首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bone morphogenetic protein (BMP) signaling regulates many different biological processes, including cell growth, differentiation, and embryogenesis. BMPs bind to heterogeneous complexes of transmembrane serine/threonine (Ser/Thr) kinase receptors known as the BMP type I and II receptors (BMPRI and BMPRII). BMPRII phosphorylates and activates the BMPRI kinase, which in turn activates the Smad proteins. The cytoplasmic region of BMPRII contains a "tail" domain (BMPRII-TD) with no enzymatic activity or known regulatory function. The discovery of mutations associated with idiopathic pulmonary artery hypertension mapping to BMPRII-TD underscores its importance. Here, we report that Tribbles-like protein 3 (Trb3) is a novel BMPRII-TD-interacting protein. Upon BMP stimulation, Trb3 dissociates from BMPRII-TD and triggers degradation of Smad ubiquitin regulatory factor 1 (Smurf1), which results in the stabilization of BMP receptor-regulated Smads and potentiation of the Smad pathway. Downregulation of Trb3 inhibits BMP-mediated cellular responses, including osteoblast differentiation of C2C12 cells and maintenance of the smooth muscle phenotype of pulmonary artery smooth muscle cells. Thus, Trb3 is a critical component of a novel mechanism for regulation of the BMP pathway by BMPRII.  相似文献   

2.
3.
4.
5.
Fibroblast proliferation, differentiation, and migration contribute to the characteristic pulmonary vascular remodeling seen in primary pulmonary hypertension (PPH). The identification of mutations in the bone morphogenetic protein type II receptor (BMPRII) in PPH have led us to question what role BMPRII and its ligands play in pulmonary vascular remodeling. Thus, to further understand the functional significance of BMPRII in the pulmonary vasculature, we examined the expression of TGF-beta superfamily receptors in human fetal lung fibroblasts (HFL) and investigated the role of BMP4 on cell cycle regulation, fibroblast proliferation, and differentiation. Furthermore, signaling pathways involved in these processes were examined. HFL expressed BMPRI and BMPRII mRNA and demonstrated specific I(125)-BMP4 binding sites. BMP4 inhibited [(3)H]thymidine incorporation and proliferation of HFL; protein expression was increased for the cell cycle inhibitor p21 and reduced for the positive regulators cyclin D and cdk2 by BMP4. BMP4 induced differentiation of HFL into a smooth muscle cell phenotype since protein expression of alpha-smooth muscle actin and smooth muscle myosin was increased. Furthermore, p38(MAPK), ERK1/2, JNK, and Smad1 were phosphorylated by BMP4. Using specific MAPK inhibitors, a dominant negative Smad1 construct, and Smad1 siRNA, we found that the antiproliferative and prodifferentiation effects of BMP4 were Smad1 dependent with JNK also contributing to differentiation. Because failure of Smad phosphorylation is a major feature of BMPRII mutations, these results imply that BMPRII mutations may promote the expansion of fibroblasts resistant to the antiproliferative, prodifferentiation effects of BMPs and suggest a mechanism for the vascular obliteration seen in familial PPH.  相似文献   

6.
7.
The Smads   总被引:8,自引:0,他引:8  
  相似文献   

8.
9.
10.
Multiple abnormalities of bone morphogenetic protein (BMPs) signaling are implicated in the process of pulmonary arterial hypertension (PAH). BMP4 plays an important role during the process of pulmonary arterial remodeling and mutant of the principle BMP4 receptor, BMP receptors II (BMPRII), is found to associate with the development of PAH. However, the likely mechanism defining the contribution of BMPRII to BMP4 mediated signaling in pulmonary arterial smooth muscle cells (PASMCs) remains comprehensively unclear. We previously found that enhanced store operated calcium entry (SOCE) and basal intracellular calcium concentration [Ca2+]i were induced by BMP4 via upregulation of TRPC1, 4 and 6 expression in PASMCs, and that BMP4 modulated TRPC channel expression through activating p38MAPK and ERK1/2 signaling pathways. In this study, BMPRII siRNA was used to knockdown BMPRII expression to investigate whether BMP4 upregulates the expression of TRPC and activating Smad1/5/8, ERK1/2 and p38MAPK pathway via BMPRII in distal PASMCs. Our results showed that knockdown of BMPRII: 1) attenuated BMP4 induced activation of P-Smad1/5/8, without altering BMP4 induced P-p38MAPK and P-ERK1/2 activation in PASMCs; 2) did not attenuate the BMP4-induced TRPC1, 4 and 6 expression; 3) did not affect BMP4-enhanced SOCE and basal [Ca2+]i. Thus, we concluded that BMP4 activated Smad1/5/8 pathway is BMPRII-dependent, while the BMP4 – ERK/p-P38 – TRPC – SOCE signaling axis are likely mediated through other receptor rather than BMPRII.  相似文献   

11.
Divergence and convergence of TGF-beta/BMP signaling   总被引:41,自引:0,他引:41  
The transforming growth factor-beta (TGF-beta) superfamily includes more than 30 members which have a broad array of biological activities. TGF-beta superfamily ligands bind to type II and type I serine/threonine kinase receptors and transduce signals via Smad proteins. Receptor-regulated Smads (R-Smads) can be classified into two subclasses, i.e. those activated by activin and TGF-beta signaling pathways (AR-Smads), and those activated by bone morphogenetic protein (BMP) pathways (BR-Smads). The numbers of type II and type I receptors and Smad proteins are limited. Thus, signaling of the TGF-beta superfamily converges at the receptor and Smad levels. In the intracellular signaling pathways, Smads interact with various partner proteins and thereby exhibit a wide variety of biological activities. Moreover, signaling by Smads is modulated by various other signaling pathways allowing TGF-beta superfamily ligands to elicit diverse effects on target cells. Perturbations of the TGF-beta/BMP signaling pathways result in various clinical disorders including cancers, vascular diseases, and bone disorders.  相似文献   

12.
13.
14.
TGF-beta signalling through the Smad pathway   总被引:2,自引:0,他引:2  
  相似文献   

15.
16.
Smads are intracellular signaling mediators for TGF-beta superfamily. Smad1 and Smad5 are activated by BMP receptors. Here, we have cloned mouse Smad8 and functionally characterized its ability to transduce signals from BMP receptors. Constitutively active BMP type I receptors, ALK-3 and ALK-6, as well as ALK-2, were phosphorylated Smad8 and induced Smad8 interaction with Smad4. Nuclear translocation of Smad8 was stimulated by constitutively active BMP type I receptors. In contrast, constitutively active TGF-beta type I receptor, ALK-5, did not exhibit any action on Smad8. Smad8 and Smad4 cooperatively induced the promoter of Xvent2, a homeobox gene that responds specifically to BMP signaling. Dominant-negative Smad8 was shown to inhibit the increase of alkaline phosphatase activity induced by BMP-2 on pluripotent mesenchymal C3H10T1/2 and myoblastic C2C12 cell lines. The presence of Smad8 mRNA in mouse calvaria cells and osteoblasts suggests a role of Smad8 in the osteoblast differentiation and maturation.  相似文献   

17.
Smad6 as a transcriptional corepressor   总被引:11,自引:0,他引:11  
  相似文献   

18.
BMP signaling in vascular diseases   总被引:1,自引:0,他引:1  
  相似文献   

19.
20.
Bone morphogenetic protein (BMP) signals regulate the growth and differentiation of diverse lineages. The association of mutations in the BMP type II receptor (BMPRII) with idiopathic pulmonary arterial hypertension suggests an important role of this receptor in vascular remodeling. Pulmonary artery smooth muscle cells lacking BMPRII can transduce BMP signals using ActRIIa (Activin type II receptor). We investigated whether or not BMP signaling via the two receptors leads to differential effects on vascular smooth muscle cells. BMP4, but not BMP7, inhibited platelet-derived growth factor-activated proliferation in wild-type pulmonary artery smooth muscle cells, whereas neither ligand inhibited the growth of BMPRII-deficient cells. Adenoviral gene transfer of BMPRII enabled BMP4, as well as BMP7, to inhibit proliferation in BMPRII-deficient cells. BMP-mediated growth inhibition was also reconstituted by the BMPRII short isoform, lacking the C-terminal domain present in the long form. BMP4, but not BMP7, induced the expression of osteoblast markers in wild-type cells, whereas neither ligand induced these markers in BMPRII-deficient cells. Overexpression of short or long forms of BMPRII in BMPRII-deficient cells enabled BMP4 and BMP7 to induce osteogenic differentiation. Although signaling via BMPRII or ActRIIa transiently activated SMAD1/5/8, only BMPRII signaling led to persistent SMAD1/5/8 activation and sustained increases in Id1 mRNA and protein expression. Pharmacologic blockade of BMP type I receptor function within 24 h after BMP stimulation abrogated differentiation. These data suggest that sustained BMP pathway activation, such as that mediated by BMPRII, is necessary for growth and differentiation control in vascular smooth muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号