首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent work has demonstrated a role for Na+/Ca2+ exchange in potentiation of the Ca2+ entry elicited through the human platelet store-operated channel by controlling a Mn2+-impermeable Ca2+ entry pathway. Here we demonstrate that this involves control over the secretion of dense granules by a Na+/Ca2+ exchanger (NCX) and so autocrine signalling between platelets. NCX inhibition reduced dense granule secretion. The reduction in SOCE elicited by NCX inhibition could be reversed by the addition of uninhibited donor cells, their releasate alone, or exogenous ADP and 5-HT. The use of specific receptor antagonists indicated that ATP, ADP and 5-HT all played a role in NCX-dependent autocrine signalling between platelets following thapsigargin stimulation, by activating Mn2+-impermeable Ca2+ entry pathways. These data provide further insight into the mechanisms underlying the known interrelationship between platelet Ca2+ signalling and dense granule secretion, and suggest an important role for the NCX in potentiation of platelet activation via dense granule secretion and so autocrine signalling. Our results caution the interpretation of platelet Ca2+ signalling studies involving pharmacological or other manipulations that do not assess possible effects on NCX activity and dense granule secretion.  相似文献   

2.
E E McCoy  L Enns 《Life sciences》1980,26(8):603-606
Potassium uptake was studied in Down's syndrome (D.S.) platelets to determine if the Na+/K+ ATPase mediated movement of this ion was decreased compared to normal platelets. Total uptake of 42K was 1.58±0.16 μmoles/hr/109 normal platelets but was decreased to 1.06±0.06 μmoles/hr/109 D.S. platelets (p<.001). Na+/K+ ATPase mediated (ouabain sensitive) K+ uptake was 0.87±0.05 μmoles/hr/109 normal platelets but only 0.54±0.04 μmoles/hr/109 in D.S. platelets (p<.001). As the Na+/K+ ATPase mediated outward movement of Na+ is decreased in D.S. platelets, the present work demonstrates that bidirectional functional imparrment of the Na+/K+ ATPase pump is present in D.S. platelets.  相似文献   

3.
《Cell calcium》2008,43(6):606-617
We have previously demonstrated a role for the reorganization of the actin cytoskeleton in store-operated calcium entry (SOCE) in human platelets and interpreted this as evidence for a de novo conformational coupling step in SOCE activation involving the type II IP3 receptor and the platelet hTRPC1-containing store-operated channel (SOC). Here, we present evidence challenging this model. The actin polymerization inhibitors cytochalasin D or latrunculin A significantly reduced Ca2+ but not Mn2+ or Na+ entry into thapsigargin (TG)-treated platelets. Jasplakinolide, which induces actin polymerization, also inhibited Ca2+ but not Mn2+ or Na+ entry. However, an anti-hTRPC1 antibody inhibited TG-evoked entry of all three cations, indicating that they all permeate an hTRPC1-containing store-operated channel (SOC). These results indicate that the reorganization of the actin cytoskeleton is not involved in SOC activation. The inhibitors of the Na+/Ca2+ exchanger (NCX), KB-R7943 or SN-6, caused a dose-dependent inhibition of Ca2+ but not Mn2+ or Na+ entry into TG-treated platelets. The effects of the NCX inhibitors were not additive with those of actin polymerization inhibitors, suggesting a common point of action. These results indicate a role for two Ca2+ permeable pathways activated following Ca2+ store depletion in human platelets: A Ca2+-permeable, hTRPC1-containing SOC and reverse Na+/Ca2+ exchange, which is activated following Na+ entry through the SOC and requires a functional actin cytoskeleton.  相似文献   

4.
A humoral ouabain-like plasma factor has been observed in patients with essential hypertension (EHT). In the present study, we hypothesized that this humoral factor might be responsible for the elevated cytosolic free calcium concentrations [Ca2+]i seen in these patients. Patients with mild to moderate EHT and their normotensive first degree blood relatives (NTBR) participated in the study. Platelet Na+, K+-ATPase activity was assayed in EHT patients and their NT first-degree relatives. To confirm the ouabain-like activity in plasma from EHT patients, control platelets were incubated with EHT and NTBR plasma and their Na+, K+-ATPase activity was measured. In addition, the effect of EHT plasma on platelet45Ca-uptake was studied. Thein vitro effects of ouabain (10 ΜM) on (i)45Ca-uptake and (ii) [Ca2+]i response in control platelets were also observed. A decreased Na+K+-ATPase activity (P< 0.05) was observed in platelet membranes from EHT patients. Incubation of control platelets with EHT plasma decreased their Na+, K+-ATPase activity (P< 0.01) and increased their45Ca-uptake (P< 0.05). C-18 Sep-Pak filtered hypertensive plasma extracts (containing the ouabain-like fraction) also decreased Na+, K+-ATPase activity (P< 001) in control platelet membranes.In vitro incubation of control platelets with ouabain increased45Ca-uptake (P< 005) and [Ca2+]i response (P< 0.05) in these platelets. Thus it appears that an ouabain-like factor in the EHT plasma may contribute to the elevated platelet [Ca2+]i observed in EHT patients.  相似文献   

5.
The binding of [14C]cortisol into dog brain synaptosomal plasma membranes (SPM) follows an exponential path described by the general formula y=a.ebx. The specific activity of the SPM-bound (Na++K+)-stimulated ATPase was linearly increased at different concentrations of cortisol. Changes in the allosteric properties of (Na++K+)-stimulated ATPase by fluoride (F) (i. e. changes of Hill coefficients) indicate that cortisol increases the membrane fluidity. The fluorescence anisotropy of 1,6-diphenyl-1,3,5-hexatriene-labeled SPM decreased in cortisol treated SPM compared to untreated (control) SPM, which is consistent with a general increase in membrane fluidity. This increase of fluidity by cortisol may play a role in the physiological effects of this hormone in the brain.  相似文献   

6.
In this study we prepared sarcolemmal fractions from bovine and rat hearts; their Na+K+ ATPase activities, measured in the presence of saponin to unmask latent Na+K+ ATPase, were 59.4 and 48.8 µ mol Pi/mg protein · h, respectively. The rate of Na+dependent Ca2+ uptake was linear for the first 10 s and a plateau was reached in 3 min. Oxidation by free radical generation either with H2O2, FeSO4 plus DTT or xanthine oxidase plus hypoxanthine stimulated Na+/Ca2+ exchange in a time-dependent manner. The stimulation was abolished by deferoxamine or o-phenanthroline. By contrast, oxidation by HOCI inhibited Na+/Ca2+ exchange in proportion to its concentration, and this inhibition was antagonized by DTT. DTT alone had no effect on the exchange. Insulin stimulated Na+/Ca2+ exchange, its maximal effect was attained after 30min incubation with 100 µ units/ml. N-ethylmaleimide inhibited the exchange both in the presence and in the absence of insulin. Sarcolemmal fractions prepared from hearts of alloxan-treated, acutely diabetic rats showed a significant decrease in Na+/Ca2+ exchange. Addition of insulin in vitro significantly stimulated Na+/Ca2+ exchange of both diabetic and control groups. The results indicate that sarcolemmal Na+/Ca2+ exchange function is modulated by oxidation-reduction states and by the presence of insulin.  相似文献   

7.
Secretion of human platelet dense granule contents in response to epinephrine and other weak agonists requires the prior liberation of membrane-esterified arachidonic acid by a phospholipase A2 enzyme species whose activity is regulated by Na+/H+ exchange (e.g., Sweatt et al. (1986) J. Biol. Chem. 261, 8660–8673 and Banga et al. (1986) Proc. Natl. Acad. Sci. USA 83, (197–9201). Based on our earlier findings in intact platelets, we postulated that the alkalinization of the platelet interior that accompanies accelerated activity of the Na+/H+ antiporter enables the phospholipase A2 enzyme to function at ambient or low concentrations of intraplatelet Ca2+. To test the hypothesis that the Ca2+ dependence of platelet phospholipase A2 activity is influenced by changes in intraplatelet pH that occur following platelet activation, we characterized the Ca2+ dependence of this enzyme as a function of changes in pH (from pH 6.8–8.0), since it is within this range that intraplatelet pH changes occur following platelet activation. Phospholipase A2 enzymatic activity in platelet particulate preparations was detectable in the presence of micromolar concentrations of Ca2+ (EC50 1–2 μM) and plateaued above 10 μM Ca2+. Enzymatic activity measured at 4.8 μM Ca2+ was increased by raising the pH from 5.5 to 8.0 (EC50 7.4), was optimal at pH 8.0 and declined at more alkaline values. Furthermore, increases in pH from pH 6.8 to pH 8.0 not only increased maximal enzymatic activity but also enabled detection of enzymatic activity at lower Ca2+ concentrations. The interdependent regulation of phospholipase A2 activity by changes in pH and Ca2+ suggests that phospholipase A2 could serve to integrate changes in intracellular pH and available Ca2+ that occur subsequent to activation of human platelets by epinephrine and other weak agonists.  相似文献   

8.
Glutathione S‐transferase (GST) was found to complex with the Na+,K+‐ATPase as shown by binding assay using quartz crystal microbalance. The complexation was obstructed by the addition of antiserum to the α‐subunit of the Na+,K+‐ATPase, suggesting the specificity of complexation between GST and the Na+,K+‐ATPase. Co‐immunoprecipitation experiments, using the anti‐α‐subunit antiserum to precipitate the GST‐Na+,K+‐ATPase complex and then using antibodies specific to an isoform of GST to identify the co‐precipitated proteins, revealed that GSTπ was complexed with the Na+,K+‐ATPase. GST stimulated the Na+,K+‐ATPase activity up to 1.4‐fold. The level of stimulation exhibited a saturable dose–response relationship with the amount of GST added, although the level of stimulation varied depending on the content of GSTπ in the lots of GST received from supplier. The stimulation was also obtained when recombinant GSTπ was used, confirming the results. When GST was treated with reduced glutathione, GST activity was greatly stimulated, whereas the level of stimulation of the Na+,K+‐ATPase activity was similar to that when untreated GST was added. When GST was treated with H2O2, GST activity was greatly diminished while the stimulation of the Na+,K+‐ATPase activity was preserved. The results suggest that GSTπ complexes with the Na+,K+‐ATPase and stimulates the latter independent of its GST activity. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
Cytosolic Ca2+ mobilization, especially Ca2+ entry, is enhanced in platelets from type 2 diabetic individuals, which might result in platelet hyperaggregability. In the present study, we report an increased oxidant production in resting and stimulated platelets from diabetic donors. Pretreatment of platelets with catalase or trolox, an analog of vitamin E, reversed the enhanced Ca2+ entry, evoked by thapsigargin plus ionomycin or thrombin, observed in platelets from diabetic subjects, so that in the presence of these scavengers Ca2+ entry was similar in platelets from healthy and diabetic subjects. In contrast, mannitol was without effect on Ca2+ mobilization. Catalase and trolox reduced thrombin-induced aggregation in platelets from type 2 diabetic subjects, while mannitol did not modify thrombin-induced platelet hyperaggregability. We conclude that H2O2 and ONOO are likely involved in the enhanced Ca2+ mobilization observed in platelets from type 2 diabetic patients, which might lead to platelet hyperactivity and hyperaggregability.  相似文献   

10.
A precise temporal and spatial control of intracellular Ca2+ concentration is essential for a coordinated contraction of the heart. Following contraction, cardiac cells need to rapidly remove intracellular Ca2+ to allow for relaxation. This task is performed by two transporters: the plasma membrane Na+-Ca2+ exchanger (NCX) and the sarcoplasmic reticulum (SR) Ca2+‐ATPase (SERCA). NCX extrudes Ca2+ from the cell, balancing the Ca2+entering the cytoplasm during systole through L-type Ca2+ channels. In parallel, following SR Ca2+ release, SERCA activity replenishes the SR, reuptaking Ca2+ from the cytoplasm.The activity of the mammalian exchanger is fine-tuned by numerous ionic allosteric regulatory mechanisms. Micromolar concentrations of cytoplasmic Ca2+ potentiate NCX activity, while an increase in intracellular Na+ levels inhibits NCX via a mechanism known as Na+-dependent inactivation. Protons are also powerful inhibitors of NCX activity. By regulating NCX activity, Ca2+, Na+ and H+ couple cell metabolism to Ca2+ homeostasis and therefore cardiac contractility. This review summarizes the recent progress towards the understanding of the molecular mechanisms underlying the ionic regulation of the cardiac NCX with special emphasis on pH modulation and its physiological impact on the heart.  相似文献   

11.
Addition of ADP induces platelets in plasma to undergo shape change from a disc to a spiny sphere and to develop adhesiveness, i.e. to aggregate. The aggregation of human platelets by ADP is associated with a net uptake of Na+. The present experiments demonstrate that the induction of shape change by ADP in acidified or EGTA-treated plasma conditions which inhibit aggregation, is also associated with a movement of Na+ into platelets. When ADP-induced platelet shape change and aggregation is inhibited by prostaglandin E1 Na+ uptake is also blocked. Platelets aggregated by epinephrine do not take up Na+. In a manner analogous to the effect of ADP, polylysine also induces Na+ uptake during aggregation. Vasopressin, in a manner analogous to epinephrine, induces aggregation without Na+ uptake. The increase in platelet Na+ resulting from ouabain inhibition of Na+ efflux induces an increase in the aggregation response to ADP and to epinephrine.  相似文献   

12.
In order to identify defects in Na+-Ca2+ exchange and Ca2+-pump systems in cardiomyopathic hearts, the activities of sarcolemmal Na+-dependent Ca2+ uptake, Na+-induced Ca2+ release, ATP-dependent Ca2+ uptake and Ca2+-stimulated ATPase were examined by employing cardiomyopathic hamsters (UM-X7.1) and catecholamine-induced cardiomyopathy produced by injecting isoproterenol into rats. The rates of Na+-dependent Ca2+ uptake, ATP-dependent Ca2+ uptake and Ca2+-stimulated ATPase activities of sarcolemmal vesicles from genetically-linked cardiomyopathic as well as catecholamine-induced cardiomyopathic hearts were decreased without any changes in Na+-induced Ca2+-release. Similar results were obtained in Ca2+-paradox when isolated rat hearts were perfused for 5 min with a medium containing 1.25 mM Ca2+ following a 5 min perfusion with Ca2+-free medium. Although a 2 min reperfusion of the Ca2+-free perfused hearts depressed sarcolemmal Ca2+-pump activities without any changes in Na+-induced Ca2+-release, Na+-dependent Ca2+ uptake was increased. These results indicate that alterations in the sarcolemmal Ca2+-efflux mechanisms may play an important role in cardiomyopathies associated with the development of intracellular Ca2+ overload.  相似文献   

13.
Prostaglandin E2 (PGE2) is quantitatively one of the major prostaglandins synthesized in mammalian brain, and there is evidence that it facilitates seizures and neuronal death. However, little is known about the molecular mechanisms involved in such excitatory effects. Na+,K+‐ATPase is a membrane protein which plays a key role in electrolyte homeostasis maintenance and, therefore, regulates neuronal excitability. In this study, we tested the hypothesis that PGE2 decreases Na+,K+‐ATPase activity, in order to shed some light on the mechanisms underlying the excitatory action of PGE2. Na+,K+‐ATPase activity was determined by assessing ouabain‐sensitive ATP hydrolysis. We found that incubation of adult rat hippocampal slices with PGE2 (0.1–10 μM) for 30 min decreased Na+,K+‐ATPase activity in a concentration‐dependent manner. However, PGE2 did not alter Na+,K+‐ATPase activity if added to hippocampal homogenates. The inhibitory effect of PGE2 on Na+,K+‐ATPase activity was not related to a decrease in the total or plasma membrane immunocontent of the catalytic α subunit of Na+,K+‐ATPase. We found that the inhibitory effect of PGE2 (1 μM) on Na+,K+‐ATPase activity was receptor‐mediated, as incubation with selective antagonists for EP1 (SC‐19220, 10 μM), EP3 (L‐826266, 1 μM) or EP4 (L‐161982, 1 μM) receptors prevented the PGE2‐induced decrease of Na+,K+‐ATPase activity. On the other hand, incubation with the selective EP2 agonist (butaprost, 0.1–10 μM) increased enzyme activity per se in a concentration‐dependent manner, but did not prevent the inhibitory effect of PGE2. Incubation with a protein kinase A (PKA) inhibitor (H‐89, 1 μM) and a protein kinase C (PKC) inhibitor (GF‐109203X, 300 nM) also prevented PGE2‐induced decrease of Na+,K+‐ATPase activity. Accordingly, PGE2 increased phosphorylation of Ser943 at the α subunit, a critical residue for regulation of enzyme activity. Importantly, we also found that PGE2 decreases Na+,K+‐ATPase activity in vivo. The results presented here imply Na+,K+‐ATPase as a target for PGE2‐mediated signaling, which may underlie PGE2‐induced increase of brain excitability.  相似文献   

14.
Hypoxia is a common denominator of many vascular disorders, especially those associated with ischemia. To study the effect of oxygen depletion on endothelium, we developed an in vitro model of hypoxia on human umbilical vein endothelial cells (HUVEC). Hypoxia strongly activates HUVEC, which then synthesize large amounts of prostaglandins and platelet‐activating factor. The first step of this activation is a decrease in ATP content of the cells, followed by an increase in the cytosolic calcium concentration ([Ca2+]i) which then activates the phospholipase A2 (PLA2). The link between the decrease in ATP and the increase in [Ca2+]i was not known and is investigated in this work. We first showed that the presence of extracellular Na+ was necessary to observe the hypoxia‐induced increase in [Ca2+]i and the activation of PLA2. This increase was not due to the release of Ca2+ from intracellular stores, since thapsigargin did not inhibit this process. The Na+/Ca2+ exchanger was involved since dichlorobenzamil inhibited the [Ca2+]i and the PLA2 activation. The glycolysis was activated, but the intracellular pH (pHi) in hypoxic cells did not differ from control cells. Finally, the hypoxia‐induced increase in [Ca2+]i and PLA2 activation were inhibited by phlorizin, an inhibitor of the Na+‐glucose cotransport. The proposed biochemical mechanism occurring under hypoxia is the following: glycolysis is first activated due to a requirement for ATP, leading to an influx of Na+ through the activated Na+‐glucose cotransport followed by the activation of the Na+/Ca2+ exchanger, resulting in a net influx of Ca2+. J. Cell. Biochem. 84: 115–131, 2002. © 2001 Wiley‐Liss, Inc.  相似文献   

15.
Summary The effects of temperature and pressure on Na+/K+-adenosine triphosphatases (Na+/K+-ATPases) from gills of marine teleost fishes were examined over a range of temperatures (10–25°C) and pressures (1–680 atm). The relationship between gill membrane fluidity and Na+/K+-ATPase activity was studied using the fluorescent probe 1,6-diphenyl-1,3,5-hexatriene (DPH). The increase in temperature required to offset the membrane ordering effects of high pressure was 0.015–0.025°C·atm-1, the same coefficient that applied to Na+/K+-ATPase activities. Thus, temperature-pressure combinations yielding the same Na+/K+-ATPase activity also gave similar estimates of membrane fluidity. Substituion of endogenous lipids with lipids of different composition altered the pressure responses of Na+/K+-ATPase. Na+/K+-adenosine triphosphatase became more sensitive to pressure in the presence of chicken egg phosphatidylcholine, but phospholipids isolated from fish gills reduced the inhibition by pressure of Na+/K+-ATPase. Cholesterol increased enzyme pressure sensitivity. Membrane fluidity and pressure sensitivity of Na+/K+-ATPase were correlated, but the effects of pressure also dependent on the source of the enzyme. Our results suggest that pressure adaptation of Na+/K+-ATPase is the result of both changes in the primary structure of the protein and homeoviscous adaptation of the lipid environment.Abbreviations EDTA; DPH 1,6-diphenyl-1,3,5-hexatriene - PC phosphatidylcholine - PL phospholipid - SDH succinate dehydrogenase  相似文献   

16.
The binding of low-density lipoproteins (LDL) as well as LDL modified by cyclohexanedione (CHD-LDL) to gel-filtered platelets (GFP) and its effect on platelet function were studied in normal and in homozygous familial hypercholesterolaemic (HFH) subjects. Only normal-derived LDL could significantly compete with normal 125I-labelled LDL for binding to normal platelets. When GFP from normal subjects were incubated with normal LDL at concentrations of 25-200 micrograms of protein/ml, platelet aggregation in the presence of thrombin (0.5 i.u./ml) was increased by 65-186%. CHD-LDL, at similar concentrations, caused the opposite effect and decreased platelet aggregation by 26-47%. Both LDL and CHD-LDL (100 micrograms/ml) from HFH patients, when incubated with normal GFP, caused a significant reduction in platelet aggregation (33 and 50% respectively). When HFH-derived platelets were used, both patient LDL and CHD-LDL (but not the normal lipoprotein) could markedly compete with the patient 125I-labelled LDL for binding to the platelets. LDL and CHD-LDL (100 micrograms/ml) from normal subjects decreased aggregation of HFH-platelets by 52 and 85% respectively, while corresponding concentrations of LDL derived from HFH subjects (HFH-LDL) and CHD-LDL derived from HFH subjects (CHD-HFH-LDL) increased platelet aggregation by 165 and 65% respectively. The present results support the following conclusions: platelet activation by LDL in normal subjects is through the arginine-rich apoprotein-binding site; more than one binding site for LDL exists on platelets; under certain circumstances, LDL binding can cause a reduction in platelet activity; specificity for LDL binding to the platelets resides in different regions of the lipoprotein in HFH and in normal subjects. We have thus suggested a model for LDL-platelet interaction in normal and in HFH subjects.  相似文献   

17.
This study examined the status of sarcolemmal Na+/K+-ATPase activity in rat heart under conditions of Ca2+-paradox to explore the existence of a relationship between changes in Na+/K+-pump function and myocardial Na+ as well as K+ content. One min of reperfusion with Ca2+ after 5 min of Ca2+-free perfusion reduced Na+/K+-ATPase activity in the isolated heart by 53% while Mg2+-ATPase, another sarcolemmal bound enzyme, retained 74% of its control activity. These changes in sarcolemmal ATPase activities were dependent on the duration and Ca2+ concentration of the initial perfusion and subsequent reperfusion periods; however, the Na+/K+-ATPase activity was consistently more depressed than Mg2+-ATPase activity under all conditions. The depression in both enzyme activities was associated with a reduction in Vmax without any changes in Km values. Low Na+ perfusion and hypothermia, which protect the isolated heart from the Ca2+-paradox, also prevented reperfusion-induced enzyme alterations. A significant relationship emerged upon comparison of the changes in myocardial Na+ and K+ content to Na+/K+-ATPase activity under identical conditions. At least 60% of the control enzyme activity was necessary to maintain normal cation gradients. Depression of the Na+/K+-ATPase activity by 60-65% resulted in a marked increase and decrease in intracellular Na+ and K+ content, respectively. These results suggest that changes in myocardial Na+ and K+ content during Ca2+-paradox are related to activity of the Na+/K+-pump; the impaired Na+/K+-ATPase activity may lead to augmentation of Ca2+-overload via an enhancement of the Na+/Ca2+-exchange system.  相似文献   

18.
Beside functional and structural changes in vascular biology, alterations in the rheologic properties of blood cells mainly determines to an impaired microvascular blood flow in patients suffering from diabetes mellitus. Recent investigations provide increasing evidence that impaired C-peptide secretion in type 1 diabetic patients might contribute to the development of microvascular complications. C-peptide has been shown to stimulate endothelial NO secretion by activation of the Ca2+ calmodolin regulated enzyme eNOS. NO himself has the potency to increase cGMP levels in smooth muscle cells and to activate Na+ K+ ATPase activity and therefore evolves numerous effects in microvascular regulation. In type 1 diabetic patients, supplementation of C-peptide was shown to improve endothelium dependent vasodilatation in an NO-dependent pathway in different vascular compartments. In addition, it could be shown that C-peptide administration in type 1 diabetic patients, results in a redistribution of skin blood flow by increasing nutritive capillary blood flow in favour to subpapillary blood flow. Impaired Na+ K+ ATPase in another feature of diabetes mellitus in many cell types and is believed to be a pivotal regulator of various cell functions. C-peptide supplementation has been shown to restore Na+ K+ATPase activity in different cell types during in vitro and in vivo investigations. In type 1 diabetic patients, C-peptide supplementation was shown to increase erythrocyte Na+ K+ATPase activity by about 100%. There was found a linear relationship between plasma C-peptide levels and erythrocyte Na+ K+ATPase activity. In small capillaries, microvascular blood flow is increasingly determined by the rheologic properties of erythrocytes. Using laser-diffractoscopie a huge improvement in erythrocyte deformability could be observed after C-peptide administration in erythrocytes of type 1 diabetic patients. Inhibition of the Na+ K+ATPase by Obain completely abolished the effect of C-peptide on erythrocyte deformability. In conclusion, C-peptide improves microvascular function and blood flow in type 1 diabetic patients by interfering with vascular and rheological components of microvascular blood flow.  相似文献   

19.
The chemical composition and the physical properties of lipoproteins (VLDL, LDL and HDL) were studied in two groups of patients: 14 healthy normolipidemic subjects and 15 type IIa familial hypercholesterolemic patients. The steady-state fluorescence anisotropy rs was estimated in lipoproteins by the fluorescence depolarization of two fluorescent probes: the DPH (1,6-diphenyl-1,3,5-hexatriene) and the TMA-DPH (1,4-trimethylammonium phenyl-6-1,3,5-hexatriene). A structured order parameter S was calculated from the DPH fluorescence anisotropy. The flow activation energies were calculated for LDL and HDL from both groups from the Arrhenius plots (log r DPH versus 1/T). By using TNBS (trinitrobenzene sulfonic acid) as a distance control quencher, the two probes were located in the outer shell of LDL. In HDL, TMA-DPH remained at the surface of the particles, while DPH was more deeply embedded in the lipid core. There was no difference in the physico-chemical properties of VLDL between the two groups studied. DPH fluorescence anisotropies were significantly increased in LDL and HDL from the hypercholesterolemic group compared to the control particles (P less than 0.05 and P less than 0.01, respectively). In LDL this modification of the fluorescence anisotropy can be related to a change in the lipid composition of particles. LDL from hypercholesterolemic patients contained significantly less triacylglycerol (P less than 0.01) and more cholesteryl ester (N.S.). Their cholesteryl ester to triacylglycerol ratio was significantly higher. In HDL, there was no difference in chemical composition between the two groups. The increase in DPH fluorescence anisotropy can be related to the presence of smaller particles in HDL from HC group. No difference was noted in the TMA-DPH fluorescence anisotropy at 37 degrees C in the LDL from the two groups. In contrast, TMA-DPH fluorescence anisotropy in HDL from hypercholesterolemic group was significantly higher than in control HDL. The flow activation energy of DPH was also significantly higher in both LDL and HDL from the hypercholesterolemic group than in control group particles. In both LDL and HDL from the control group, DPH fluorescence anisotropy was negatively correlated with TG/protein and TG/PL ratios and positively correlated with the CE/TG ratio. No correlation was observed between lipid composition and DPH fluorescence anisotropy values in hypercholesterolemic particles. The modification in fluidity parameters, especially the increase in the flow activation energies in LDL and HDL from hypercholesterolemic patients, could lead to a restriction of cholesterol movements in these particles. From a physiological point of view, this could represent a loss of functional capacity.  相似文献   

20.
Li J  Chen G  Wang X  Zhang Y  Jia H  Bi Y 《Physiologia plantarum》2011,141(3):239-250
Glucose‐6‐phosphate dehydrogenase (G6PDH) is important for the activation of plant resistance to environmental stresses, and ion homeostasis is the physiological foundation for living cells. In this study, we investigated G6PDH roles in modulating ion homeostasis under salt stress in Carex moorcroftii callus. G6PDH activity increased to its maximum in 100 mM NaCl treatment and decreased with further increased NaCl concentrations. K+/Na+ ratio in 100 mM NaCl treatment did not exhibit significant difference compared with the control; however, in 300 mM NaCl treatment, it decreased. Low‐concentration NaCl (100 mM) stimulated plasma membrane (PM) H+‐ATPase and NADPH oxidase activities as well as Na+/H+ antiporter protein expression, whereas high‐concentration NaCl (300 mM) decreased their activity and expression. When G6PDH activity and expression were reduced by glycerol treatments, PM H+‐ATPase and NADPH oxidase activities, Na+/H+ antiporter protein level and K+/Na+ ratio dramatically decreased. Simultaneously, NaCl‐induced hydrogen peroxide (H2O2) accumulation was abolished. Exogenous application of H2O2 increased G6PDH, PM H+‐ATPase and NADPH oxidase activities, Na+/H+ antiporter protein expression and K+/Na+ ratio in the control and glycerol treatments. Diphenylene iodonium (DPI), the NADPH oxidase inhibitor, which counteracted NaCl‐induced H2O2 accumulation, decreased G6PDH, PM H+‐ATPase and NADPH oxidase activities, Na+/H+ antiporter protein level and K+/Na+ ratio. Western blot result showed that G6PDH expression was stimulated by NaCl and H2O2, and blocked by DPI. Taken together, G6PDH is involved in H2O2 accumulation under salt stress. H2O2, as a signal, upregulated PM H+‐ATPase activity and Na+/H+ antiporter protein level, which subsequently resulted in the enhanced K+/Na+ ratio. G6PDH played a central role in the process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号