首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Interferon (IFN)‐γ‐induced protein 10 (IP‐10/CXCL10), a CXC chemokine, has been documented in several inflammatory and autoimmune disorders including atopic dermatitis and bronchial asthma. Although CXCL10 could be induced by IFN‐γ depending on cell type, the mechanisms regulating CXCL10 production following treatment with combination of IFN‐γ and TNF‐α have not been adequately elucidated in human monocytes. In this study, we showed that TNF‐α had more potential than IFN‐γ to induce CXCL10 production in THP‐1 monocytes. Furthermore, IFN‐γ synergistically enhanced the production of CXCL10 in parallel with the activation of NF‐κB in TNF‐α‐stimulated THP‐1 cells. Blockage of STAT1 or NF‐κB suppressed CXCL10 production. JAKs inhibitors suppressed IFN‐γ plus TNF‐α‐induced production of CXCL10 in parallel with activation of STAT1 and NF‐κB, while ERK inhibitor suppressed production of CXCL10 as well as activation of NF‐κB, but not that of STAT1. IFN‐γ‐induced phosphorylation of JAK1 and JAK2, whereas TNF‐α induced phosphorylation of ERK1/2. Interestingly, IFN‐γ alone had no effect on phosphorylation and degradation of IκB‐α, whereas it significantly promoted TNF‐α‐induced phosphorylation and degradation of IκB‐α. These results suggest that TNF‐α induces CXCL10 production by activating NF‐κB through ERK and that IFN‐γ induces CXCL10 production by increasing the activation of STAT1 through JAKs pathways. Of note, TNF‐α‐induced NF‐κB may be the primary pathway contributing to CXCL10 production in THP‐1 cells. IFN‐γ potentiates TNF‐α‐induced CXCL10 production in THP‐1 cells by increasing the activation of STAT1 and NF‐κB through JAK1 and JAK2. J. Cell. Physiol. 220: 690–697, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

5.
6.
7.
Tumour necrosis factor alpha (TNFα) and interferon gamma (IFNγ) were originally found to be produced by inflammatory cells and play important roles in the immune system and surveillance of tumour growth. By activating distinct signalling pathways of nuclear factor‐κB (NF‐κB), mitogen‐activated protein kinase (MAPK), and JAK/STAT, TNFα and IFNγ were reported to effectively trigger cell death and perform powerful anti‐cancer effects. In this review, we will discuss the new advancements of TNFα and IFNγ in anti‐cancer therapy.  相似文献   

8.
A wealth of evidence supports the broad therapeutic potential of NF‐κB and EZH2 inhibitors as adjuvants for breast cancer treatment. We contribute to this knowledge by elucidating, for the first time, unique regulatory crosstalk between EZH2, NF‐κB and the NF‐κB interacting long non‐coding RNA (NKILA). We define a novel signaling loop encompassing canonical and non‐canonical actions of EZH2 on the regulation of NF‐κB/NKILA homeostasis, with relevance to breast cancer treatment. We applied a respective silencing approach in non‐transformed breast epithelial cells, triple negative MDA‐MB‐231 cells and hormone responsive MCF‐7 cells, and measured changes in EZH2/NF‐κB/NKILA levels to confirm their interdependence. We demonstrate cell line‐specific fluctuations in these factors that functionally contribute to epithelial‐to‐mesenchymal transition (EMT) remodelling and cell fate response. EZH2 inhibition attenuates MDA‐MB‐231 cell motility and CDK4‐mediated MCF‐7 cell cycle regulation, while inducing global H3K27 methylation and an EMT phenotype in non‐transformed cells. Notably, these events are mediated by a cell‐context dependent gain or loss of NKILA and NF‐κB. Depletion of NF‐κB in non‐transformed cells enhances their sensitivity to growth factor signaling and suggests a role for the host microenvironment milieu in regulating EZH2/NF‐κB/NKILA homeostasis. Taken together, this knowledge critically informs the delivery and assessment of EZH2 inhibitors in breast cancer.  相似文献   

9.
10.
11.
Estrogen receptor (ER)‐positive breast cancer cells have low levels of constitutive NF‐κB activity while ER negative (?) cells and hormone‐independent cells have relatively high constitutive levels of NF‐κB activity. In this study, we have examined the aspects of mutual repression between the ERα and NF‐κB proteins in ER+ and ER? hormone‐independent cells. Ectopic expression of the ERα reduced cell numbers in ER+ and ER? breast cancer cell lines while NF‐κB‐binding activity and the expression of several NF‐κB‐regulated proteins were reduced in ER? cells. ER overexpression in ER+/E2‐independent LCC1 cells only weakly inhibited the predominant p50 NF‐κB. GST‐ERα fusion protein pull downs and in vivo co‐immunoprecipitations of NF‐κB:ERα complexes showed that the ERα interacts with p50 and p65 in vitro and in vivo. Inhibition of NF‐κB increased the expression of diverse E2‐regulated proteins. p50 differentially associated directly with the ER:ERE complex in LCC1 and MCF‐7 cells by supershift analysis while p65 antibody reduced ERα:ERE complexes in the absence of a supershift. ChIP analysis demonstrated that NF‐κB proteins are present on an endogenous ERE. Together these results demonstrate that the ER and NF‐κB undergo mutual repression, which may explain, in part, why expression of the ERα in ER? cells does not confer growth signaling. Secondly, the acquisition of E2‐independence in ER+ cells is associated with predominantly p50:p50 NF‐κB, which may reflect alterations in the ER in these cells. Since the p50 homodimer is less sensitive to the presence of the ER, this may allow for the activation of both pathways in the same cell. J. Cell. Biochem. 107: 448–459, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

12.
Smac mimetics are potential anticancer therapeutics selectively killing cancer cells through autocrine tumor necrosis factor (TNF)‐mediated apoptosis pathway. Our recent study reveal that the Smac mimetic compound 3 (SMC3)‐activated NF‐κB protects cancer cells against apoptosis, thus blunting SMC3's anticancer activity. Based on our previous observations that the nutrient flavonoid luteolin potently blocks TNF‐induced NF‐κB activation in cancer cells, we investigated if the combination of SMC3 and luteolin would achieve a synergistic anticancer activity. The results show that luteolin had no effect on autocrine TNF but it effectively blocked SMC3‐induced nuclear factor kappa B (NF‐κB) activation and expression of anti‐apoptotic NF‐κB targets. When SMC3 and luteolin were combined in treating cancer cells derived from lung and liver tumors, the activation of TNF‐dependent apoptosis was markedly sensitized and a synergistic cytotoxic effect was achieved. In addition, the SMC3 and luteolin co‐treatment had marginal effect on immortalized normal human bronchial epithelial cells. The results suggest that combination of SMC3 and luteolin is an effective approach for improving the anticancer value of SMC3, which has implications in cancer prevention and therapy. J. Cell. Biochem. 108: 1125–1131, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

13.
Chondrosarcoma is a type of highly malignant tumour with a potent capacity to invade locally and cause distant metastasis. Chondrosarcoma shows a predilection for metastasis to the lungs. Tumour necrosis factor (TNF)‐α is a key cytokine involved in inflammation, immunity, cellular homeostasis and tumour progression. Integrins are the major adhesive molecules in mammalian cells and have been associated with metastasis of cancer cells. However, the effects of TNF‐α in migration and integrin expression in chondrosarcoma cells are largely unknown. In this study, we found that TNF‐α increased the migration and the expression of αvβ3 integrin in human chondrosarcoma cells. Activations of MAPK kinase (MEK), extracellular signal‐regulating kinase (ERK) and nuclear factor‐κB (NF‐κB) pathways after TNF‐α treatment were demonstrated, and TNF‐α‐induced expression of integrin and migration activity was inhibited by the specific inhibitor and mutant of MEK, ERK and NF‐κB cascades. Taken together, our results indicated that TNF‐α enhances the migration of chondrosarcoma cells by increasing αvβ3 integrin expression through the MEK/ERK/NF‐κB signal transduction pathway. J. Cell. Physiol. 226: 792–799, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

14.
Tumor necrosis factor‐alpha (TNFα) induces cancer development and metastasis, which is prominently achieved by nuclear factor‐kappa B (NF‐κB) activation. TNFα‐induced NF‐κB activation enhances cellular mechanisms including proliferation, migration, and invasion. KiSS1, a key regulator of puberty, was initially discovered as a tumor metastasis suppressor. The expression of KiSS1 was lost or down‐regulated in different metastatic tumors. However, it is unclear whether KiSS1 regulates TNFα‐induced NF‐κB activation and further tumor cell migration. In this study, we demonstrate that KiSS1 suppresses the migration of breast cancer cells by inhibiting TNFα‐induced NF‐κB pathway and RhoA activation. Both KiSS1 overexpression and KP10 (kisspeptin‐10) stimulation inhibited TNFα‐induced NF‐κB activity, suppressed TNFα‐induced cell migration and cell attachment to fibronectin in breast cancer cells while KP10 has little effect on cancer cell proliferation. Furthermore, KP10 inhibited TNFα‐induced cell migration and RhoA GTPase activation. Therefore, our data demonstrate that KiSS1 inhibits TNFα‐induced NF‐κB activation via downregulation of RhoA activation and suppression of breast cancer cell migration and invasion. J. Cell. Biochem. 107: 1139–1149, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

15.
We previously reported that mechanical vibration‐induced proinflammatory cytokines, interleukin‐6 (IL‐6) and IL‐8, expression in human periodontal ligament (hPDL) cells, however, the underlying mechanism remained unclear. Mechanical stimuli are able to activate cellular responses by inducing the activation of several signaling pathways including cytoskeletal changes and inflammation. The actin cytoskeleton is a highly dynamic network and plays many important roles in intracellular events. Here, we aimed to investigate the involvement of a pivotal mediator of inflammatory responses, nuclear factor‐κB (NF‐κB), and actin polymerization in vibration‐induced upregulation of IL‐6 and IL‐8 expression in hPDL cells. hPDL cells were pretreated with the NF‐κB inhibitor BAY 11‐7082 or cytochalasin D, respectively, before exposure to vibration. IL‐6 and IL‐8 messenger RNA (mRNA) and protein expression were quantified by quantitative polymerase chain reaction and enzyme‐linked immunosorbent assays, respectively. Subcellular localization of the NF‐κB p65 subunit was visualized by immunofluorescent staining. We found an increase in NF‐κB nuclear translocation in vibrated cells compared with control cells. Pretreatment with BAY 11‐7082 significantly inhibited vibration‐induced IL‐6 and IL‐8 mRNA and protein expression in hPDL cells. Moreover, pretreatment with cytochalasin D inhibited NF‐κB nuclear translocation and attenuated upregulation of IL‐6 and IL‐8 mRNA and protein in vibrated cells. Therefore, modulation of actin cytoskeletal polymerization in response to vibration may activate the NF‐κB signaling pathway and subsequently upregulate IL‐6 and IL‐8 expression in hPDL cells.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号