首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Coccidia are obligate intracellular protozoan parasites responsible for human and veterinary diseases. Eimeria tenella, the aetiologic agent of caecal coccidiosis, is a major pathogen of chickens. In Toxoplasma gondii, some kinases from the rhoptry compartment (ROP) are key virulence factors. ROP kinases hijack and modulate many cellular functions and pathways, allowing T. gondii survival and development. E. tenella's kinome comprises 28 putative members of the ROP kinase family; most of them are predicted, as pseudokinases and their functions have never been characterised. One of the predicted kinase, EtROP1, was identified in the rhoptry proteome of E. tenella sporozoites. Here, we demonstrated that EtROP1 is active, and the N‐terminal extension is necessary for its catalytic kinase activity. Ectopic expression of EtROP1 followed by co‐immunoprecipitation identified cellular p53 as EtROP1 partner. Further characterisation confirmed the interaction and the phosphorylation of p53 by EtROP1. E. tenella infection or overexpression of EtROP1 resulted both in inhibition of host cell apoptosis and G0/G1 cell cycle arrest. This work functionally described the first ROP kinase from E. tenella and its noncanonical structure. Our study provides the first mechanistic insight into host cell apoptosis inhibition by E. tenella. EtROP1 appears as a new candidate for coccidiosis control.  相似文献   

2.
In mice, avirulent strains (e.g. types II and III) of the protozoan parasite Toxoplasma gondii are restricted by the immunity‐related GTPase (IRG) resistance system. Loading of IRG proteins onto the parasitophorous vacuolar membrane (PVM) is required for vacuolar rupture resulting in parasite clearance. In virulent strain (e.g. type I) infections, polymorphic effector proteins ROP5 and ROP18 cooperate to phosphorylate and thereby inactivate mouse IRG proteins to preserve PVM integrity. In this study, we confirmed the dense granule protein GRA7 as an additional component of the ROP5/ROP18 kinase complex and identified GRA7 association with the PVM by direct binding to ROP5. The absence of GRA7 results in reduced phosphorylation of Irga6 correlated with increased vacuolar IRG protein amounts and attenuated virulence. Earlier work identified additional IRG proteins as targets of T. gondii ROP18 kinase. We show that the only specific target of ROP18 among IRG proteins is in fact Irga6. Similarly, we demonstrate that GRA7 is strictly an Irga6‐specific virulence effector. This identifies T. gondii GRA7 as a regulator for ROP18‐specific inactivation of Irga6. The structural diversity of the IRG proteins implies that certain family members constitute additional specific targets for other yet unknown T. gondii virulence effectors.  相似文献   

3.
Toxoplasma gondii uses specialized secretory organelles called rhoptries to deliver virulence determinants into the host cell during parasite invasion. One such determinant called rhoptry protein 18 (ROP18) is a polymorphic serine/threonine kinase that phosphorylates host targets to modulate acute virulence. Following secretion into the host cell, ROP18 traffics to the parasitophorous vacuole membrane (PVM) where it is tethered to the cytosolic face of this host–pathogen interface. However, the functional consequences of PVM association are not known. In this report, we show that ROP18 mutants altered in an arginine‐rich domain upstream of the kinase domain fail to associate to the PVM following secretion from rhoptries. During infection, host cells upregulate immunity‐related GTPases that localize to and destroy the PVM surrounding the parasites. ROP18 disarms this host innate immune pathway by phosphorylating IRGs in a critical GTPase domain and preventing loading on the PVM. Vacuole‐targeting mutants of ROP18 failed to phosphorylate Irga6 and were unable to divert IRGs from the PVM, despite retaining intrinsic kinase activity. As a consequence, these mutants were avirulent in a mouse model of acute toxoplasmosis. Thus, the association of ROP18 with the PVM, mediated by its N‐terminal arginine‐rich domain, is critical to its function as a virulence determinant.  相似文献   

4.
At least a third of the human population is infected with the intracellular parasite Toxoplasma gondii, which contributes significantly to the disease burden in immunocompromised and neutropenic hosts and causes serious congenital complications when vertically transmitted to the fetus. Genetic analyses have identified the Toxoplasma ROP18 Ser/Thr protein kinase as a major factor mediating acute virulence in mice. ROP18 is secreted into the host cell during the invasion process, and its catalytic activity is required for the acute virulence phenotype. However, its precise molecular function and regulation are not fully understood. We have determined the crystal structure of the ROP18 kinase domain, which is inconsistent with a previously proposed autoinhibitory mechanism of regulation. Furthermore, a sucrose molecule bound to our structure identifies an additional ligand-binding pocket outside of the active site cleft. Mutational analysis confirms an important role for this pocket in virulence.  相似文献   

5.
Dystrophia myotonica protein kinase (DMPK) is a serine/threonine kinase composed of a kinase domain and a coiled‐coil domain involved in the multimerization. The crystal structure of the kinase domain of DMPK bound to the inhibitor bisindolylmaleimide VIII (BIM‐8) revealed a dimeric enzyme associated by a conserved dimerization domain. The affinity of dimerisation suggested that the kinase domain alone is insufficient for dimerisation in vivo and that the coiled‐coil domains are required for stable dimer formation. The kinase domain is in an active conformation, with a fully‐ordered and correctly positioned αC helix, and catalytic residues in a conformation competent for catalysis. The conserved hydrophobic motif at the C‐terminal extension of the kinase domain is bound to the N‐terminal lobe of the kinase domain, despite being unphosphorylated. Differences in the arrangement of the C‐terminal extension compared to the closely related Rho‐associated kinases include an altered PXXP motif, a different conformation and binding arrangement for the turn motif, and a different location for the conserved NFD motif. The BIM‐8 inhibitor occupies the ATP site and has similar binding mode as observed in PDK1.  相似文献   

6.
Secretory polymorphic serine/threonine kinases control pathogenesis of Toxoplasma gondii in the mouse. Genetic studies show that the pseudokinase ROP5 is essential for acute virulence, but do not reveal its mechanism of action. Here we demonstrate that ROP5 controls virulence by blocking IFN-γ mediated clearance in activated macrophages. ROP5 was required for the catalytic activity of the active S/T kinase ROP18, which phosphorylates host immunity related GTPases (IRGs) and protects the parasite from clearance. ROP5 directly regulated activity of ROP18 in vitro, and both proteins were necessary to avoid IRG recruitment and clearance in macrophages. Clearance of both the Δrop5 and Δrop18 mutants was reversed in macrophages lacking Irgm3, which is required for IRG function, and the virulence defect was fully restored in Irgm3−/− mice. Our findings establish that the pseudokinase ROP5 controls the activity of ROP18, thereby blocking IRG mediated clearance in macrophages. Additionally, ROP5 has other functions that are also Irgm3 and IFN-γ dependent, indicting it plays a general role in governing virulence factors that block immunity.  相似文献   

7.
The obligate intracellular parasite Toxoplasma gondii secretes effector molecules into the host cell to modulate host immunity. Previous studies have shown that T. gondii could interfere with host NF-κB signaling to promote their survival, but the effectors of type I strains remain unclear. The polymorphic rhoptry protein ROP18 is a key serine/threonine kinase that phosphorylates host proteins to modulate acute virulence. Our data demonstrated that the N-terminal portion of ROP18 is associated with the dimerization domain of p65. ROP18 phosphorylates p65 at Ser-468 and targets this protein to the ubiquitin-dependent degradation pathway. The kinase activity of ROP18 is required for p65 degradation and suppresses NF-κB activation. Consistently, compared with wild-type ROP18 strain, ROP18 kinase-deficient type I parasites displayed a severe inability to inhibit NF-κB, culminating in the enhanced production of IL-6, IL-12, and TNF-α in infected macrophages. In addition, studies have shown that transgenic parasites carrying kinase-deficient ROP18 induce M1-biased activation. These results demonstrate for the first time that the virulence factor ROP18 in T. gondii type I strains is responsible for inhibiting the host NF-κB pathway and for suppressing proinflammatory cytokine expression, thus providing a survival advantage to the infectious agent.  相似文献   

8.
Bruton's tyrosine kinase (BTK), a member of the TEC family of kinases, plays a crucial role in B‐cell maturation and mast cell activation. Although the structures of the unphosphorylated mouse BTK kinase domain and the unphosphorylated and phosphorylated kinase domains of human ITK are known, understanding the kinase selectivity profiles of BTK inhibitors has been hampered by the lack of availability of a high resolution, ligand‐bound BTK structure. Here, we report the crystal structures of the human BTK kinase domain bound to either Dasatinib (BMS‐354825) at 1.9 Å resolution or to 4‐amino‐5‐(4‐phenoxyphenyl)‐7H‐pyrrolospyrimidin‐ 7‐yl‐cyclopentane at 1.6 Å resolution. This data provides information relevant to the development of small molecule inhibitors targeting BTK and the TEC family of nonreceptor tyrosine kinases. Analysis of the structural differences between the TEC and Src families of kinases near the Trp‐Glu‐Ile motif in the N‐terminal region of the kinase domain suggests a mechanism of regulation of the TEC family members.  相似文献   

9.
Nuclear Dbf2p‐related (NDR) protein kinases are important for cell differentiation and polar morphogenesis in various organisms, yet some of their functions are still elusive. Dysfunction of the Neurospora crassa NDR kinase COT1 leads to cessation of tip extension and hyperbranching. NDR kinases require the physical interaction between the kinase's N‐terminal region (NTR) and the MPS1‐binding (MOB) proteins for their activity and functions. To study the interactions between COT1 and MOB2 proteins, we mutated several conserved residues and a novel phosphorylation site within the COT1 NTR. The phenotypes of these mutants suggest that the NTR is required for COT1 functions in regulating hyphal elongation and branching, asexual conidiation and germination. Interestingly, while both MOB2A and MOB2B promote proper hyphal growth, they have distinct COT1‐dependent roles in regulation of macroconidiation. Immunoprecipitation experiments indicate physical association of COT1 with both MOB2A and MOB2B, simultaneously. Furthermore, the binding of the two MOB2 proteins to COT1 is mediated by different residues at the COT1 NTR, suggesting a hetero‐trimer is formed. Thus, although MOB2A/B may have some overlapping functions in regulating hyphal tip extension, their function is not redundant and they are both required for proper fungal development.  相似文献   

10.
Toxoplasma gondii is an apicomplexan parasite that secretes a large number of protein kinases and pseudokinases from its rhoptry organelles. Although some rhoptry kinases (ROPKs) act as virulence factors, many remain uncharacterized. In this study, predicted ROPKs were assessed for bradyzoite expression then prioritized for a reverse genetic analysis in the type II strain Pru that is amenable to targeted disruption. Using CRISPR/Cas9, we engineered C‐terminally epitope tagged ROP21 and ROP27 and demonstrated their localization to the parasitophorous vacuole and cyst matrix. ROP21 and ROP27 were not secreted from microneme, rhoptry, or dense granule organelles, but rather were located in small vesicles consistent with a constitutive pathway. Using CRISPR/Cas9, the genes for ROP21, ROP27, ROP28, and ROP30 were deleted individually and in combination, and the mutant parasites were assessed for growth and their ability to form tissue cysts in mice. All knockouts lines were normal for in vitro growth and bradyzoite differentiation, but a combined ?rop21/?rop17 knockout led to a 50% reduction in cyst burden in vivo. Our findings question the existing annotation of ROPKs based solely on bioinformatic techniques and yet highlight the importance of secreted kinases in determining the severity of chronic toxoplasmosis.  相似文献   

11.
G protein-coupled receptor (GPCR) kinases (GRKs) phosphorylate activated heptahelical receptors, leading to their uncoupling from G proteins. Here we report six crystal structures of rhodopsin kinase (GRK1), revealing not only three distinct nucleotide-binding states of a GRK but also two key structural elements believed to be involved in the recognition of activated GPCRs. The first is the C-terminal extension of the kinase domain, which was observed in all nucleotide-bound GRK1 structures. The second is residues 5-30 of the N terminus, observed in one of the GRK1.(Mg2+)2.ATP structures. The N terminus was also clearly phosphorylated, leading to the identification of two novel phosphorylation sites by mass spectral analysis. Co-localization of the N terminus and the C-terminal extension near the hinge of the kinase domain suggests that activated GPCRs stimulate kinase activity by binding to this region to facilitate full closure of the kinase domain.  相似文献   

12.
Toxoplasma gondii has evolved a number of strategies to evade immune responses in its many hosts. Previous genetic mapping of crosses between clonal type 1, 2, and 3 strains of T. gondii, which are prevalent in Europe and North America, identified two rhoptry proteins, ROP5 and ROP18, that function together to block innate immune mechanisms activated by interferon gamma (IFNg) in murine hosts. However, the contribution of these and other virulence factors in more genetically divergent South American strains is unknown. Here we utilized a cross between the intermediately virulent North American type 2 ME49 strain and the highly virulent South American type 10 VAND strain to map the genetic basis for differences in virulence in the mouse. Quantitative trait locus (QTL) analysis of this new cross identified one peak that spanned the ROP5 locus on chromosome XII. CRISPR-Cas9 mediated deletion of all copies of ROP5 in the VAND strain rendered it avirulent and complementation confirmed that ROP5 is the major virulence factor accounting for differences between type 2 and type 10 strains. To extend these observations to other virulent South American strains representing distinct genetic populations, we knocked out ROP5 in type 8 TgCtBr5 and type 4 TgCtBr18 strains, resulting in complete loss of virulence in both backgrounds. Consistent with this, polymorphisms that show strong signatures of positive selection in ROP5 were shown to correspond to regions known to interface with host immunity factors. Because ROP5 and ROP18 function together to resist innate immune mechanisms, and a significant interaction between them was identified in a two-locus scan, we also assessed the role of ROP18 in the virulence of South American strains. Deletion of ROP18 in South American type 4, 8, and 10 strains resulted in complete attenuation in contrast to a partial loss of virulence seen for ROP18 knockouts in previously described type 1 parasites. These data show that ROP5 and ROP18 are conserved virulence factors in genetically diverse strains from North and South America, suggesting they evolved to resist innate immune defenses in ancestral T. gondii strains, and they have subsequently diversified under positive selection.  相似文献   

13.
The allelic combination of ROP18/ROP5 genes of Toxoplasma gondii has been shown to be highly predictive of mouse virulence in canonical isolates and strains. The aims of this study were to analyze the alleles present in the ROP18/ROP5 genes from T. gondii isolates obtained in Argentina, to associate the results with the virulence registered in mouse model, and to compare with other isolates and reference strains using a phylogenetic network. Fourteen T. gondii isolates from Argentina were analyzed by nPCR-RFLP for ROP18/ROP5. Phylogenetic network analysis was inferred using the ToxoDB genotypes and the ROPs molecular markers. All isolates and reference strains were categorized as lethal or non-lethal. As results, combinations 2/2, 3/3 and 4/3 for ROP18/ROP5 were detected in 12 isolates, whereas only alleles 1 and 2 of ROP5 were detected in 2 isolates. The majority of the isolates had a mouse virulence matching to that predicted by the ROP18/ROP5 allele combination. The 3 isolates that differed from the expected virulence presented non-clonal genotypes. ROPs incorporation increased the accuracy of the phylogenetic network relations among the T. gondii samples, prevailing the clustering according to regions. Our results indicate a predominance of type 3 allele in both ROP18 and ROP5 markers and an association of allelic profiles 3/3 and 4/3 of non-clonal genotypes from Argentina, both with virulent and avirulent profiles in mice.  相似文献   

14.
The immunity‐related GTPases (IRGs) constitute an interferon‐induced intracellular resistance mechanism in mice against Toxoplasma gondii. IRG proteins accumulate on the parasitophorous vacuole membrane (PVM), leading to its disruption and to death of the parasite. How IRGs target the PVM is unknown. We show that accumulation of IRGs on the PVM begins minutes after parasite invasion and increases for about 1 h. Targeting occurs independently of several signalling pathways and the microtubule network, suggesting that IRG transport is diffusion‐driven. The intensity of IRG accumulation on the PVM, however, is reduced in absence of the autophagy regulator, Atg5. In wild‐type cells IRG proteins accumulate cooperatively on PVMs in a definite order reflecting a temporal hierarchy, with Irgb6 and Irgb10 apparently acting as pioneers. Loading of IRG proteins onto the vacuoles of virulent Toxoplasma strains is attenuated and the two pioneer IRGs are the most affected. The polymorphic rhoptry kinases, ROP16, ROP18 and the catalytically inactive proteins, ROP5A–D, are not individually responsible for this effect. Thus IRG proteins protect mice against avirulent strains of Toxoplasma but fail against virulent strains. The complex cooperative behaviour of IRG proteins in resisting Toxoplasma may hint at undiscovered complexity also in virulence mechanisms.  相似文献   

15.
Pathogenicity differences among laboratory isolates of the dominant clonal North American and European lineages of Toxoplasma gondii are largely controlled by polymorphisms and expression differences in rhoptry secretory proteins (ROPs). However, the extent to which such differences control virulence in natural isolates of T. gondii, including those from more diverse genetic backgrounds, is uncertain. We elucidated the evolutionary history and functional consequences of diversification in the serine/threonine kinase ROP18, a major virulence determinant in the mouse model. We characterized the extent of sequence polymorphism and the evolutionary forces acting on ROP18 and several antigen-encoding genes within a large collection of natural isolates, comparing them to housekeeping genes and introns. Surprisingly, despite substantial genetic diversity between lineages, we identified just three principal alleles of ROP18, which had very ancient ancestry compared to other sampled loci. Expression and allelic differences between these three alleles of ROP18 accounted for much of the variation in acute mouse virulence among natural isolates. While the avirulent type III allele was the most ancient, intermediate virulent (type II) and highly virulent (type I) lineages predominated and showed evidence of strong selective pressure. Out-group comparison indicated that historical loss of an upstream regulatory element increased ROP18 expression, exposing it to newfound diversifying selection, resulting in greatly enhanced virulence in the mouse model and expansion of new lineages. Population sweeps are evident in many genomes, yet their causes and evolutionary histories are rarely known. Our results establish that up-regulation of expression and selection at ROP18 in T. gondii has resulted in three distinct alleles with widely different levels of acute virulence in the mouse model. Preservation of all three alleles in the wild indicates they are likely adaptations for different niches. Our findings demonstrate that sweeping changes in population structure can result from alterations in a single gene.  相似文献   

16.
Phosphorylation is considered a key event in the signalling and regulation of the μ opioid receptor (MOPr). Here, we used mass spectroscopy to determine the phosphorylation status of the C‐terminal tail of the rat MOPr expressed in human embryonic kidney 293 (HEK‐293) cells. Under basal conditions, MOPr is phosphorylated on Ser363 and Thr370, while in the presence of morphine or [D‐Ala2, NMe‐Phe4, Gly‐ol5]‐enkephalin (DAMGO), the COOH terminus is phosphorylated at three additional residues, Ser356, Thr357 and Ser375. Using N‐terminal glutathione S transferase (GST) fusion proteins of the cytoplasmic, C‐terminal tail of MOPr and point mutations of the same, we show that, in vitro, purified G protein‐coupled receptor kinase 2 (GRK2) phosphorylates Ser375, protein kinase C (PKC) phosphorylates Ser363, while CaMKII phosphorylates Thr370. Phosphorylation of the GST fusion protein of the C‐terminal tail of MOPr enhanced its ability to bind arrestin‐2 and ‐3. Hence, our study identifies both the basal and agonist‐stimulated phospho‐acceptor sites in the C‐terminal tail of MOPr, and suggests that the receptor is subject to phosphorylation and hence regulation by multiple protein kinases.  相似文献   

17.
Cytoplasmic recognition of pathogen virulence effectors by plant NB‐LRR proteins leads to strong induction of defence responses termed effector triggered immunity (ETI). In tomato, a protein complex containing the NB‐LRR protein Prf and the protein kinase Pto confers recognition of the Pseudomonas syringae effectors AvrPto and AvrPtoB. Although structurally unrelated, AvrPto and AvrPtoB interact with similar residues in the Pto catalytic cleft to activate ETI via an unknown mechanism. Here we show that the Prf complex is oligomeric, containing at least two molecules of Prf. Within the complex, Prf can associate with Pto or one of several Pto family members including Fen, Pth2, Pth3, or Pth5. The dimerization surface for Prf is the novel N‐terminal domain, which also coordinates an intramolecular interaction with the remainder of the molecule, and binds Pto kinase or a family member. Thus, association of two Prf N‐terminal domains brings the associated kinases into close promixity. Tomato lines containing Prf complexed with Pth proteins but not Pto possessed greater immunity against P. syringae than tomatoes lacking Prf. This demonstrates that incorporation of non‐Pto kinases into the Prf complex extends the number of effector proteins that can be recognized.  相似文献   

18.
Resistance in tomato (Solanum lycopersicum) to infection by Pseudomonas syringae involves both detection of pathogen‐associated molecular patterns (PAMPs) and recognition by the host Pto kinase of pathogen effector AvrPtoB which is translocated into the host cell and interferes with PAMP‐triggered immunity (PTI). The N‐terminal portion of AvrPtoB is sufficient for its virulence activity and for recognition by Pto. An amino acid substitution in AvrPtoB, F173A, abolishes these activities. To investigate the mechanisms of AvrPtoB virulence, we screened for tomato proteins that interact with AvrPtoB and identified Bti9, a LysM receptor‐like kinase. Bti9 has the highest amino acid similarity to Arabidopsis CERK1 among the tomato LysM receptor‐like kinases (RLKs) and belongs to a clade containing three other tomato proteins, SlLyk11, SlLyk12, and SlLyk13, all of which interact with AvrPtoB. The F173A substitution disrupts the interaction of AvrPtoB with Bti9 and SlLyk13, suggesting that these LysM‐RLKs are its virulence targets. Two independent tomato lines with RNAi‐mediated reduced expression of Bti9 and SlLyk13 were more susceptible to P. syringae. Bti9 kinase activity was inhibited in vitro by the N‐terminal domain of AvrPtoB in an F173‐dependent manner. These results indicate Bti9 and/or SlLyk13 play a role in plant immunity and the N‐terminal domain of AvrPtoB may have evolved to interfere with their kinase activity. Finally, we found that Bti9 and Pto interact with AvrPtoB in a structurally similar although not identical fashion, suggesting that Pto may have evolved as a molecular mimic of LysM‐RLK kinase domains.  相似文献   

19.
Capsular polysaccharides are well‐established virulence factors of pathogenic bacteria. Their biosynthesis and export are regulated within the transmembrane polysaccharide assembly machinery by the autophosphorylation of atypical tyrosine‐kinases, named BY‐kinases. However, the accurate functioning of these tyrosine‐kinases remains unknown. Here, we report the crystal structure of the non‐phosphorylated cytoplasmic domain of the tyrosine‐kinase Wzc from Escherichia coli in complex with ADP showing that it forms a ring‐shaped octamer. Mutational analysis demonstrates that a conserved EX2RX2R motif involved in subunit interactions is essential for polysaccharide export. We also elucidate the role of a putative internal regulatory tyrosine and we show that BY‐kinases from proteobacteria autophosphorylate on their C‐terminal tyrosine cluster via a single‐step intermolecular mechanism. This structure‐function analysis also allows us to demonstrate that two different parts of a conserved basic region called the RK‐cluster are essential for polysaccharide export and for kinase activity respectively. Based on these data, we revisit the dichotomy made between BY‐kinases from proteobacteria and firmicutes and we propose a unique process of oligomerization and phosphorylation. We also reassess the function of BY‐kinases in the capsular polysaccharide assembly machinery.  相似文献   

20.
Background information. Rho GTPases are important regulators of cytoskeleton dynamics and cell adhesion. RhoU/Wrch‐1 is a Rho GTPase which shares sequence similarities with Rac1 and Cdc42 (cell division cycle 42), but has also extended N‐ and C‐terminal domains. The N‐terminal extension promotes binding to SH3 (Src homology 3)‐domain‐containing adaptors, whereas the C‐terminal extension mediates membrane targeting through palmitoylation of its non‐conventional CAAX box. RhoU/Wrch‐1 possesses transforming activity, which is negatively regulated by its N‐terminal extension and depends on palmitoylation. Results. In the present study, we have shown that RhoU is localized to podosomes in osteoclasts and c‐Src‐expressing cells, and to focal adhesions of HeLa cells and fibroblasts. The N‐terminal extension and the palmitoylation site were dispensable, whereas the C‐terminal extension and effector binding loop were critical for RhoU targeting to focal adhesions. Moreover, the number of focal adhesions was reduced and their distribution changed upon expression of activated RhoU. Conversely, RhoU silencing increased the number of focal adhesions. As RhoU was only transiently associated with adhesion structures, this suggests that RhoU may modify adhesion turnover and cell migration rate. Indeed, we found that migration distances were increased in cells expressing activated RhoU and decreased when RhoU was knocked‐down. Conclusions. Our data indicate that RhoU localizes to adhesion structures, regulates their number and distribution and increases cell motility. It also suggests that the RhoU effector binding and C‐terminal domains are critical for these functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号