首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Argonaute proteins associate with microRNAs and are key components of gene silencing pathways. With such a pivotal role, these proteins represent ideal targets for regulatory post‐translational modifications. Using quantitative mass spectrometry, we find that a C‐terminal serine/threonine cluster is phosphorylated at five different residues in human and Caenorhabditis elegans. In human, hyper‐phosphorylation does not affect microRNA binding, localization, or cleavage activity of Ago2. However, mRNA binding is strongly affected. Strikingly, on Ago2 mutants that cannot bind microRNAs or mRNAs, the cluster remains unphosphorylated indicating a role at late stages of gene silencing. In C. elegans, the phosphorylation of the conserved cluster of ALG‐1 is essential for microRNA function in vivo. Furthermore, a single point mutation within the cluster is sufficient to phenocopy the loss of its complete phosphorylation. Interestingly, this mutant retains its capacity to produce and bind microRNAs and represses expression when artificially tethered to an mRNA. Altogether, our data suggest that the phosphorylation state of the serine/threonine cluster is important for Argonaute–mRNA interactions.  相似文献   

2.
Availability of plant‐specific enzyme kinetic data is scarce, limiting the predictive power of metabolic models and precluding identification of genetic factors of enzyme properties. Enzyme kinetic data are measured in vitro, often under non‐physiological conditions, and conclusions elicited from modeling warrant caution. Here we estimate maximal in vivo catalytic rates for 168 plant enzymes, including photosystems I and II, cytochrome‐b6f complex, ATP‐citrate synthase, sucrose‐phosphate synthase as well as enzymes from amino acid synthesis with previously undocumented enzyme kinetic data in BRENDA. The estimations are obtained by integrating condition‐specific quantitative proteomics data, maximal rates of selected enzymes, growth measurements from Arabidopsis thaliana rosette with and fluxes through canonical pathways in a constraint‐based model of leaf metabolism. In comparison to findings in Escherichia coli, we demonstrate weaker concordance between the plant‐specific in vitro and in vivo enzyme catalytic rates due to a low degree of enzyme saturation. This is supported by the finding that concentrations of nicotinamide adenine dinucleotide (phosphate), adenosine triphosphate and uridine triphosphate, calculated based on our maximal in vivo catalytic rates, and available quantitative metabolomics data are below reported values and, therefore, indicate undersaturation of respective enzymes. Our findings show that genome‐wide profiling of enzyme kinetic properties is feasible in plants, paving the way for understanding resource allocation.  相似文献   

3.
This work proposes a model of the metabolic branch-point between the methionine and threonine biosynthesis pathways in Arabidopsis thaliana which involves kinetic competition for phosphohomoserine between the allosteric enzyme threonine synthase and the two-substrate enzyme cystathionine gamma-synthase. Threonine synthase is activated by S-adenosylmethionine and inhibited by AMP. Cystathionine gamma-synthase condenses phosphohomoserine to cysteine via a ping-pong mechanism. Reactions are irreversible and inhibited by inorganic phosphate. The modelling procedure included an examination of the kinetic links, the determination of the operating conditions in chloroplasts and the establishment of a computer model using the enzyme rate equations. To test the model, the branch-point was reconstituted with purified enzymes. The computer model showed a partial agreement with the in vitro results. The model was subsequently improved and was then found consistent with flux partition in vitro and in vivo. Under near physiological conditions, S-adenosylmethionine, but not AMP, modulates the partition of a steady-state flux of phosphohomoserine. The computer model indicates a high sensitivity of cystathionine flux to enzyme and S-adenosylmethionine concentrations. Cystathionine flux is sensitive to modulation of threonine flux whereas the reverse is not true. The cystathionine gamma-synthase kinetic mechanism favours a low sensitivity of the fluxes to cysteine. Though sensitivity to inorganic phosphate is low, its concentration conditions the dynamics of the system. Threonine synthase and cystathionine gamma-synthase display similar kinetic efficiencies in the metabolic context considered and are first-order for the phosphohomoserine substrate. Under these conditions outflows are coordinated.  相似文献   

4.
Global dispersion of multidrug resistant bacteria is very common and evolution of antibiotic‐resistance is occurring at an alarming rate, presenting a formidable challenge for humanity. The development of new therapeuthics with novel molecular targets is urgently needed. Current drugs primarily affect protein, nucleic acid, and cell wall synthesis. Metabolic pathways, including those involved in amino acid biosynthesis, have recently sparked interest in the drug discovery community as potential reservoirs of such novel targets. Tryptophan biosynthesis, utilized by bacteria but absent in humans, represents one of the currently studied processes with a therapeutic focus. It has been shown that tryptophan synthase (TrpAB) is required for survival of Mycobacterium tuberculosis in macrophages and for evading host defense, and therefore is a promising drug target. Here we present crystal structures of TrpAB with two allosteric inhibitors of M. tuberculosis tryptophan synthase that belong to sulfolane and indole‐5‐sulfonamide chemical scaffolds. We compare our results with previously reported structural and biochemical studies of another, azetidine‐containing M. tuberculosis tryptophan synthase inhibitor. This work shows how structurally distinct ligands can occupy the same allosteric site and make specific interactions. It also highlights the potential benefit of targeting more variable allosteric sites of important metabolic enzymes.  相似文献   

5.
G‐protein coupled receptors (GPCRs), a major gatekeeper of extracellular signals on plasma membrane, are unarguably one of the most important therapeutic targets. Given the recent discoveries of allosteric modulations, an allosteric wiring diagram of intramolecular signal transductions would be of great use to glean the mechanism of receptor regulation. Here, by evaluating betweenness centrality (CB) of each residue, we calculate maps of information flow in GPCRs and identify key residues for signal transductions and their pathways. Compared with preexisting approaches, the allosteric hotspots that our CB‐based analysis detects for A2A adenosine receptor (A2AAR) and bovine rhodopsin are better correlated with biochemical data. In particular, our analysis outperforms other methods in locating the rotameric microswitches, which are generally deemed critical for mediating orthosteric signaling in class A GPCRs. For A2AAR, the inter‐residue cross‐correlation map, calculated using equilibrium structural ensemble from molecular dynamics simulations, reveals that strong signals of long‐range transmembrane communications exist only in the agonist‐bound state. A seemingly subtle variation in structure, found in different GPCR subtypes or imparted by agonist bindings or a point mutation at an allosteric site, can lead to a drastic difference in the map of signaling pathways and protein activity. The signaling map of GPCRs provides valuable insights into allosteric modulations as well as reliable identifications of orthosteric signaling pathways. Proteins 2014; 82:727–743. © 2013 Wiley Periodicals, Inc.  相似文献   

6.
Self‐association of proteins can be triggered by a change in the distribution of the conformational ensemble. Posttranslational modification, such as phosphorylation, can induce a shift in the ensemble of conformations. In the brain of Alzheimer's disease patients, the formation of intra‐cellular neurofibrillary tangles deposition is a result of self‐aggregation of hyper‐phosphorylated tau protein. Biochemical and NMR studies suggest that the cis peptidyl prolyl conformation of a phosphorylated threonine‐proline motif in the tau protein renders tau more prone to aggregation than the trans isomer. However, little is known about the role of peptidyl prolyl cis/trans isomerization in tau aggregation. Here, we show that intra‐molecular electrostatic interactions are better formed in the trans isomer. We explore the conformational landscape of the tau segment containing the phosphorylated‐Thr231‐Pro232 motif using accelerated molecular dynamics and show that intra‐molecular electrostatic interactions are coupled to the isomeric state of the peptidyl prolyl bond. Our results suggest that the loss of intra‐molecular interactions and the more restricted conformational ensemble of the cis isomer could favor self‐aggregation. The results are consistent with experiments, providing valuable complementary atomistic insights and a hypothetical model for isomer specific aggregation of the tau protein. Proteins 2015; 83:436–444. © 2014 Wiley Periodicals, Inc.  相似文献   

7.
De novo synthesis of threonine from aspartate occurs via the β‐aspartyl phosphate pathway in plants, bacteria and fungi. However, the Trypanosoma brucei genome encodes only the last two steps in this pathway: homoserine kinase (HSK) and threonine synthase. Here, we investigated the possible roles for this incomplete pathway through biochemical, genetic and nutritional studies. Purified recombinant TbHSK specifically phosphorylates L‐homoserine and displays kinetic properties similar to other HSKs. HSK null mutants generated in bloodstream forms displayed no growth phenotype in vitro or loss of virulence in vivo. However, following transformation into procyclic forms, homoserine, homoserine lactone and certain acyl homoserine lactones (AHLs) were found to substitute for threonine in growth media for wild‐type procyclics, but not HSK null mutants. The tsetse fly is considered to be an unlikely source of these nutrients as it feeds exclusively on mammalian blood. Bioinformatic studies predict that tsetse endosymbionts possess part (up to homoserine in Wigglesworthia glossinidia) or all of the β‐aspartyl phosphate pathway (Sodalis glossinidius). In addition S. glossinidius is known to produce 3‐oxohexanoylhomoserine lactone which also supports trypanosome growth. We propose that T. brucei has retained HSK and threonine synthase in order to salvage these nutrients when threonine availability is limiting.  相似文献   

8.
Clostridium difficile is a prominent nosocomial pathogen, proliferating and causing enteric disease in individuals with a compromised gut microflora. We characterized the post‐translational modification of flagellin in C. difficile 630. The structure of the modification was solved by nuclear magnetic resonance and shown to contain an N‐acetylglucosamine substituted with a phosphorylated N‐methyl‐l ‐threonine. A reverse genetics approach investigated the function of the putative four‐gene modification locus. All mutants were found to have truncated glycan structures by LC‐MS/MS, taking into account bioinformatic analysis, we propose that the open reading frame CD0241 encodes a kinase involved in the transfer of the phosphate to the threonine, the CD0242 protein catalyses the addition of the phosphothreonine to the N‐acetylglucosamine moiety and CD0243 transfers the methyl group to the threonine. Some mutations affected motility and caused cells to aggregate to each other and abiotic surfaces. Altering the structure of the flagellin modification impacted on colonization and disease recurrence in a murine model of infection, showing that alterations in the surface architecture of C. difficile vegetative cells can play a significant role in disease. We show that motility is not a requirement for colonization, but that colonization was compromised when the glycan structure was incomplete.  相似文献   

9.
The hypermodified nucleoside N6‐threonylcarbamoyladenosine resides at position 37 of tRNA molecules bearing U at position 36 and maintains translational fidelity in the three kingdoms of life. The N6‐threonylcarbamoyl moiety is composed of L ‐threonine and bicarbonate, and its synthesis was genetically shown to require YrdC/Sua5. YrdC/Sua5 binds to tRNA and ATP. In this study, we analyzed the L ‐threonine‐binding mode of Sua5 from the archaeon Sulfolobus tokodaii. Isothermal titration calorimetry measurements revealed that S. tokodaii Sua5 binds L ‐threonine more strongly than L ‐serine and glycine. The Kd values of Sua5 for L ‐threonine and L ‐serine are 9.3 μM and 2.6 mM, respectively. We determined the crystal structure of S. tokodaii Sua5, complexed with AMPPNP and L ‐threonine, at 1.8 Å resolution. The L ‐threonine is bound next to AMPPNP in the same pocket of the N‐terminal domain. Thr118 and two water molecules form hydrogen bonds with AMPPNP in a unique manner for adenine‐specific recognition. The carboxyl group and the side‐chain hydroxyl and methyl groups of L ‐threonine are buried deep in the pocket, whereas the amino group faces AMPPNP. The L ‐threonine is located in a suitable position to react together with ATP for the synthesis of N6‐threonylcarbamoyladenosine. Proteins 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

10.
Even though the glycine conjugation pathway was one of the first metabolic pathways to be discovered, this pathway remains very poorly characterized. The bi‐substrate kinetic parameters of a recombinant human glycine N‐acyltransferase (GLYAT, E.C. 2.3.1.13) were determined using the traditional colorimetric method and a newly developed HPLC–ESI‐MS/MS method. Previous studies analyzing the kinetic parameters of GLYAT, indicated a random Bi–Bi and/or ping‐pong mechanism. In this study, the hippuric acid concentrations produced by the GLYAT enzyme reaction were analyzed using the allosteric sigmoidal enzyme kinetic module. Analyses of the initial rate (v) against substrate concentration plots, produced a sigmoidal curve (substrate activation) when the benzoyl‐CoA concentrations was kept constant, whereas the plot with glycine concentrations kept constant, passed through a maximum (substrate inhibition). Thus, human GLYAT exhibits mechanistic kinetic cooperativity as described by the Ferdinand enzyme mechanism rather than the previously assumed Michaelis–Menten reaction mechanism.  相似文献   

11.
Combination antibiotic therapies are being increasingly used in the clinic to enhance potency and counter drug resistance. However, the large search space of candidate drugs and dosage regimes makes the identification of effective combinations highly challenging. Here, we present a computational approach called INDIGO, which uses chemogenomics data to predict antibiotic combinations that interact synergistically or antagonistically in inhibiting bacterial growth. INDIGO quantifies the influence of individual chemical–genetic interactions on synergy and antagonism and significantly outperforms existing approaches based on experimental evaluation of novel predictions in Escherichia coli. Our analysis revealed a core set of genes and pathways (e.g. central metabolism) that are predictive of antibiotic interactions. By identifying the interactions that are associated with orthologous genes, we successfully estimated drug‐interaction outcomes in the bacterial pathogens Mycobacterium tuberculosis and Staphylococcus aureus, using the E. coli INDIGO model. INDIGO thus enables the discovery of effective combination therapies in less‐studied pathogens by leveraging chemogenomics data in model organisms.  相似文献   

12.
The discovery of J147 represented a significant milestone in the treatment of age‐related disorders, which was further augmented by the recent identification of mitochondrial ATP synthase as the therapeutic target. However, the underlying molecular events associated with the modulatory activity of J147 have remained unresolved till date. Herein, we present, for the first time, a dynamical approach to investigate the allosteric regulation of mATP synthase by J147, using a reliable human αγβ protein model. The highlight of our findings is the existence of the J147‐bound protein in distinct structural associations at different MD simulation periods coupled with concurrent open?close transitions of the β catalytic and α allosteric (ATP5A) sites as defined by Cα distances (d), TriCα (Θ) and dihedral (φ) angular parameters. Firstly, there was an initial pairing of the αγ subunits away from the β subunit followed by the formation of the ‘non‐catalytic’ αβ pair at a distance from the γ subunit. Interestingly, J147‐induced structural arrangements were accompanied by the systematic transition of the β catalytic site from a closed to an open state, while there was a concurrent transition of the allosteric site from an open αE conformation to a closed state. Consequentially, J147 reduced the structural activity of the whole αγβ complex, while the unbound system exhibited high atomistic deviations and structural flexibility. Furthermore, J147 exhibited favorable binding at the allosteric site of mATP synthase with considerable electrostatic energy contributions from Gln215, Gly217, Thr219, Asp312, Asp313, Glu371 and Arg406. These findings provide details on the possible effects of J147 on mitochondrial bioenergetics, which could facilitate the structure‐based design of novel small‐molecule modulators of mATP synthase in the management of Alzheimer's disease and other neurodegenerative disorders.  相似文献   

13.
Cell surfaces are decorated by a variety of proteins that facilitate interactions with their environments and support cell stability. These secreted proteins are anchored to the cell by mechanisms that are diverse, and, in archaea, poorly understood. Recently published in silico data suggest that in some species a subset of secreted euryarchaeal proteins, which includes the S‐layer glycoprotein, is processed and covalently linked to the cell membrane by enzymes referred to as archaeosortases. In silico work led to the proposal that an independent, sortase‐like system for proteolysis‐coupled, carboxy‐terminal lipid modification exists in bacteria (exosortase) and archaea (archaeosortase). Here, we provide the first in vivo characterization of an archaeosortase in the haloarchaeal model organism Haloferax volcanii. Deletion of the artA gene (HVO_0915) resulted in multiple biological phenotypes: (a) poor growth, especially under low‐salt conditions, (b) alterations in cell shape and the S‐layer, (c) impaired motility, suppressors of which still exhibit poor growth, and (d) impaired conjugation. We studied one of the ArtA substrates, the S‐layer glycoprotein, using detailed proteomic analysis. While the carboxy‐terminal region of S‐layer glycoproteins, consisting of a putative threonine‐rich O‐glycosylated region followed by a hydrophobic transmembrane helix, has been notoriously resistant to any proteomic peptide identification, we were able to identify two overlapping peptides from the transmembrane domain present in the ΔartA strain but not in the wild‐type strain. This clearly shows that ArtA is involved in carboxy‐terminal post‐translational processing of the S‐layer glycoprotein. As it is known from previous studies that a lipid is covalently attached to the carboxy‐terminal region of the S‐layer glycoprotein, our data strongly support the conclusion that archaeosortase functions analogously to sortase, mediating proteolysis‐coupled, covalent cell surface attachment.  相似文献   

14.
15.
Deciphering protein‐protein interactions (PPIs) is fundamental for understanding signal transduction pathways in plants. The split firefly luciferase (Fluc) complementation (SLC) assay has been widely used for analyzing PPIs. However, concern has risen about the bulky halves of Fluc interfering with the functions of their fusion partners. Nano luciferase (Nluc) is the smallest substitute for Fluc with improved stability and luminescence. Here, we developed a dual‐use system enabling the detection of PPIs through the Nluc‐based SLC and co‐immunoprecipitation assays. This was realized by coexpression of two proteins under investigation in fusion with the HA‐ or FLAG‐tagged Nluc halves, respectively. We validated the robustness of this system by reproducing multiple previously documented PPIs in protoplasts or Agrobacterium‐transformed plants. We next applied this system to evaluate the homodimerization of Arabidopsis CERK1, a coreceptor of fungal elicitor chitin, and its heterodimerization with other homologs in the absence or presence of chitin. Moreover, split fragments of Nluc were fused to two cytosolic ends of Arabidopsis calcium channels CNGC2 and CNGC4 to help sense the allosteric change induced by the bacterial elicitor flg22. Collectively, these results demonstrate the usefulness of the Nluc‐based SLC assay for probing constitutive or inducible PPIs and protein allostery in plant cells.  相似文献   

16.
Translation of large‐scale data into a coherent model that allows one to simulate, predict and control cellular behavior is far from being resolved. Assuming that long‐term cellular behavior is reflected in the gene expression kinetics, we infer a dynamic gene regulatory network from time‐series measurements of DNA microarray data of hepatocyte growth factor‐induced migration of primary human keratinocytes. Transferring the obtained interactions to the level of signaling pathways, we predict in silico and verify in vitro the necessary and sufficient time‐ordered events that control migration. We show that pulse‐like activation of the proto‐oncogene receptor Met triggers a responsive state, whereas time sequential activation of EGF‐R is required to initiate and maintain migration. Context information for enhancing, delaying or stopping migration is provided by the activity of the protein kinase A signaling pathway. Our study reveals the complex orchestration of multiple pathways controlling cell migration.  相似文献   

17.
Serine/Threonine kinases participate in complex, interacting signaling pathways in eukaryotes, prokaryotes, and archae. While most organisms contain many different kinases, the extreme hyperthermophile, Aquifex aeolicus encodes a single hypothetical Ser/Thr kinase. A gene homologous to eukaryotic protein phosphatases overlaps the kinase gene by a single base pair. The putative kinase, AaSTPK and phosphatase, AaPPM, were cloned and expressed in E. coli, purified to homogeneity and found to be functional. AaSTPK is a 34-kDa monomer that can use MgATP, MnATP, or MnGTP as co-substrates, although MgATP appears to be the preferred substrate. AaSTPK was autophosphorylated on a threonine residue and was dephosphorylated by AaPPM. AaPPM phosphatase is homologous to the PPM sub-family of Ser/Thr phosphatases and was stimulated by MnCl2 and CoCl2 but not MgCl2. AaSTPK also phosphorylated one threonine residue on the carbamoyl phosphate synthetase, CPS.A subunit. Carbamoyl phosphate synthetase reconstituted with phosphorylated CPS.A had unaltered catalytic activity but allosteric inhibition by UMP and activation by the arginine intermediate, ornithine, were both appreciably attenuated. These changes in allosteric regulation would be expected to activate pyrimidine biosynthesis by releasing the constraints imposed on carbamoyl phosphate synthetase activity by UMP and uncoupling the regulation of pyrimidine and arginine biosynthesis. CPS.A was also dephosphorylated by AaPPM. Aquifex aeolicus occupies the lowest branch on the prokaryotic phylogenetic tree. The Thr/Ser kinase, its cognate phosphatase and a protein substrate may be elements of a simple signaling pathway, perhaps the most primitive example of this mode of regulation described thus far.  相似文献   

18.
Amino acid biosynthesis: new architectures in allosteric enzymes.   总被引:1,自引:0,他引:1  
This review focuses on the allosteric controls in the Aspartate-derived and the branched-chain amino acid biosynthetic pathways examined both from kinetic and structural points of view. The objective is to show the differences that exist among the plant and microbial worlds concerning the allosteric regulation of these pathways and to unveil the structural bases of this diversity. Indeed, crystallographic structures of enzymes from these pathways have been determined in bacteria, fungi and plants, providing a wonderful opportunity to obtain insight into the acquisition and modulation of allosteric controls in the course of evolution. This will be examined using two enzymes, threonine synthase and the ACT domain containing enzyme aspartate kinase. In a last part, as many enzymes in these pathways display regulatory domains containing the conserved ACT module, the organization of ACT domains in this kind of allosteric enzymes will be reviewed, providing explanations for the variety of allosteric effectors and type of controls observed.  相似文献   

19.
Relevance of mode coupling to energy/information transfer during protein function, particularly in the context of allosteric interactions is widely accepted. However, existing evidence in favor of this hypothesis comes essentially from model systems. We here report a novel formal analysis of the near‐native dynamics of myosin II, which allows us to explore the impact of the interaction between possibly non‐Gaussian vibrational modes on fluctutational dynamics. We show that an information‐theoretic measure based on mode coupling alone yields a ranking of residues with a statistically significant bias favoring the functionally critical locations identified by experiments on myosin II. Proteins 2014; 82:1777–1786. © 2014 Wiley Periodicals, Inc.  相似文献   

20.
The gut hormone ghrelin is involved in numerous metabolic functions, such as the stimulation of growth hormone secretion, gastric motility, and food intake. Ghrelin is modified by ghrelin O‐acyltransferase (GOAT) or membrane‐bound O‐acyltransferase domain‐containing 4 (MBOAT4) enabling action through the growth hormone secretagogue receptors (GHS‐R). During the course of evolution, initially strong ligand/receptor specificities can be disrupted by genomic changes, potentially modifying physiological roles of the ligand/receptor system. Here, we investigated the coevolution of ghrelin, GOAT, and GHS‐R in vertebrates. We combined similarity search, conserved synteny analyses, phylogenetic reconstructions, and protein structure comparisons to reconstruct the evolutionary history of the ghrelin system. Ghrelin remained a single‐gene locus in all vertebrate species, and accordingly, a single GHS‐R isoform was identified in all tetrapods. Similar patterns of the nonsynonymous (dN) and synonymous (dS) ratio (dN/dS) in the vertebrate lineage strongly suggest coevolution of the ghrelin and GHS‐R genes, supporting specific functional interactions and common physiological pathways. The selection profiles do not allow confirmation as to whether ghrelin binds specifically to GOAT, but the ghrelin dN/dS patterns are more similar to those of GOAT compared to MBOAT1 and MBOAT2 isoforms. Four GHS‐R isoforms were identified in teleost genomes. This diversification of GHS‐R resulted from successive rounds of duplications, some of which remained specific to the teleost lineage. Coevolution signals are lost in teleosts, presumably due to the diversification of GHS‐R but not the ghrelin gene. The identification of the GHS‐R diversity in teleosts provides a molecular basis for comparative studies on ghrelin's physiological roles and regulation, while the comparative sequence and structure analyses will assist translational medicine to determine structure–function relationships of the ghrelin/GHS‐R system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号