal to cell adhesion and migration. The activation state of heterodimeric αβ integrins is correlated to the association state of the single-pass α and β transmembrane domains. The association of integrin αIIbβ3 transmembrane domains, resulting in an inactive receptor, is characterized by the asymmetric arrangement of a straight (αIIb) and tilted (β3) helix relative to the membrane in congruence to the dissociated structures. This allows for a continuous association interface centered on helix-helix glycine-packing and an unusual αIIb(GFF) structural motif that packs the conserved Phe-Phe residues against the β3 transmembrane helix, enabling αIIb(D723)β3(R995) electrostatic interactions. The transmembrane complex is further stabilized by the inactive ectodomain, thereby coupling its association state to the ectodomain conformation. In combination with recently determined structures of an inactive integrin ectodomain and an activating talin/β complex that overlap with the αβ transmembrane complex, a comprehensive picture of integrin bi-directional transmembrane signaling has emerged.  相似文献   

4.
Integrins are cell adhesion receptors that transmit bidirectional signals across plasma membrane and are crucial for many biological functions. Recent structural studies of integrin transmembrane (TM) and cytoplasmic domains have shed light on their conformational changes during integrin activation. A structure of the resting state was solved based on Rosetta computational modeling and experimental data using intact integrins on mammalian cell surface. In this structure, the αIIb GXXXG motif and their β3 counterparts of the TM domains associate with ridge‐in‐groove packing, and the αIIb GFFKR motif and the β3 Lys‐716 in the cytoplasmic segments play a critical role in the α/β association. Comparing this structure with the NMR structures of the monomeric αIIb and β3 (represented as active conformations), the α subunit helix remains similar after dissociation whereas β subunit helix is tilted by embedding additional 5–6 residues into the lipid bilayer. These conformational changes are critical for integrin activation and signaling across the plasma membrane. We thus propose a new model of integrin TM activation in which the recent NMR structure of the αIIbβ3 TM/cytoplasmic complex represents an intermediate or transient state, and the electrostatic interaction in the cytoplasmic region is important for priming the initial α/β association, but not absolutely necessary for the resting state. J. Cell. Biochem. 109: 447–452, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

5.
Dimerization of transmembrane (TM) α helices of membrane receptors plays a key role in signaling. We show that molecular dynamics simulations yield models of integrin TM helix heterodimers, which agree well with available NMR structures. We use?a multiscale simulation approach, combining coarse-grained and subsequent atomistic simulation, to model the dimerization of wild-type (WT) and mutated sequences of the αIIb and β3 integrin TM helices. The WT helices formed a stable, right-handed dimer with the same helix-helix interface as in the published NMR structure (PDB: 2K9J). In contrast, the presence of disruptive mutations perturbed the interface between the helices, altering the conformational stability of the dimer. The αIIb/β3 interface was more flexible than that of, e.g., glycophorin A. This is suggestive of a role for alternative packing modes of the TM helices in transbilayer signaling.  相似文献   

6.
Heparin/heparan sulfate interact with growth factors, chemokines, extracellular proteins, and receptors. Integrins are αβ heterodimers that serve as receptors for extracellular proteins, regulate cell behavior, and participate in extracellular matrix assembly. Heparin binds to RGD‐dependent integrins (αIIbβ3, α5β1, αvβ3, and αvβ5) and to RGD‐independent integrins (α4β1, αXβ2, and αMβ2), but their binding sites have not been located on integrins. We report the mapping of heparin binding sites on the ectodomain of αvβ3 integrin by molecular modeling. The surface of the ectodomain was scanned with small rigid probes mimicking the sulfated domains of heparan sulfate. Docking results were clustered into binding spots. The best results were selected for further docking simulations with heparin hexasaccharide. Six potential binding spots containing lysine and/or arginine residues were identified on the ectodomain of αvβ3 integrin. Heparin would mostly bind to the top of the genu domain, the Calf‐I domain of the α subunit, and the top of the β subunit of RGD‐dependent integrins. Three spots were close enough from each other on the integrin surface to form an extended binding site that could interact with heparin/heparan sulfate chains. Because heparin does not bind to the same integrin site as protein ligands, no steric hindrance prevents the formation of ternary complexes comprising the integrin, its protein ligand, and heparin/heparan sulfate. The basic amino acid residues predicted to interact with heparin are conserved in the sequences of RGD‐dependent but not of RGD‐independent integrins suggesting that heparin/heparan sulfate could bind to different sites on these two integrin subfamilies. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
Fundamental to cell adhesion and migration, integrins are large heterodimeric membrane proteins that uniquely mediate inside‐out signal transduction, whereby adhesion to the extracellular matrix is activated from within the cell by direct binding of talin to the cytoplasmic tail of the β integrin subunit. Here, we report the first structure of talin bound to an authentic full‐length β integrin tail. Using biophysical and whole cell measurements, we show that a specific ionic interaction between the talin F3 domain and the membrane–proximal helix of the β tail disrupts an integrin α/β salt bridge that helps maintain the integrin inactive state. Second, we identify a positively charged surface on the talin F2 domain that precisely orients talin to disrupt the heterodimeric integrin transmembrane (TM) complex. These results show key structural features that explain the ability of talin to mediate inside‐out TM signalling.  相似文献   

8.
Integrin αVβ3 plays an important role in regulating cellular activities and in human diseases. Although the structure of αVβ3 has been studied by crystallography and electron microscopy, the detailed activation mechanism of integrin αVβ3 induced by fibronectin remains unclear. In this study, we investigated the conformational and dynamical motion changes of Mn2+‐bound integrin αVβ3 by binding to fibronectin with molecular dynamics simulations. Results showed that fibronectin binding to integrin αVβ3 caused the changes of the conformational flexibility of αVβ3 domains, the essential mode of motion for the domains of αV subunit and β3 subunit and the degrees of correlated motion of residues between the domains of αV subunit and β3 subunit of integrin αVβ3. The angle of Propeller domain with respect to the Calf‐2 domain of αV subunit and the angle of Hybrid domain with respect to βA domain of β3 subunit significantly increased when integrin αVβ3 was bound to fibronectin. These changes could result in the conformational change tendency of αVβ3 from a bend conformation to an extended conformation and lead to the open swing of Hybrid domain relative to βA domain of β3 subunit, which have demonstrated their importance for αVβ3 activation. Fibronectin binding to integrin αVβ3 significantly decreased the relative position of α1 helix to βA domain and that to metal ion‐dependent adhesion site, stabilized Mn2+ ions binding in integrin αVβ3 and changed fibronectin conformation, which are important for αVβ3 activation. Results from this study provide important molecular insight into the “outside‐in” activation mechanism of integrin αVβ3 by binding to fibronectin.  相似文献   

9.
A functional proteomic technology using protein chip and molecular simulation was used to demonstrate a novel biomolecular interaction between P11, a peptide containing the Ser‐Asp‐Val (SDV) sequence and integrin αvβ3. P11 (HSDVHK) is a novel antagonistic peptide of integrin αvβ3 screened from hexapeptide library through protein chip system. An in silico docking study and competitive protein chip assay revealed that the SDV sequence of P11 is able to create a stable inhibitory complex onto the vitronectin‐binding site of integrin αvβ3. The Arg‐Gly‐Asp (RGD)‐binding site recognition by P11 was site specific because the P11 was inactive for the complex formation of a denatured form of integrin–vitronectin. P11 showed a strong antagonism against αvβ3‐GRGDSP interaction with an IC50 value of 25.72±3.34 nM, whereas the value of GRGDSP peptide was 1968.73±444.32 nM. The binding‐free energies calculated from the docking simulations for each P11 and RGD peptide were ?3.99 and ?3.10 kcal/mol, respectively. The free energy difference between P11 and RGD corresponds to approximately a 4.5‐fold lower Ki value for the P11 than the RGD peptide. The binding orientation of the docked P11 was similar to the crystal structure of the RGD in αvβ3. The analyzed docked poses suggest that a divalent metal–ion coordination was a common driving force for the formation of both SDV/αvβ3 and RGD/αvβ3 complexes. This is the first report on the specific recognition of the RGD‐binding site of αvβ3 by a non‐RGD containing peptide using a computer‐assisted proteomic approach.  相似文献   

10.
The interaction between the integrin α6β4 and plectin is essential for the assembly and stability of hemidesmosomes, which are junctional adhesion complexes that anchor epithelial cells to the basement membrane. We describe the crystal structure at 2.75 Å resolution of the primary α6β4–plectin complex, formed by the first pair of fibronectin type III domains and the N‐terminal region of the connecting segment of β4 and the actin‐binding domain of plectin. Two missense mutations in β4 (R1225H and R1281W) linked to nonlethal forms of epidermolysis bullosa prevent essential intermolecular contacts. We also present two structures at 1.75 and 2.05 Å resolution of the β4 moiety in the absence of plectin, which reveal a major rearrangement of the connecting segment of β4 on binding to plectin. This conformational switch is correlated with the way α6β4 promotes stable adhesion or cell migration and suggests an allosteric control of the integrin.  相似文献   

11.
Integrins are a family of heterodimeric adhesion receptors that transmit signals bi-directionally across the plasma membranes. The transmembrane domain (TM) of integrin plays a critical role in mediating transition of the receptor from the default inactive to the active state on the cell surfaces. In this study, we successfully applied the substituted cysteine scanning accessibility method to determine the intracellular border of the integrin α(IIb)β(3) TM in the inactive and active states in living cells. We examined the aqueous accessibility of 75 substituted cysteines comprising the C terminus of both α(IIb) and β(3) TMs, the intracellular membrane-proximal regions, and the whole cytoplasmic tails, to the labeling of a membrane-permeable, cysteine-specific chemical biotin maleimide (BM). The active state of integrin α(IIb)β(3) heterodimer was generated by co-expression of activating partners with the cysteine-substituted constructs. Our data revealed that, in the inactive state, the intracellular lipid/aqueous border of α(IIb) TM was at Lys(994) and β(3) TM was at Phe(727) respectively; in the active state, the border of α(IIb) TM shifted to Pro(998), whereas the border of β(3) TM remained unchanged, suggesting that complex conformational changes occurred in the TMs upon α(IIb)β(3) inside-out activation. On the basis of the results, we propose a new inside-out activation mechanism for integrin α(IIb)β(3) and by inference, all of the integrins in their native cellular environment.  相似文献   

12.
The bidirectional communication between integrin αvβ3 and vascular endothelial growth factor (VEGF) receptors acts to integrate and coordinate endothelial cell (EC) activity during angiogenesis. However, the molecular mechanisms involved in this signaling crosstalk are only partially revealed. We have found that protein kinase D1 (PKD1) was activated by VEGF‐A, but not by other angiogenic factors, and associated with αvβ3 integrin. Moreover, knockdown of PKD1 increased endocytosis of αvβ3 and reduced its return from endosomes to the plasma membrane leading to accumulation of the integrin in Rab5‐ and Rab4‐positive endosomes. Consistent with this, PKD1 knockdown caused defects in focal complex formation and reduced EC migration in response to VEGF‐A. Moreover, knockdown of PKD1 reduced EC motility on vitronectin, whereas migration on collagen I was not PKD1 dependent. These results suggest that PKD1‐regulated αvβ3 trafficking contributes to the angiogenesis process by integrating VEGF‐A signaling with extracellular matrix interactions.  相似文献   

13.
14.
Syndecans function as co-receptors for integrins on different matrixes. Recently, syndecan-1 has been shown to be important for α2β1 integrin-mediated adhesion to collagen in tumor cells by regulating cell adhesion and migration on two-dimensional collagen. However, the function of syndecans in supporting α2β1 integrin interactions with three-dimensional (3D) collagen is less well studied. Using loss-of-function and overexpression experiments we show that in 3D collagen syndecan-4 supports α2β1-mediated collagen matrix contraction. Cell invasion through type I collagen containing 3D extracellular matrix (ECM) is driven by α2β1 integrin and membrane type-1 matrix metalloproteinase (MT1-MMP). Here we show that mutational activation of K-ras correlates with increased expression of α2β1 integrin, MT1-MMP, syndecan-1, and syndecan-4. While K-ras-induced α2β1 integrin and MT1-MMP are positive regulators of invasion, silencing and overexpression of syndecans demonstrate that these proteins inhibit cell invasion into collagen. Taken together, these data demonstrate the existence of a complex interplay between integrin α2β1, MT1-MMP, and syndecans in the invasion of K-ras mutant cells in 3D collagen that may represent a mechanism by which tumor cells become more invasive and metastatic.  相似文献   

15.
The small GTPase Rap1 and the cytoskeletal protein talin regulate binding of C3bi‐opsonised red blood cells (RBC) to integrin αMβ2 in phagocytic cells, although the mechanism has not been investigated. Using COS‐7 cells transfected with αMβ2, we show that Rap1 acts on the β2 and not the αM chain, and that residues 732–761 of the β2 subunit are essential for Rap1‐induced RBC binding. Activation of αMβ2 by Rap1 was dependent on W747 and F754 in the β2 tails, which are required for talin head binding, suggesting a link between Rap1 and talin in this process. Using talin1 knock‐out cells or siRNA‐mediated talin1 knockdown in the THP‐1 monocytic cell line, we show that Rap1 acts upstream of talin but surprisingly, RIAM knockdown had little effect on integrin‐mediated RBC binding or cell spreading. Interestingly, Rap1 and talin influence each other's localisation at phagocytic cups, and co‐immunoprecipitation experiments suggest that they interact together. These results show that Rap1‐mediated activation of αMβ2 in macrophages shares both common and distinct features from Rap1 activation of αIIbβ3 expressed in CHO cells. J. Cell. Biochem. 111: 999–1009, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

16.
There is a critical need for compounds that target cell surface integrin receptors for applications in cancer therapy and diagnosis. We used directed evolution to engineer the Ecballium elaterium trypsin inhibitor (EETI‐II), a knottin peptide from the squash family of protease inhibitors, as a new class of integrin‐binding agents. We generated yeast‐displayed libraries of EETI‐II by substituting its 6‐amino acid trypsin binding loop with 11‐amino acid loops containing the Arg‐Gly‐Asp integrin binding motif and randomized flanking residues. These libraries were screened in a high‐throughput manner by fluorescence‐activated cell sorting to identify mutants that bound to αvβ3 integrin. Select peptides were synthesized and were shown to compete for natural ligand binding to integrin receptors expressed on the surface of U87MG glioblastoma cells with half‐maximal inhibitory concentration values of 10–30 nM. Receptor specificity assays demonstrated that engineered knottin peptides bind to both αvβ3 and αvβ5 integrins with high affinity. Interestingly, we also discovered a peptide that binds with high affinity to αvβ3, αvβ5, and α5β1 integrins. This finding has important clinical implications because all three of these receptors can be coexpressed on tumors. In addition, we showed that engineered knottin peptides inhibit tumor cell adhesion to the extracellular matrix protein vitronectin, and in some cases fibronectin, depending on their integrin binding specificity. Collectively, these data validate EETI‐II as a scaffold for protein engineering, and highlight the development of unique integrin‐binding peptides with potential for translational applications in cancer. Proteins 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

17.
Understanding the structure, folding, and interaction of membrane proteins requires experimental tools to quantify the association of transmembrane (TM) helices. Here, we introduce isothermal titration calorimetry (ITC) to measure integrin αIIbβ3 TM complex affinity, to study the consequences of helix–helix preorientation in lipid bilayers, and to examine protein-induced lipid reorganization. Phospholipid bicelles served as membrane mimics. The association of αIIbβ3 proceeded with a free energy change of − 4.61 ± 0.04 kcal/mol at bicelle conditions where the sampling of random helix–helix orientations leads to complex formation. At bicelle conditions that approach a true bilayer structure in effect, an entropy saving of > 1 kcal/mol was obtained from helix–helix preorientation. The magnitudes of enthalpy and entropy changes increased distinctly with bicelle dimensions, indicating long-range changes in bicelle lipid properties upon αIIbβ3 TM association. NMR spectroscopy confirmed ITC affinity measurements and revealed αIIbβ3 association and dissociation rates of 4500 ± 100 s− 1 and 2.1 ± 0.1 s− 1, respectively. Thus, ITC is able to provide comprehensive insight into the interaction of membrane proteins.  相似文献   

18.
How to target cancer cells with high specificity and kill cancer cells with high efficiency remains an urgent demand for anticancer drugs. Temporin‐La, which belongs to the family of temporins, presents antitumor activity against many cancer cell lines. We first used a whole bioinformatic analysis method as a platform to identify new anticancer antimicrobial peptides (AMPs). On the basis of these results, we designed a temporin‐La analog (temporin‐Las) and related constructs containing the Arg‐Gly‐Asp (RGD) tripeptide, the integrin αvβ3 homing domain (RGD‐La and RGD‐Las). We detected a link between the net charges and integrin αvβ3 expression of cancer cell lines and the antitumor activities of these peptides. Temporin‐La and its synthetic analogs inhibited cancer cell proliferation in a dose‐dependent manner. Evidence was provided that the affinity between RGD‐Las and tumor cell membranes was stronger than other tested peptides using a pull‐down assay. Morphological changes on the cell membrane induced by temporin‐La and RDG‐Las, respectively, were examined by scanning electron microscopy. Additionally, time‐dependent morphological changes were detected by confocal microscopy, where the binding process of RGD‐Las to the cell membrane could be monitored. The results indicate that the electrostatic interaction between these cationic peptides and the anionic cell membrane is a major determinant of selective cell killing. Thus, the RGD tripeptide is a valuable ligand motif for tumor targeting, which leads to an increased anticancer efficiency by RGD‐Las. These AMP‐derived peptides have clinical potential as specifically targeting agents for the treatment of αvβ3 positive tumors. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

19.
Protein-protein interfaces are usually large and complementary surfaces, but specific side chains, representing energetic "hot spots," often contribute disproportionately to binding free energy. We used a computational method, comprehensive interface design, to identify hot spots in the interface between the stalk regions of the β3 and the complementary αIIb and αv integrin subunits. Using the Rosetta alanine-scanning and design algorithms to predict destabilizing, stabilizing, and neutral mutations in the β3 region extending from residues Lys(532) through Gly(690), we predicted eight alanine mutations that would destabilize the αIIbβ3 interface as well as nine predicted to destabilize the αvβ3 interface, by at least 0.3 kcal/mol. The mutations were widely and unevenly distributed, with four between residues 552 and 563 and five between 590 and 610, but none between 565 and 589, and 611 and 655. Further, mutations destabilizing the αvβ3 and αIIbβ3 interfaces were not identical. The predictions were then tested by introducing selected mutations into the full-length integrins expressed in Chinese hamster ovary cells. Five mutations predicted to destabilize αIIb and β3 caused fibrinogen binding to αIIbβ3, whereas three of four predicted to be neutral or stabilizing did not. Conversely, a mutation predicted to destabilize αvβ3, but not αIIbβ3 (D552A), caused osteopontin binding to αvβ3, but not fibrinogen binding to αIIbβ3. These results indicate that stability of the distal stalk interface is involved in constraining integrins in stable, inactive conformations. Further, they demonstrate the ability of comprehensive interface design to identify functionally significant integrin mutations.  相似文献   

20.
The inhibition of physiological activation pathways of the platelet adhesion receptor integrin αIIbβ3 may fail to prevent fatal thrombosis, suggesting that the receptor is at risk of activation by yet an unidentified pathway. Here, we report the discovery and characterization of a structural motif that safeguards the receptor by selectively destabilizing its inactive state. At the extracellular membrane border, an overpacked αIIb(W968)-β3(I693) contact prevents αIIb(Gly972) from optimally assembling the αIIbβ3 transmembrane complex, which maintains the inactive state. This destabilization of approximately 1.0 kcal/mol could be mitigated by hydrodynamic forces but not physiological agonists, thereby identifying hydrodynamic forces as pathological activation stimulus. As reproductive life spans are not generally limited by cardiovascular disease, it appears that the evolution of the safeguard was driven by fatal, hydrodynamic force-mediated integrin αIIbβ3 activation in the healthy cardiovascular system. The triggering of the safeguard solely by pathological stimuli achieves an effective increase of the free energy barrier between inactive and active receptor states without incurring an increased risk of bleeding. Thus, integrin αIIbβ3 has evolved an effective way to protect receptor functional states that indicates the availability of a mechanical activation pathway when hydrodynamic forces exceed physiological margins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号