首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Levels of allozyme variation and intrapopulation spatial genetic structure of the two terrestrial clonal orchids Liparis kumokiri , a self-compatible relatively common species, and L. makinoana , a self-incompatible rare species, were examined for 17 ( N  = 1875) and four ( N  = 425) populations, respectively, in South Korea. Populations of L. makinoana harboured high levels of genetic variation ( H e = 0.319) across 15 loci. In contrast, L. kumokiri exhibited a complete lack of allozyme variation ( H e = 0.000). Considering the lack of genetic variability, it is suggested that current populations of L. kumokiri in South Korea originated from a genetically depauperate ancestral population. For L. makinoana , a significant deficit of heterozygosity (mean F IS = 0.198) was found in population samples excluding clonal ramets, suggesting that pollen dispersal is localized, generating biparental inbreeding. The significant fine-scale genetic structuring (≤ 2 m) found in a previous study, in addition to the moderate levels of population differentiation ( F ST = 0.107) and the significant relationship between genetic and geographical distances ( r  = 0.680) found here, suggests a leptokurtic distribution of seed dispersal for L. makinoana . Although populations of L. makinoana harbour high levels of genetic variation, they are affected by a recent genetic bottleneck. This information suggests that genetic drift and limited gene flow could be the main evolutionary forces for speciation of a species-rich genus such as Liparis .  © 2007 The Linnean Society of London, Botanical Journal of the Linnean Society , 2007, 153 , 41–48.  相似文献   

2.
Levels of allozyme variation, population genetic structure, and fine-scale genetic structure (FSGS) of the rare, both sexually and clonally reproducing terrestrial orchid Epipactis thunbergii were examined for eight ( N  = 734) populations in a 20 × 20-km area in South Korea. Twenty-three putative allozyme loci resolved from 15 enzyme systems were used. Extremely low levels of allozyme variation were found within populations: the mean frequency of polymorphic loci was 3.8% [isocitrate dehydrogenase ( Idh-2 ) with two alleles was polymorphic across populations], the mean number of alleles per locus was 1.04, and the mean expected heterozygosity was 0.013. The overall fixation index was not significantly different from zero ( F IS = 0.069), although the species is self-compatible. However, a significantly high degree of population differentiation was found between populations at Idh-2 ( F ST = 0.388) in the studied area. Furthermore, spatial autocorrelation analyses revealed a significant FSGS (up to 3 m) within populations. These observations suggest that the main explanatory factors for the extremely low levels of genetic diversity and the shaping of the population genetic structure of E. thunbergii are genetic drift as a result of a small effective population size, a restricted gene flow, and the isolation of populations. Considering the current genetic structure of E. thunbergii , three guidelines are suggested for the development of conservation strategies for the species in South Korea: (1) protection of habitats of standing populations; (2) prohibition by law of any collection of E. thunbergii ; and (3) protection of nearby pollinator populations, given the fact that fruit set in natural habitats is very low.  © 2007 The Linnean Society of London, Botanical Journal of the Linnean Society , 2007, 155 , 161–169.  相似文献   

3.
Cypripedium japonicum Thunb. (Orchidaceae), once a common perennial herb, is now designated as endangered throughout most of its distribution due to habitat destruction and fragmentation, and the impacts of horticultural collection. We investigated the genetic characteristics of this species for conservation purposes, using microsatellite markers to examine the genetic diversity and structure of 15 native and 5 ex situ populations in Japan. The results imply that although allelic variation is low in Japanese C. japonicum, sexual reproduction by seed, as well as clonal propagation, may occur in some populations. Both native and ex situ populations were found to be genetically differentiated, indicating that some populations may have experienced recent population declines, genetic fragmentation, or bottlenecks. The degree of genetic drift from the putative ancestral population, inferred through STRUCTURE analysis, was more pronounced in northern populations than in southern populations. Some of the ex situ conserved populations exhibited a low degree of differentiation from ancestral native populations. Our results imply that conservation of C. japonicum in Japan is best supported by maintaining individual populations and their unique genetic characteristics.  相似文献   

4.
Populations in previously glaciated regions are often genetically depauperate in comparison with populations at lower latitudes, due either to bottlenecks experienced in post-glacial colonization or to contemporary genetic drift in small, peripheral populations. Populations of the rare self-fertilizing North American orchid Isotria medeoloides are largest in the previously glaciated region near the northern range limit, allowing us to examine the role of historical versus contemporary processes in determining population genetic diversity and structure. If contemporary processes predominate, genetic diversity should increase with increasing census size. In contrast, if sequential bottlenecks associated with colonization are paramount, diversity should decrease with latitude and be relatively insensitive to census size. We genotyped 299 individuals from 20 populations at four variable microsatellite loci to contrast genetic diversity and structure for populations in previously glaciated regions versus previously unglaciated regions. Populations were highly inbred (F=0.95) and highly differentiated (R(ST)=0.485). Across all sampled populations, genetic diversity decreased and genetic differentiation increased with declining population size. Small southern populations were especially differentiated and genetically depauperate. In the glaciated part of the range, genetic diversity increased as populations approached the northern range limit, demonstrating the centrality of contemporary processes for this post-glacial colonist.  相似文献   

5.
Cremastra appendiculata var. variabilis is a self‐compatible, insect‐pollinated, terrestrial orchid that is a typical member of the warm‐temperate vegetation in the Korean Peninsula. Here we examine levels and partitioning of allozyme diversity (22 loci) in 12 populations of this orchid to gain insight into its genetic structure and post‐glacial colonization history in Korea. It harboured considerably higher levels of genetic variation within populations (%P = 48.1, A = 1.70 and He = 0.217) and lower degree of differentiation among populations (FST = 0.068) than those typical of allozyme‐based studies in other terrestrial orchid species. These patterns suggest that extant populations were derived from multiple source populations (i.e. from multiple glacial refugia), although further studies are needed to confirm this scenario. In addition to population history, traits such as high potential of seed dispersal, a mixed mating system and its occurrence in large and continuous populations would have contributed to the current levels and distribution of genetic diversity in Korean populations of C. appendiculata var. variabilis. © 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2013, 173 , 721–732.  相似文献   

6.
Second chromosome inversion and genotypic frequencies at seven allozyme loci, differentially associated with inversions, were determined in seven natural populations of Drosophila buzzatii. The patterns of variation of allozymes and the inversion polymorphisms were significantly different, indicating the role of adaptive differentiation for the latter. Moreover, the patterns of population structure varied among allozyme loci, suggesting the operation of diversifying selection for certain loci. Differentiation was negligible for Leucyl‐amino peptidase (Lap) and Peptidase‐2 (Pep‐2), low to moderate for Aldehyde oxidase (Aldox), Peptidase‐1 (Pep‐1) and Esterase‐1 (Est‐1) and high for Esterase‐2 (Est‐2) and Xanthine dehydrogenase (Xdh). Significant linkage disequilibria were detected between inversions and Aldox, Est‐1, Est‐2 and Xdh. Multiple regression analyses of inversion and allele frequencies on environmental variables revealed the existence of clines for inversions, Est‐1, Est‐2, Xdh and Aldox along altitudinal, latitudinal and/or climatic gradients. Tests using conditional allele frequencies showed that Est‐1 and Aldox clines could be accounted for by hitchhiking with inversions, whereas natural selection should be invoked to explain the clines observed for Est‐2 and Xdh.  相似文献   

7.
The relative involvement of larval dietary tolerance to the leaf-litter toxic polyphenols in shaping population genetic structure of the subalpine mosquito Aedes rusticus was examined. This was compared with other parameters such as geographical range, type of vegetation surrounding the breeding site, and occurrence of annual larvicidal treatments. Population genetic structure was analysed at 10 presumed neutral polymorphic isoenzyme loci. Toxicological comparisons involved standard bioassays performed on larvae fed on toxic decomposed leaf litter. Significant overall genetic differentiation was observed among the 22 studied populations and within the five defined geographical groups. Analysis of molecular variance revealed an absence of relation between genetic and environmental parameters, genetic variance being essentially found within populations. This suggested that the larval dietary tolerance to the toxic leaf litter and the other studied parameters poorly influence population genetic structure. The local adaptation of subalpine mosquito populations to the surrounding vegetation thus appears as a labile trait. Such a dynamic adaptation is also suggested by the correlation between geographical and toxicological distances and the correlation between dietary tolerance to the leaf-litter toxic polyphenols and annual larvicidal treatments.  相似文献   

8.
Differentiation occurred in different areas of the same river system in Pseudobarbus phlegethon and two sister species of the serrated redfin lineage ( Barbus calidus and Barbus erubescens ) of the Western Cape region of South Africa. In an analysis of 27 allozyme loci a deep divergence was found within P. phlegethon between the Olifants and Doring catchments (seven fixed allelic differences; 0·338 <  D  < 0·366; F ST = 0·925). In contrast, speciation in the serrated redfin lineage occurred within the Doring catchment between B. calidus and B. erubescens (one fixed allelic difference; 0·008 <  D  < 0·052; F ST = 0·760). Different niche preferences, behaviour and morphology probably played an important role in the formation of these contrasting patterns of genetic structure and suggest that B. calidus may have been better able to disperse between the Olifants and Doring catchments (no fixed allelic differences; 0 <  D  < 0·040; F ST = 0·281) than P. phlegethon .  相似文献   

9.
Patterns and levels of genetic diversity mayhave significant influence on the long termpersistence of local populations and revealingsuch information is important in protectingrare species. In this study we investigated thegenetic pattern in five microsatellite lociwithin five Swedish populations of the rareorchid species Gymnadenia odoratissima. Thegeographic distribution of G. odoratissima isrestricted to Europe and in Scandinavia it isonly found in three provinces in southernSweden; Östergötland,Västergötland and on the island ofGotland.Compared with the more widespread congener G.conopsea our results indicate lower levels ofgenetic variation within and higher degrees ofgenetic differentiation among populations ofG. odoratissima (HEL = 0.6–0.8 in G. conopseaand 0.3–0.7 in G. odoratissima; FST over allpopulations = 0.06 in G. conopsea and 0.19 inG. odoratissima). Also, we found a cleardistinction among mainland and islandpopulations of G. odoratissima wherepopulations on the island of Gotland seem toexhibit higher levels of gene flow andintragenetic variation, probably as a result ofa larger number of existing populations.Future conservation of this species shouldfocus on facilitation on colonisation events,especially on the mainland, and preservation ofthe genetically more variable Gotlandpopulations.  相似文献   

10.
To assess the effectiveness of conservation‐based transplantation of the endangered orchid (Cypripedium japonicum), we compared the morphology, physiology, stem‐count change, and population viability of natural versus transplanted populations undergoing habitat management (repeated removal of competing understory vegetation) between 2009 and 2015 in South Korea. The restored site had lower transmitted light and soil humidity than the natural site. The natural and transplanted populations differed in leaf morphology and total chlorophyll content (natural: 1.00 ± 0.04, restored: 0.53 ± 0.06). No recruitment occurred during the monitoring period. Population viability tended to decrease in the restored population (λG = 0.97, μ = ?0.05, σ2 = 0.036) and increase in the natural population (λG = 1.07, μ = 0.03, σ2 = 0.075). The repeated removal of competing understory vegetation had different effects on leaf traits, abundance, and reproductive properties of the endangered orchids in both populations. Notably, habitat management increased the stem count and flowering rate in natural C. japonicum but did not increase the fruit‐setting rate. Thus, despite repeated habitat management efforts (removal of competing understory vegetation), we conclude that the population viability of transplanted populations of the endangered orchid C. japonicum had poor long‐term viability compared with naturally occurring populations, a difference that is mainly attributed to inappropriate transplant‐site selection.  相似文献   

11.
Aim This study investigated the influence of contemporary habitat loss on the genetic diversity and structure of animal species using a common, but ecologically specialized, butterfly, Theclinesthes albocincta (Lepidoptera: Lycaenidae), as a model. Location South Australia. Methods We used amplified fragment length polymorphism (AFLP) and allozyme datasets to investigate the genetic structure and genetic diversity among populations of T. albocincta in a fragmented landscape and compared this diversity and structure with that of populations in two nearby landscapes that have more continuous distributions of butterflies and their habitat. Butterflies were sampled from 15 sites and genotyped, first using 363 informative AFLP bands and then using 17 polymorphic allozyme loci (n = 248 and 254, respectively). We complemented these analyses with phylogeographic information based on mitochondrial DNA (mtDNA) haplotype information derived from a previous study in the same landscapes. Results Both datasets indicated a relatively high level of genetic structuring across the sampling range (AFLP, FST = 0.34; allozyme, FST = 0.13): structure was greatest among populations in the fragmented landscape (AFLP, FST = 0.15; allozyme, FST = 0.13). Populations in the fragmented landscape also had significantly lower genetic diversity than populations in the other two landscapes: there were no detectable differences in genetic diversity between the two continuous landscapes. There was also evidence (r2 = 0.33) of an isolation by distance effect across the sampled range of the species. Main conclusions The multiple lines of evidence, presented within a phylogeographic context, support the hypothesis that contemporary habitat fragmentation has been a major driver of genetic erosion and differentiation in this species. Theclinesthes albocincta populations in the fragmented landscape are thus likely to be at greater risk of extinction because of reduced genetic diversity, their isolation from conspecific subpopulations in other landscapes, and other extrinsic forces acting on their small population sizes. Our study provides compelling evidence that habitat loss and fragmentation have significant rapid impacts on the genetic diversity and structure of butterfly populations, especially specialist species with particular habitat preferences and poor dispersal abilities.  相似文献   

12.
Because of harsh conditions, suboptimal habitat quality and poor connectivity to other populations, plant populations at the margin of a distribution are expected to be less genetically diverse, but to be more divergent from each other than populations in the centre of a distribution. In northern Europe, northern marginal populations may also be younger than populations further to the south, and may have had less time to accumulate genetic diversity by mutation and gene flow. However, orchids have very small seeds, which are easily dispersed long distances by wind, and orchids are therefore expected to show less differentiation between marginal and central populations than other groups of seed plants. Here, we analysed whether Scandinavian populations of the tetraploid marsh orchid Dactylorhiza majalis subsp. majalis differ from central European populations in genetic diversity patterns. A total of 220 plants from eight central European and ten Scandinavian populations was examined for variation at five nuclear microsatellite loci, nuclear ITS and 13 polymorphic sites in noncoding regions of the plastid genome. The total genetic diversity was slightly lower in Scandinavia than in central Europe, both in plastid and nuclear markers, but the differences were small. Also, the Scandinavian populations were less diverse and somewhat more strongly differentiated from each other than the central European ones. Dactylorhiza majalis subsp. majalis has apparently colonized Scandinavia on multiple independent occasions and from different source areas in the south. Seed flow between Scandinavian populations has still not fully erased the patterns imprinted by early colonization. Our results suggest that marginal populations of orchids may be as important as central ones in preserving genetic diversity through Pleistocene glacial cycles. We also predict that orchids with their light seeds are better adapted than many other plants to respond to future climate changes by dispersing into new suitable areas.  相似文献   

13.
1. Allozymes were used to measure genetic variation within and among regional populations of the caddisfly Orthopsyche fimbriata and the mayfly Acanthophlebia cruentata in North Island New Zealand streams.
2. High levels of genetic differentiation were recorded in populations of O. fimbriata within and among catchments separated by more than 100 km, but little or no differentiation in populations separated by around 10 km. The Auckland isthmus appears to be a major barrier to north–south gene flow, with nearly fixed allelic differences at one locus. Genotype frequencies conformed to Hardy–Weinberg equilibrium.
3.  Acanthophlebia cruentata had low levels of genetic variation; the results are unexpected given that O. fimbriata apparently has greater potential for dispersal. The limited genetic data for A. cruentata provided evidence for genetic differentiation among populations separated by around 100 km, or more, within catchments and some differentiation between catchment populations separated by only 25 km.  相似文献   

14.
Conservation of endangered species becomes a critical issue with the increasing rates of extinction. In this study, we use 13 microsatellite loci and 27 single-copy nuclear loci to investigate the population genetics of Boechera fecunda, a rare relative of Arabidopsis thaliana, known from only 21 populations in Montana. We investigated levels of genetic diversity and population structure in comparison to its widespread congener, Boechera stricta, which shares similar life history and mating system. Despite its rarity, B. fecunda had levels of genetic diversity similar to B. stricta for both microsatellites and nucleotide polymorphism. Populations of B. fecunda are highly differentiated, with a majority of genetic diversity existing among populations (F(ST) = 0.57). Differences in molecular diversity and allele frequencies between western and eastern population groups suggest they experienced very different evolutionary histories.  相似文献   

15.
Determining the genetic structure of isolated or fragmented species is of critical importance when planning a suitable conservation strategy. In this study, we use nuclear and chloroplast SSRs (simple sequence repeats) to investigate the population genetics of an extremely rare sunflower, Helianthus verticillatus Small, which is known from only three locations in North America. We investigated levels of genetic diversity and population structure compared to a more common congener, Helianthus angustifolius L., using both nuclear and chloroplast SSRs. We also investigated its proposed hybrid origin from Helianthus grosseserratus Martens and H. angustifolius. Twenty-two nuclear SSRs originating from the cultivated sunflower (Helianthus annuus L.) expressed sequence tag (EST) database, and known to be transferable to H. verticillatus and its putative parental taxa, were used in this study thereby allowing for statistical control of locus-specific effects in population genetic analyses. Despite its rarity, H. verticillatus possessed significantly higher levels of genetic diversity than H. angustifolius at nuclear loci and equivalent levels of chloroplast diversity. Significant levels of population subdivision were observed in H. verticillatus but of a magnitude comparable to that of H. angustifolius. Inspection of multilocus genotypes also revealed that clonal spread is highly localized. Finally, we conclude that H. verticillatus is not of hybrid origin as it does not exhibit a mixture of parental alleles at nuclear loci, and it does not share a chloroplast DNA haplotype with either of its putative parents.  相似文献   

16.
Colonizing species are predicted to suffer from reductions in genetic diversity during founding events. Although there is no unique mode of reproduction that is characteristic of successful plant colonizers, many of them are predominantly self-fertilizing or apomictic species, and almost all outcrossing colonizers are self-compatible. Carduus acanthoides comprises a species of disturbed habitats with wind-dispersed seeds that colonizes open spaces of various sizes. Population genetic diversity was expressed by assessing patterns of variation at nine putatively neutral allozyme loci within and among 20 natural populations in its native distribution range in the Czech Republic. Overall, C. acanthoides displayed high levels of genetic diversity compared to other herbaceous plants. The percentage of polymorphic loci was 84.5, with values of 2.37, 0.330, and 0.364 for the mean number of alleles per polymorphic locus ( A ), observed heterozygosity ( H o), and expected heterozygosity ( H e), respectively. There was only weak evidence of inbreeding within populations ( f  = 0.097) and very low genetic differentiation among populations ( θ  = 0.085). Analyses of the data provide strong evidence for isolation-by-distance for the whole study area. Even the colonizing species, C. acanthoides , currently supports a substantial amount of allozyme variation at both the species and population levels.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 98 , 596–607.  相似文献   

17.
Reproduction of the rare monocarpic species Saxifraga mutata L.   总被引:1,自引:0,他引:1  
The aim of the study is to investigate the impact of reproduction and genetic variation on the persistence of populations of the prealpine, monocarpic Saxifraga mutata L. The species grows on erosion slopes or rocks, and its local populations are often small and isolated. Crossing experiments resulted in better seed-set than selfing, but both yielded viable seeds. Agamospermy did not occur. In an early-successional species like S. mutata , successful selfing is important in the colonization of new habitats. Flowers of S. mutata were visited by Syrphidae and unspecialized Hymenoptera. A germination rate of 40% was reached in cultivation after 20 weeks but germination continued until the end of the experiment after 92 weeks. Seeds stored dry for 30 months at room temperature mostly lost their germinability. In natural habitats, seedlings were found almost throughout the year with a peak in spring. Suitable safe sites were small patches of open soil, bare marl on erosion slopes, and rock crevices. AU individuals investigated were diploid with 2n = 26. Allozyme electrophoresis showed a lack of segregation within the populations. Intra- and interpopulation genetic variation was low. These results were in partial disagreement with theoretical expectations in a mixed mating species. It is concluded that demographic rather than genetic processes are the main cause of extinction of populations of S. mutata , at least in the short-term.  相似文献   

18.
Knowledge of genetic spatial structure may provide insights into the causes of population disjunctions in plants. Serapias politisii is a narrow endemic with only a few populations scattered along the opposite coasts of the Otranto strait (southern Adriatic Sea). It was originally considered to be of hybrid origin between S. vomeracea ssp. laxiflora and S. parviflora, a possibility suggested also by a DNA phylogenetic study that grouped Italian and Greek populations in two distinct clades. In this study we have carried out additional plastid DNA sequencing and an AFLP analysis of the three taxa. Whereas the geographical distribution of four plastid DNA haplotypes supports the likelihood of a double hybrid origin or of a plastid capture, AFLP data do not support such a hypothesis, because S. politisii shows several private alleles, some of which are shared by Italian and Greek populations. In light of the floristic specificity of the coasts bordering the Otranto strait, we consider that the present‐day disjunction of S. politisii could have originated either by a long‐distance seed dispersal or by a fragmentation of an old polymorphic population. The pairwise mismatch distribution excludes a recent expansion of the populations examined. In light of recent evidence concerning the Mediterranean Lago‐Mare period and the westward haplotype evolution detected in some Euro‐Mediterranean trees, we argue that fragmentation of a previously continuous population could be an intriguing possibility. © 2010 The Linnean Society of London, Botanical Journal of the Linnean Society, 2010, 162 , 572–580.  相似文献   

19.
Sophora moorcroftiana is a perennial leguminous low shrub endemic to the middle reaches of Yarlung Zangbo River in Tibet. It is an important species to fix sand dunes and to avoid the formation of shifting sands; therefore, its progressive over-exploitation may enhance land desertification. The levels and distribution of genetic variability of this species were evaluated from 10 natural populations at 24 loci encoding 13 enzymes, using allozyme analysis by starch gel electrophoresis. Data obtained revealed moderate levels of genetic variation within populations (Pp=27.5%, Ap=1.5, Hep=0.122) and a considerable divergence among populations (FST=0.199). Significant positive correlations (r2=0.49, p<0.05; r2=0.46, p<0.05) were found between elevation and both mean number of alleles per locus (A) and gene diversity (He) in the studied populations of S. moorcroftiana. Lower genetic diversity in lower elevation populations might be due to the negative effects of human pressures and habitat fragmentation, to adaptation to high altitudes as a consequence of a peripatric speciation process, or to directional gene flow along the river basin from the source populations located in the west at higher altitudes. The evaluation of the degree of threat has led to the inclusion of this species in the category of EN ("endangered"), and conservation strategies for this endemic species are discussed on the basis of these findings.  相似文献   

20.
The rare endemic Cycladenia humilis var. jonesii (Jones cycladenia) has low levels of sexual reproduction. Enzyme electrophoresis was used to explore possible causes of low seed set and high fruit abortion by assessing the clonal structure and genetic diversity in populations. The seven populations studied were composed of multiple, highly interdigitated clones; thus low fruit set is not likely to be due to a scarcity of mates. Genotype frequencies did not differ significantly from Hardy-Weinberg proportions, suggesting that populations are not highly inbred. Jones cycladenia exhibited high levels of genetic diversity at both the population level (A = 1.7; P = 37; He = 0.14) and the taxon level (A = 2.7; P = 60) in comparison to other plants. These data suggest that genetic drift is unlikely to have left this taxon genetically depauperate. Furthermore, we detected little divergence among geographically disjunct populations of Jones cycladenia (FST = 0.10). In comparison, Jones cycladenia populations were highly differentiated from a population of the taxon's close relative, C. h. var. humilis (mean genetic identity = 0.76). Our study suggests that other reasons for low fruit set in Jones cycladenia, such as resource or pollinator limitation, or genetic load, should be explored in future research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号