首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Onychophora (velvet worms) play a crucial role in current discussions on position of arthropods. The ongoing Articulata/Ecdysozoa debate is in need of additional ground pattern characters for Panarthropoda (Arthropoda, Tardigrada, and Onychophora). Hence, Onychophora is an important outgroup taxon in resolving the relationships among arthropods, irrespective of whether morphological or molecular data are used. To date, there has been a noticeable lack of mitochondrial genome data from onychophorans. Here, we present the first complete mitochondrial genome sequence of an onychophoran, Epiperipatus biolleyi (Peripatidae), which shows several characteristic features. Specifically, the gene order is considerably different from that in other arthropods and other bilaterians. In addition, there is a lack of 9 tRNA genes usually present in bilaterian mitochondrial genomes. All these missing tRNAs have anticodon sequences corresponding to 4-fold degenerate codons, whereas the persisting 13 tRNAs all have anticodons pairing with 2-fold degenerate codons. Sequence-based phylogenetic analysis of the mitochondrial protein-coding genes provides a robust support for a clade consisting of Onychophora, Priapulida, and Arthropoda, which confirms the Ecdysozoa hypothesis. However, resolution of the internal ecdysozoan relationships suffers from a cluster of long-branching taxa (including Nematoda and Platyhelminthes) and a lack of data from Tardigrada and further nemathelminth taxa in addition to nematodes and priapulids.  相似文献   

2.
The Onychophora (velvet worms) represents a small group of invertebrates (~180 valid species), which is commonly united with Tardigrada and Arthropoda in a clade called Panarthropoda. As with the majority of invertebrate taxa, genome size data are very limited for the Onychophora, with only one previously published estimate. Here we use both flow cytometry and Feulgen image analysis densitometry to provide genome size estimates for seven species of velvet worms from both major subgroups, Peripatidae and Peripatopsidae, along with karyotype data for each species. Genome sizes in these species range from roughly 5–19 pg, with densitometric estimates being slightly larger than those obtained by flow cytometry for all species. Chromosome numbers range from 2n = 8 to 2n = 54. No relationship is evident between genome size, chromosome number, or reproductive mode. Various avenues for future genomic research are presented based on these results.  相似文献   

3.

Background  

The composition of the arthropod head is one of the most contentious issues in animal evolution. In particular, controversy surrounds the homology and innervation of segmental cephalic appendages by the brain. Onychophora (velvet worms) play a crucial role in understanding the evolution of the arthropod brain, because they are close relatives of arthropods and have apparently changed little since the Early Cambrian. However, the segmental origins of their brain neuropils and the number of cephalic appendages innervated by the brain - key issues in clarifying brain composition in the last common ancestor of Onychophora and Arthropoda - remain unclear.  相似文献   

4.
EST sequencing of Onychophora and phylogenomic analysis of Metazoa   总被引:4,自引:0,他引:4  
Onychophora (velvet worms) represent a small animal taxon considered to be related to Euarthropoda. We have obtained 1873 5' cDNA sequences (expressed sequence tags, ESTs) from the velvet worm Epiperipatus sp., which were assembled into 833 contigs. BLAST similarity searches revealed that 51.9% of the contigs had matches in the protein databases with expectation values lower than 10(-4). Most ESTs had the best hit with proteins from either Chordata or Arthropoda (approximately 40% respectively). The ESTs included sequences of 27 ribosomal proteins. The orthologous sequences from 28 other species of a broad range of phyla were obtained from the databases, including other EST projects. A concatenated amino acid alignment comprising 5021 positions was constructed, which covers 4259 positions when problematic regions were removed. Bayesian and maximum likelihood methods place Epiperipatus within the monophyletic Ecdysozoa (Onychophora, Arthropoda, Tardigrada and Nematoda), but its exact relation to the Euarthropoda remained unresolved. The "Articulata" concept was not supported. Tardigrada and Nematoda formed a well-supported monophylum, suggesting that Tardigrada are actually Cycloneuralia. In agreement with previous studies, we have demonstrated that random sequencing of cDNAs results in sequence information suitable for phylogenomic approaches to resolve metazoan relationships.  相似文献   

5.
A revision of evolutionary relationships of the Arthropoda has provided fresh impetus to tracing the origins of the nervous system of this group of animals: other members of the Ecdysozoa possess a markedly different type of nervous system from both the arthropods and the annelid worms, with which they were previously grouped. Given their status as favoured sister taxon of the arthropods, Onychophora (velvet worms) are a key group for understanding the evolutionary changes that have taken place in the panarthropod (Arthropoda + Onychophora + Tardigrada) lineage. This article reviews our current knowledge of the structure and development of the onychophoran nervous system. The picture that emerges from these studies is that the nervous system of the panarthropod ancestor was substantially different from that of modern arthropods: this animal probably possessed a bipartite, rather than a tripartite brain; its nerve cord displayed only a limited degree of segmentation; and neurons were more numerous but more uniform in morphology than in living arthropods. These observations suggest an evolutionary scenario, by which the arthropod nervous system evolved from a system of orthogonally crossing nerve tracts present in both a presumed protostome ancestor and many extant worm-like invertebrates, including the onychophorans.  相似文献   

6.
Membership of Arthropoda in a clade of molting animals, the Ecdysozoa, has received a growing body of support over the past 10 years from analyses of DNA sequences from many genes together with morphological characters involving the cuticle and its molting. Recent analyses based on broad phylogenomic sampling strengthen the grouping of cycloneuralian worms and arthropods as Ecdysozoa, identify the velvet worms (Phylum Onychophora) as the closest living relatives of arthropods, and interpret segmentation as having separate evolutionary origins in arthropods and annelid worms. Determining whether the water bears (Phylum Tardigrada) are more closely related to onychophorans and arthropods or to unsegmented cycloneuralians such as roundworms (Nematoda) is an open question. Fossil taxa such as the Cambrian anomalocaridids provide a combination of arthropod and cycloneuralian characters that is not observed in any living ecdysozoan. Fossils break up long branches and help to resolve the sequence of character acquisition at several critical nodes in the arthropod tree, notably in a suite of Cambrian lobopodians that may include the stem groups of each of the major panarthropod lineages.  相似文献   

7.

Background  

Onychophora (velvet worms) represent the most basal arthropod group and play a pivotal role in the current discussion on the evolution of nervous systems and segmentation in arthropods. Although there is a wealth of information on the immunolocalization of serotonin (5-hydroxytryptamine, 5-HT) in various euarthropods, as yet no comparable localization data are available for Onychophora. In order to understand how the onychophoran nervous system compares to that of other arthropods, we studied the distribution of serotonin-like immunoreactive neurons and histological characteristics of ventral nerve cords in Metaperipatus blainvillei (Onychophora, Peripatopsidae) and Epiperipatus biolleyi (Onychophora, Peripatidae).  相似文献   

8.
Ovarian follicular granulosa cells surround and nurture oocytes, and produce sex steroid hormones. It is believed that during development the ovarian surface epithelial cells penetrate into the ovary and develop into granulosa cells when associating with oogonia to form follicles. Using bovine fetal ovaries (n = 80) we identified a novel cell type, termed GREL for Gonadal Ridge Epithelial-Like. Using 26 markers for GREL and other cells and extracellular matrix we conducted immunohistochemistry and electron microscopy and chronologically tracked all somatic cell types during development. Before 70 days of gestation the gonadal ridge/ovarian primordium is formed by proliferation of GREL cells at the surface epithelium of the mesonephros. Primordial germ cells (PGCs) migrate into the ovarian primordium. After 70 days, stroma from the underlying mesonephros begins to penetrate the primordium, partitioning the developing ovary into irregularly-shaped ovigerous cords composed of GREL cells and PGCs/oogonia. Importantly we identified that the cords are always separated from the stroma by a basal lamina. Around 130 days of gestation the stroma expands laterally below the outermost layers of GREL cells forming a sub-epithelial basal lamina and establishing an epithelial-stromal interface. It is at this stage that a mature surface epithelium develops from the GREL cells on the surface of the ovary primordium. Expansion of the stroma continues to partition the ovigerous cords into smaller groups of cells eventually forming follicles containing an oogonium/oocyte surrounded by GREL cells, which become granulosa cells, all enclosed by a basal lamina. Thus in contrast to the prevailing theory, the ovarian surface epithelial cells do not penetrate into the ovary to form the granulosa cells of follicles, instead ovarian surface epithelial cells and granulosa cells have a common precursor, the GREL cell.  相似文献   

9.
10.
In Arthropoda, the ovary is classified into Chelicerata-type and Mandibulata-type, based on the oocyte-growth position within the ovary. By contrast, oocytes of Diplopoda and Chilopoda grow within the hemocoelic space. However, as the position of oocyte-growth in Symphyla and Pauropoda has not been confirmed, whether the hemocoelic nature of oocyte-growth is common among myriapods remains ambiguous. This study described the ovarian structure of Hanseniella caldaria to reveal the oocyte-growth position in Symphyla. The oocyte is surrounded by the follicle epithelium, and the inner surface of the follicle epithelium, i.e., the space between follicle cells and oocytes, is lined with a basement membrane. The follicle epithelial layer continues to the ovarian epithelium via the follicle extension with a continuous layer of basement membrane. Data on the architecture of the follicle suggest that the follicle pouch opens to the hemocoel. Hence, the oocyte of H. caldaria grows within the hemocoelic space. Based on our findings in H. caldaria and previous studies in a millipede and in centipedes, the hemocoelic nature of oocyte-growth is considered as a common feature among myriapods and a synapomorphy of the Myriapoda for which morphological synapomorphies have been ambiguous.  相似文献   

11.
Remipedia are enigmatic crustaceans of uncertain phylogenetic position with the general consensus that they are crucial for understanding the crustacean/arthropod evolution. It has been demonstrated previously that the features of the ovary organization and subcellular aspects of oogenesis are useful in resolving phylogenetic relationships in arthropods such as hexapods and onychophorans. The structure of the female gonads in Remipedia remains largely unknown; therefore, we examined the gross morphology and ultrastructural details of the ovary in a remipede, Godzilliognomus frondosus, with special emphasis on characters relevant to phylogenetic reconstructions. The ovaries of G. frondosus are located in the anterior part of the body and are composed of a single anterior proliferative zone (the germarium) and paired ovarian tubes (the vitellarium). The oocytes undergo subsequent stages of development within the lumen of the ovarian tubes, hence the remipede ovaries can be classified as endogenous. During oogenesis, each oocyte is enveloped by a set of characteristic somatic follicular cells, which results in the formation of distinct ovarian follicles. Here, we demonstrate that Remipedia share significant similarities in the ovary organization with Cephalocarida, including the anterior location of the ovary, the anterior-most position of the germarium and the endogenous type of oocyte development. Phylogenetic implications of our findings are discussed.  相似文献   

12.
Onychophorans (velvet worms) use an adhesive, protein‐based slime secretion for prey capture and defence. The glue‐like slime is ejected via a pair of modified limbs and the sticky threads entangle the victim. In this study, we analysed the protein composition of slime in twelve species of Onychophora from different parts of the world, including two species of Peripatidae from Costa Rica and Brazil and ten species of Peripatopsidae from Australia, using sodium dodecyl sulphate polyacrylamide gel electrophoresis. Our results revealed high intraspecific conservation in protein composition of slime in each species studied. In contrast, the protein profiles differ considerably in both number and position of bands between the species. We observed the highest number of differences (in 20 of 33 considered band positions) between a peripatid and a peripatopsid species, whereas the lowest number of differences (in four band positions) occurs between two closely related egg‐laying species. The reconstructed maximum parsimony cladogram based on the electrophoretic characters largely reflects the phylogenetic relationships of the species studied, suggesting that the slime protein profiles contain useful phylogenetic information. Based on our findings, we suggest that the slime protein profiling is a valuable, non‐invasive method for identifying the onychophoran species. Moreover, this method might help to discover potentially new species of Onychophora, given that the ~200 described species most likely underrepresent the actual diversity of the group.  相似文献   

13.
The major yolk protein of sea urchins is an iron-binding, transferrin-like molecule that is made in the adult gut. Its final destination though is the developing oocytes that are embedded in somatic accessory cells and encompassed by two epithelial layers of the ovary. In this study, we address the dynamics of yolk transport, endocytosis, and packaging during the vitellogenic phase of oogenesis in the sea urchin by use of fluorescently labeled major yolk protein (MYP). Incorporation of MYP into the accessory cells of the ovary and its packaging into yolk platelets of developing oocytes is visualized in isolated oocytes, ovary explants, and in whole animals. When MYP is introduced into the coelom of adult females, it is first accumulated by the somatic cells of the ovarian capsule and is then transported to the oocytes and packaged into yolk platelets. This phenomenon is specific for MYP and accurately reflects the endogenous MYP packaging. We find that oocytes cultured in isolation are endocytically active and capable of selectively packaging MYP into yolk platelets. Furthermore, oocytes that packaged exogenous MYP are capable of in vitro maturation, fertilization, and early development, enabling an in vivo documentation of MYP utilization and yolk platelet dynamics. These results demonstrate that the endocytic uptake of yolk proteins in sea urchins does not require a signal from their surrounding epithelial cells and can occur autonomous of the ovary. In addition, these results demonstrate that the entire population of yolk platelets is competent to receive new yolk protein input, suggesting that they are all made simultaneously during oogenesis.  相似文献   

14.
In the mammalian ovary, oocytes are contained within ovarian follicles. These consist in an oocyte surrounded by supporting cells: an inner layer of granulosa cells and an outer layer of thecal cells separated by a basal lamina. At any one time, a developing cohort of follicles exists, from which only a small species-specific number are selected for continued development towards ovulation, with the remainder dying by follicular atresia. Here, we use in vitro methods to study interactions between two follicles in culture (follicle co-cultures). We show that, when two individual follicles are grown together in culture, cells and cellular processes migrate from the outer thecal layer of one follicle to the thecal layer of the other co-cultured follicle. These cells are identified as a mixed population containing primarily endothelial but also neuronal cells. Both are able to migrate through the ovarian interstitum, making contact with the basal lamina of other follicles and with similar cells from these other follicles. Networks of such cells might be involved in interfollicular communication and in the coordination of follicle selection for ovulation.  相似文献   

15.
We defined the somatic environment in which female germinal cells develop, and performed ultrastructural analyses of various somatic cell types, with particular reference to muscle cells and follicle cells, that reside within the ovary at different stages of oogenesis. Our findings show that ovarian wall of the crayfish is composed of long muscle cells, blood cells, blood vessels and hemal sinuses. The follicle and germinal cells lie within a common compartment of ovarian follicles that is defined by a continuous basal matrix. The follicle cells form branching cords and migrate to surround the developing oocytes. A thick basal matrix separates the ovarian interstitium from ovarian follicles compartment. Transmission electron microscopy shows that inner layer of basal matrix invaginates deeply into the ovarian compartment. Our results suggest that before being surrounded by follicle cells to form follicles, oogonia and early previtellogenic oocytes reside within a niche surrounded by a basal matrix that separates them from ovarian interstitium. We found coated pits and coated vesicles in the cortical cytoplasm of previtellogenic and vitellogenic oocytes, suggesting the receptor mediated endocytosis for transfer of material from the outside of the oocytes, via follicle cells. The interstitial compartment between the inner muscular layer of the ovarian wall and the basal matrix of the ovarian follicle compartment contains muscle cells, hemal sinuses, blood vessels and blood cells. Granular hemocytes, within and outside the vessels, were the most abundant cell population in the ovarian interstitium of crayfish after spawning and in the immature ovary. J. Morphol. 277:118–127, 2016. © 2015 Wiley Periodicals, Inc.  相似文献   

16.
The ovary of paddlefish and sturgeons (Acipenseriformes) is composed of discrete units: the ovarian nests and ovarian follicles. The ovarian nests comprise oogonia and numerous early dictyotene oocytes surrounded by somatic prefollicular cells. Each ovarian follicle consists of a spherical oocyte and a layer of follicular cells situated on a thick basal lamina, encompassed by thecal cells. The cytoplasm of previtellogenic oocytes is differentiated into two distinct zones: the homogeneous and granular zones. The homogeneous cytoplasm is organelle-free, whereas the granular cytoplasm contains numerous organelles, including mitochondria and lipid droplets. We have analyzed the cytoplasm of early dictyotene and previtellogenic oocytes ultrastructurally and histologically. In the cytoplasm of early dictyotene oocytes, two morphologically different types of mitochondria can be distinguished: (1) with well-developed cristae and (2) with distorted and fused cristae. In previtellogenic oocytes, the mitochondria of the second type show various stages of cristae distortion; they contain and release material morphologically similar to that of lipid droplets and eventually degenerate. This process of mitochondrial transformation is accompanied by an accumulation of lipid droplets that form a single large accumulation (lipid body) located in the vicinity of the oocyte nucleus (germinal vesicle). The lipid body eventually disperses in the oocyte center. The possible participation of these mitochondria in the formation of oocyte lipid droplets is discussed. This work was supported by funds from the research grant BW/IZ/2005 to M.Ż. An erratum to this article can be found at http://dx.doi.org/. An erratum to this article can be found at  相似文献   

17.
The structure of the developing oocytes in the ovary of unfed and fed femaleArgas (Persicargas) arboreus is described as seen by scanning (SEM) and transmission (TEM) electron microscopy. The unfed female ovary contains small oocytes protruding onto the surface and its epithelium consists of interstitial cells, oogonia and young oocytes. Feeding initiates oocyte growth through the previtellogenic and vitellogenic phases of development. These phases can be observed by SEM in the same ovary.The surface of isolated, growing oocytes is covered by microvilli which closely contact the basal lamina investing the ovarian epithelium and contains a shallow, circular area with cytoplasmic projections and a deep pit, or micropyle, at the epithelium side. In more advanced oocytes the shell is deposited between microvilli and later completely covers the surface.Transmission EM of growing oocytes in the previtellogenic phase reveals nuclear and nucleolar activity in the emission of dense granules passing into the cytoplasm and the formation of surface microvilli. The cell cytoplasm is rich in free ribosomes and polysomes and contains several dictyosomes associated with dense vesicles and mitochondria which undergo morphogenic changes as growth proceeds. Membrane-limited multivesiculate bodies, probably originating from modified mitochondria, dictyosomes and ribosomal aggregates, are also observed. Rough endoplasmic reticulum is in the form of annulate lamellae. During vitellogenesis, proteinaceous yolk bodies are formed by both endogenous and exogenous sources. The former is involved in the formation of multivesicular bodies which become primary yolk bodies, whereas the latter process involves internalization from the haemolymph through micropinocytosis in pits, vesicles and reservoirs. These fuse with the primary yolk bodies forming large yolk spheres. Glycogen and lipid inclusions are found in the cytoplasm between the yolk spheres.  相似文献   

18.
Adult stem cells are maintained in specialized microenvironments called niches, which promote self-renewal and prevent differentiation. In this study, we show that follicle stem cells (FSCs) in the Drosophila melanogaster ovary rely on cues that are distinct from those of other ovarian stem cells to establish and maintain their unique niche. We demonstrate that integrins anchor FSCs to the basal lamina, enabling FSCs to maintain their characteristic morphology and position. Integrin-mediated FSC anchoring is also essential for proper development of differentiating prefollicle cells that arise from asymmetrical FSC divisions. Our results support a model in which FSCs contribute to the formation and maintenance of their own niche by producing the integrin ligand, laminin A (LanA). Together, LanA and integrins control FSC proliferation rates, a role that is separable from their function in FSC anchoring. Importantly, LanA-integrin function is not required to maintain other ovarian stem cell populations, demonstrating that distinct pathways regulate niche-stem cell communication within the same organ.  相似文献   

19.
Experimental preservation of velvet worms (phylum Onychophora), a very rare but evolutionarily important group that has existed for more than 500 million years, showed that the absence of bucal parts, adhesive-expelling organs, gonopore, eyes, legs, claws, annulation and papillation in fossils may not represent absence in the living animals. In fossils, leg thickness and claw orientation can be unreliable. The experiments indicate that not only absence, but even presence of certain structures can simply be the result of tissue decomposition. Computer-aided photorealistic reconstructions of fossi onychophorans are presented. We recommend future researchers to conduct taphonomy experiments specially before analysing unusual fossils.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号