首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The ribosomal protein L11 (RPL11) binds and inhibits the MDM2 ubiquitin ligase, thereby promoting p53 stability. Thus, RPL11 acts as a tumor suppressor. Here, we show that GRWD1 (glutamate‐rich WD40 repeat containing 1) physically and functionally interacts with RPL11. GRWD1 is localized to nucleoli and is released into the nucleoplasm upon nucleolar stress. Silencing of GRWD1 increases p53 induction by nucleolar stress, whereas overexpression of GRWD1 reduces p53 induction. Furthermore, GRWD1 overexpression competitively inhibits the RPL11–MDM2 interaction and alleviates RPL11‐mediated suppression of MDM2 ubiquitin ligase activity toward p53. These effects are mediated by the N‐terminal region of GRWD1, including the acidic domain. Finally, we show that GRWD1 overexpression in combination with HPV16 E7 and activated KRAS confers anchorage‐independent growth and tumorigenic capacity on normal human fibroblasts. Consistent with this, GRWD1 overexpression is associated with poor prognosis in cancer patients. Taken together, our results suggest that GRWD1 is a novel negative regulator of p53 and a potential oncogene.  相似文献   

3.
4.
p53 regulates a key pathway which protects normal tissues from tumor development that may result from diverse forms of stress. In the absence of stress, growth suppressive and proapoptotic activity of p53 is inhibited by MDM2 which binds p53 and negatively regulates its activity and stability. MDM2 antagonists could activate p53 and may offer a novel therapeutic approach to cancer. Recently, we identified the first potent and selective low molecular weight inhibitors of MDM2-p53 binding, the Nutlins. These molecules activate the p53 pathway and suppress tumor growth in vitro and in vivo. They represent valuable new tools for studying the p53 pathway and its defects in cancer. Nutlins induce p53-dependent apoptosis in human cancer cells but appear cytostatic to proliferating normal cells. Their potent activity against osteosarcoma xenografts suggests that MDM2 antagonists may have clinical utility in the treatment of tumors with wild-type p53.  相似文献   

5.
6.
7.
8.
9.
Both MDM2 and MDMX regulate p53, but these proteins play different roles in this process. To clarify the difference, we performed a yeast 2 hybrid (Y2H) screen using the MDM2 acidic domain as bait. DNAJB1 was found to specifically bind to MDM2, but not MDMX, in vitro and in vivo. Further investigation revealed that DNAJB1 stabilizes MDM2 at the post-translational level. The C-terminus of DNAJB1 is essential for its interaction with MDM2 and for MDM2 accumulation. MDM2 was degraded faster by a ubiquitin-mediated pathway when DNAJB1 was depleted. DNAJB1 inhibited the MDM2-mediated ubiquitination and degradation of p53 and contributed to p53 activation in cancer cells. Depletion of DNAJB1 in cancer cells inhibited activity of the p53 pathway, enhanced the activity of the Rb/E2F pathway, and promoted cancer cell growth in vitro and in vivo. This function was p53 dependent, and either human papillomavirus (HPV) E6 protein or siRNA against p53 was able to block the contribution caused by DNAJB1 depletion. In this study, we discovered a new MDM2 interacting protein, DNAJB1, and provided evidence to support its p53-dependent tumor suppressor function.  相似文献   

10.
BACKGROUND: The MDM2 oncogene is amplified or overexpressed in many human cancers and MDM2 levels are associated with poor prognosis. MDM2 not only serves as a negative regulator of p53 but also has p53-independent activities. This study investigates the functions of the MDM2 oncogene in colon cancer growth and the potential value of MDM2 as a drug target for cancer therapy, by inhibiting MDM2 expression with an antisense anti-human-MDM2 oligonucleotide. MATERIALS AND METHODS: The selected antisense mixed-backbone oligonucleotide was evaluated for its in vitro and in vivo antitumor activity in human colon cancer models: LS174T cell line containing wild-type p53 and DLD-1 cell line containing mutant p53. The levels of MDM2, p53 and p21 proteins were quantified by Western blot analysis. RESULTS: In vitro antitumor activity was found in both cell lines, resulting from specific inhibition of MDM2 expression. In vivo antitumor activity of the oligonucleotide occurred in a dose-dependent manner in both models and synergistically or additive therapeutic effects of MDM2 inhibition and the cancer chemotherapeutic agents 10-hydroxycamptothecin and 5-fluorouracil were also observed. CONCLUSIONS: These results suggest that MDM2 have a role in tumor growth through both p53-dependent and p53- independent mechanisms. We speculate that MDM2 inhibitors have a broad spectrum of antitumor activities in human cancers regardless of p53 status. This study should provide a basis for future development of anti-MDM2 antisense oligonucleotides as cancer therapeutic agents used alone or in combination with conventional chemotherapeutics.  相似文献   

11.
MDM2--master regulator of the p53 tumor suppressor protein   总被引:35,自引:0,他引:35  
Momand J  Wu HH  Dasgupta G 《Gene》2000,242(1-2):15-29
MDM2 is an oncogene that mainly functions to modulate p53 tumor suppressor activity. In normal cells the MDM2 protein binds to the p53 protein and maintains p53 at low levels by increasing its susceptibility to proteolysis by the 26S proteosome. Immediately after the application of cellular stress, the ability of MDM2 to bind to p53 is blocked or altered in a fashion that prevents MDM2-mediated degradation. As a result, p53 levels rise, causing cell cycle arrest or apoptosis. In this review, we present evidence for the existence of three highly conserved regions (CRs) shared by MDM2 proteins and MDMX proteins of different species. These highly conserved regions encompass residues 42-94 (CR1), 301-329 (CR2), and 444-483 (CR3) on human MDM2. These three domains are respectively important for binding p53, for binding the retinoblastoma protein, and for transferring ubiquitin to p53. This review discusses the major milestones uncovered in MDM2 research during the past 12 years and potential uses of this knowledge in the fight against cancer.  相似文献   

12.
13.
14.
p53 regulates a key pathway which protects normal tissues from tumor development that may result from diverse forms of stress. In the absence of stress, growth suppressive and proapoptotic activity of p53 is inhibited by MDM2 which binds p53 and negatively regulates its activity and stability. MDM2 antagonists could activate p53 and may offer a novel therapeutic approach to cancer. Recently, we identified the first potent and selective low molecular weight inhibitors of MDM2-p53 binding, the Nutlins. These molecules activate the p53 pathway and suppress tumor growth in vitro and in vivo. Nutlins represent valuable new tools for studying the p53 pathway and its defects in cancer. Their potent activity against osteosarcoma xenogrfts suggests that MDM2 antagonists may have a clinical utility in the treatment of tumors with wild-type p53.  相似文献   

15.
PTEN regulates Mdm2 expression through the P1 promoter   总被引:6,自引:0,他引:6  
  相似文献   

16.
The murine double minute (MDM2) oncogene a negative regulator of protein 53 (p53) tumor suppressor, is found overexpressed in many different types of cancer and the interaction between MDM2 and p53 has become the target of intensive research. MDM2 inhibitors represent a promising class of p53 activating compounds that may be effective in cancer treatment and diagnostic imaging. Nutlins, a family of cis-imidazoline analogues and small-molecule MDM2 antagonists, have the potential use in cancer therapies. We have synthesized an imidazole derivative (Nutlin–Glycine) conjugated to the commonly used fluorophore, 6-carboxyfluorescein (FAM) and evaluated its possible use as an imaging agent. Cellular uptake studies demonstrated that the fluorescence intensity in human osteosarcoma (SJSA-1) and colon carcinoma (HCT116) cells were significantly increased with the treatment of Nutlin–Glycine–FAM when compared with FAM (control). Blocking studies also confirmed that our imidazole–fluorescein conjugate may be a good candidate for imaging tumors, suggesting the need for further in vivo evaluation by positron emission tomography.  相似文献   

17.
18.
Pirh2, a recently identified ubiquitin-protein ligase, has been reported to promote p53 degradation. Pirh2 physically interacts with p53 and promotes ubiquitination of p53 independently of MDM2. Like MDM2, Pirh2 is thought to participate in an autoregulatory feedback loop that controls p53 function. We have previously reported that Pirh2 was overexpressed in human and murine lung cancers as compared to uninvolved lung tissue. Pirh2 increase could potentially cause degradation of wildtype p53 and reduce its tumor suppression function in the lung tumor cells. Since Pirh2 has been reported to be transactivated by p53, however, the mechanisms by which a high level of Pirh2 expression is maintained in tumor cells despite low level of wildtype p53 protein are unclear. In order to evaluate p53 involvement in the transactivation of Pirh2, we evaluated Pirh2, MDM2, p53 and p21 expression with Western blot analysis and real time PCR after gamma irradiation or cisplatin DNA damage treatment using human cancer cell lines containing wildtype (A549, MCF-7), mutant (H719) and null (H1299) p53. Surprisingly, Pirh2 expression was not affected by the presence of wildtype p53 in the cancer cells. In contrast, MDM2 was upregulated by wildtype p53 in A549 and MCF-7 cells and was absent from the H1299 and the H719 cells. We conclude that Pirh2 operates in a distinct manner from MDM2 in response to DNA damage in cancer cells. Pirh2 elevation in p53 null cells indicates the existence of additional molecular mechanisms for Pirh2 upregulation and suggests that p53 is not the sole target of Pirh2 ubiquitin ligase activity.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号