首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mitochondrial F1Fo‐ATP synthase generates the bulk of cellular ATP. This molecular machine assembles from nuclear‐ and mitochondria‐encoded subunits. Whereas chaperones for formation of the matrix‐exposed hexameric F1‐ATPase core domain have been identified, insight into how the nuclear‐encoded F1‐domain assembles with the membrane‐embedded Fo‐region is lacking. Here we identified the INA complex (INAC) in the inner membrane of mitochondria as an assembly factor involved in this process. Ina22 and Ina17 are INAC constituents that physically associate with the F1‐module and peripheral stalk, but not with the assembled F1Fo‐ATP synthase. Our analyses show that loss of Ina22 and Ina17 specifically impairs formation of the peripheral stalk that connects the catalytic F1‐module to the membrane embedded Fo‐domain. We conclude that INAC represents a matrix‐exposed inner membrane protein complex that facilitates peripheral stalk assembly and thus promotes a key step in the biogenesis of mitochondrial F1Fo‐ATP synthase.  相似文献   

2.
Mitochondrial F1Fo-ATP synthase is a molecular motor that couples the energy generated by oxidative metabolism to the synthesis of ATP. Direct visualization of the rotary action of the bacterial ATP synthase has been well characterized. However, direct observation of rotation of the mitochondrial enzyme has not been reported yet. Here, we describe two methods to reconstitute mitochondrial F1Fo-ATP synthase into lipid bilayers suitable for structure analysis by electron and atomic force microscopy (AFM). Proteoliposomes densely packed with bovine heart mitochondria F1Fo-ATP synthase were obtained upon detergent removal from ternary mixtures (lipid, detergent and protein). Two-dimensional crystals of recombinant hexahistidine-tagged yeast F1Fo-ATP synthase were grown using the supported monolayer technique. Because the hexahistidine-tag is located at the F1 catalytic subcomplex, ATP synthases were oriented unidirectionally in such two-dimensional crystals, exposing F1 to the lipid monolayer and the Fo membrane region to the bulk solution. This configuration opens a new avenue for the determination of the c-ring stoichiometry of unknown hexahistidine-tagged ATP synthases and the organization of the membrane intrinsic subunits within Fo by electron microscopy and AFM.  相似文献   

3.
Kazuki Takeda  Kunio Miki 《EMBO reports》2009,10(11):1228-1234
V‐type ATPases (V‐ATPases) are categorized as rotary ATP synthase/ATPase complexes. The V‐ATPases are distinct from F‐ATPases in terms of their rotation scheme, architecture and subunit composition. However, there is no detailed structural information on V‐ATPases despite the abundant biochemical and biophysical research. Here, we report a crystallographic study of V1‐ATPase, from Thermus thermophilus, which is a soluble component consisting of A, B, D and F subunits. The structure at 4.5 Å resolution reveals inter‐subunit interactions and nucleotide binding. In particular, the structure of the central stalk composed of D and F subunits was shown to be characteristic of V1‐ATPases. Small conformational changes of respective subunits and significant rearrangement of the quaternary structure observed in the three AB pairs were related to the interaction with the straight central stalk. The rotation mechanism is discussed based on a structural comparison between V1‐ATPases and F1‐ATPases.  相似文献   

4.
《BBA》2006,1757(9-10):1162-1170
In ATP synthase, proton translocation through the Fo subcomplex and ATP synthesis/hydrolysis in the F1 subcomplex are coupled by subunit rotation. The static, non-rotating portions of F1 and Fo are attached to each other via the peripheral “stator stalk”, which has to withstand elastic strain during subunit rotation. In Escherichia coli, the stator stalk consists of subunits b2δ; in other organisms, it has three or four different subunits. Recent advances in this area include affinity measurements between individual components of the stator stalk as well as a detailed analysis of the interaction between subunit δ (or its mitochondrial counterpart, the oligomycin-sensitivity conferring protein, OSCP) and F1. The current status of our knowledge of the structure of the stator stalk and of the interactions between its subunits will be discussed in this review.  相似文献   

5.
We have used electron cryomicroscopy of single particles to determine the structure of the ATP synthase from Saccharomyces cerevisiae. The resulting map at 24 Å resolution can accommodate atomic models of the F1-c10 subcomplex, the peripheral stalk subcomplex, and the N-terminal domain of the oligomycin sensitivity conferral protein. The map is similar to an earlier electron cryomicroscopy structure of bovine mitochondrial ATP synthase but with important differences. It resolves the internal structure of the membrane region of the complex, especially the membrane embedded subunits b, c, and a. Comparison of the yeast ATP synthase map, which lacks density from the dimer-specific subunits e and g, with a map of the bovine enzyme that included e and g indicates where these subunits are located in the intact complex. This new map has allowed construction of a model of subunit arrangement in the FO motor of ATP synthase that dictates how dimerization of the complex via subunits e and g might occur.  相似文献   

6.
The crystal structures of the nucleotide-empty (AE), 5′-adenylyl-β,γ-imidodiphosphate (APNP)-bound, and ADP (ADP)-bound forms of the catalytic A subunit of the energy producer A1AO ATP synthase from Pyrococcus horikoshii OT3 have been solved at 2.47 Å and 2.4 Å resolutions. The structures provide novel features of nucleotide binding and depict the residues involved in the catalysis of the A subunit. In the AE form, the phosphate analog SO42− binds, via a water molecule, to the phosphate binding loop (P-loop) residue Ser238, which is also involved in the phosphate binding of ADP and 5′-adenylyl-β,γ-imidodiphosphate. Together with amino acids Gly234 and Phe236, the serine residue stabilizes the arched P-loop conformation of subunit A, as shown by the 2.4-Å structure of the mutant protein S238A in which the P-loop flips into a relaxed state, comparable to the one in catalytic β subunits of F1FO ATP synthases. Superposition of the existing P-loop structures of ATPases emphasizes the unique P-loop in subunit A, which is also discussed in the light of an evolutionary P-loop switch in related A1AO ATP synthases, F1FO ATP synthases, and vacuolar ATPases and implicates diverse catalytic mechanisms inside these biological motors.  相似文献   

7.
The mitochondrial F1Fo ATP synthase of the parasite Trypanosoma brucei has been previously studied in detail. This unusual enzyme switches direction in functionality during the life cycle of the parasite, acting as an ATP synthase in the insect stages, and as an ATPase to generate mitochondrial membrane potential in the mammalian bloodstream stages. Whereas the trypanosome F1 moiety is relatively highly conserved in structure and composition, the Fo subcomplex and the peripheral stalk have been shown to be more variable. Interestingly, a core subunit of the latter, the normally conserved subunit b, has been resistant to identification by sequence alignment or biochemical methods. Here, we identified a 17 kDa mitochondrial protein of the inner membrane, Tb927.8.3070, that is essential for normal growth, efficient oxidative phosphorylation, and membrane potential maintenance. Pull-down experiments and native PAGE analysis indicated that the protein is both associated with the F1Fo ATP synthase and integral to its assembly. In addition, its knockdown reduced the levels of Fo subunits, but not those of F1, and disturbed the cell cycle. Finally, analysis of structural homology using the HHpred algorithm showed that this protein has structural similarities to Fo subunit b of other species, indicating that this subunit may be a highly diverged form of the elusive subunit b.  相似文献   

8.
ATPases with unusual membrane-embedded rotor subunits were found in both F1F0 and A1A0 ATP synthases. The rotor subunit c of A1A0 ATPases is, in most cases, similar to subunit c from F0. Surprisingly, multiplied c subunits with four, six, or even 26 transmembrane spans have been found in some archaea and these multiplication events were sometimes accompanied by loss of the ion-translocating group. Nevertheless, these enzymes are still active as ATP synthases. A duplicated c subunit with only one ion-translocating group was found along with “normal” F0 c subunits in the Na+ F1F0 ATP synthase of the bacterium Acetobacterium woodii. These extraordinary features and exceptional structural and functional variability in the rotor of ATP synthases may have arisen as an adaptation to different cellular needs and the extreme physicochemical conditions in the early history of life.  相似文献   

9.
Synthesis of adenosine triphosphate ATP, the ‘biological energy currency’, is accomplished by FoF1‐ATP synthase. In the plasma membrane of Escherichia coli, proton‐driven rotation of a ring of 10 c subunits in the Fo motor powers catalysis in the F1 motor. Although F1 uses 120° stepping during ATP synthesis, models of Fo predict either an incremental rotation of c subunits in 36° steps or larger step sizes comprising several fast substeps. Using single‐molecule fluorescence resonance energy transfer, we provide the first experimental determination of a 36° sequential stepping mode of the c‐ring during ATP synthesis.  相似文献   

10.
《BBA》2014,1837(6):940-952
Archaea live under different environmental conditions, such as high salinity, extreme pHs and cold or hot temperatures. How energy is conserved under such harsh environmental conditions is a major question in cellular bioenergetics of archaea. The key enzymes in energy conservation are the archaeal A1AO ATP synthases, a class of ATP synthases distinct from the F1FO ATP synthase ATP synthase found in bacteria, mitochondria and chloroplasts and the V1VO ATPases of eukaryotes. A1AO ATP synthases have distinct structural features such as a collar-like structure, an extended central stalk, and two peripheral stalks possibly stabilizing the A1AO ATP synthase during rotation in ATP synthesis/hydrolysis at high temperatures as well as to provide the storage of transient elastic energy during ion-pumping and ATP synthesis/-hydrolysis. High resolution structures of individual subunits and subcomplexes have been obtained in recent years that shed new light on the function and mechanism of this unique class of ATP synthases. An outstanding feature of archaeal A1AO ATP synthases is their diversity in size of rotor subunits and the coupling ion used for ATP synthesis with H+, Na+ or even H+ and Na+ using enzymes. The evolution of the H+ binding site to a Na+ binding site and its implications for the energy metabolism and physiology of the cell are discussed.  相似文献   

11.
The mitochondrial F1Fo‐ATPase performs the terminal step of oxidative phosphorylation. Small molecules that modulate this enzyme have been invaluable in helping decipher F1Fo‐ATPase structure, function, and mechanism. Aurovertin is an antibiotic that binds to the β subunits in the F1 domain and inhibits F1Fo‐ATPase‐catalyzed ATP synthesis in preference to ATP hydrolysis. Despite extensive study and the existence of crystallographic data, the molecular basis of the differential inhibition and kinetic mechanism of inhibition of ATP synthesis by aurovertin has not been resolved. To address these questions, we conducted a series of experiments in both bovine heart mitochondria and E. coli membrane F1Fo‐ATPase. Aurovertin is a mixed, noncompetitive inhibitor of both ATP hydrolysis and synthesis with lower Ki values for synthesis. At low substrate concentrations, inhibition is cooperative suggesting a stoichiometry of two aurovertin per F1Fo‐ATPase. Furthermore, aurovertin does not completely inhibit the ATP hydrolytic activity at saturating concentrations. Single‐molecule experiments provide evidence that the residual rate of ATP hydrolysis seen in the presence of saturating concentrations of aurovertin results from a decrease in the binding change mechanism by hindering catalytic site interactions. The results from these studies should further the understanding of how the F1Fo‐ATPase catalyzes ATP synthesis and hydrolysis. © 2009 Wiley Periodicals, Inc. Biopolymers 91: 830–840, 2009. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

12.
The FoF1 synthase produces ATP from ADP and inorganic phosphate. The γ subunit of FoF1 ATP synthase in photosynthetic organisms, which is the rotor subunit of this enzyme, contains a characteristic β-hairpin structure. This structure is formed from an insertion sequence that has been conserved only in phototrophs. Using recombinant subcomplexes, we previously demonstrated that this region plays an essential role in the regulation of ATP hydrolysis activity, thereby functioning in controlling intracellular ATP levels in response to changes in the light environment. However, the role of this region in ATP synthesis has long remained an open question because its analysis requires the preparation of the whole FoF1 complex and a transmembrane proton-motive force. In this study, we successfully prepared proteoliposomes containing the entire FoF1 ATP synthase from a cyanobacterium, Synechocystis sp. PCC 6803, and measured ATP synthesis/hydrolysis and proton-translocating activities. The relatively simple genetic manipulation of Synechocystis enabled the biochemical investigation of the role of the β-hairpin structure of FoF1 ATP synthase and its activities. We further performed physiological analyses of Synechocystis mutant strains lacking the β-hairpin structure, which provided novel insights into the regulatory mechanisms of FoF1 ATP synthase in cyanobacteria via the phototroph-specific region of the γ subunit. Our results indicated that this structure critically contributes to ATP synthesis and suppresses ATP hydrolysis.  相似文献   

13.
F1 is a soluble part of FoF1-ATP synthase and performs a catalytic process of ATP hydrolysis and synthesis. The γ subunit, which is the rotary shaft of F1 motor, is composed of N-terminal and C-terminal helices domains, and a protruding Rossman-fold domain located between the two major helices parts. The N-terminal and C-terminal helices domains of γ assemble into an antiparallel coiled-coil structure, and are almost embedded into the stator ring composed of α3β3 hexamer of the F1 molecule. Cyanobacterial and chloroplast γ subunits harbor an inserted sequence of 30 or 39 amino acids length within the Rossman-fold domain in comparison with bacterial or mitochondrial γ. To understand the structure–function relationship of the γ subunit, we prepared a mutant F1-ATP synthase of a thermophilic cyanobacterium, Thermosynechococcus elongatus BP-1, in which the γ subunit is split into N-terminal α-helix along with the inserted sequence and the remaining C-terminal part. The obtained mutant showed higher ATP-hydrolysis activities than those containing the wild-type γ. Contrary to our expectation, the complexes containing the split γ subunits were mostly devoid of the C-terminal helix. We further investigated the effect of post-assembly cleavage of the γ subunit. We demonstrate that insertion of the nick between two helices of the γ subunit imparts resistance to ADP inhibition, and the C-terminal α-helix is dispensable for ATP-hydrolysis activity and plays a crucial role in the assembly of F1-ATP synthase.  相似文献   

14.
The subunit ε of mitochondrial ATP synthase is the only F1 subunit without a homolog in bacteria and chloroplasts and represents the least characterized F1 subunit of the mammalian enzyme. Silencing of the ATP5E gene in HEK293 cells resulted in downregulation of the activity and content of the mitochondrial ATP synthase complex and of ADP-stimulated respiration to approximately 40% of the control. The decreased content of the ε subunit was paralleled by a decrease in the F1 subunits α and β and in the Fo subunits a and d while the content of the subunit c was not affected. The subunit c was present in the full-size ATP synthase complex and in subcomplexes of 200–400 kDa that neither contained the F1 subunits, nor the Fo subunits. The results indicate that the ε subunit is essential for the assembly of F1 and plays an important role in the incorporation of the hydrophobic subunit c into the F1-c oligomer rotor of the mitochondrial ATP synthase complex.  相似文献   

15.
The F-type ATP synthase complex is a rotary nano-motor driven by proton motive force to synthesize ATP. Its F1 sector catalyzes ATP synthesis, whereas the Fo sector conducts the protons and provides a stator for the rotary action of the complex. Components of both F1 and Fo sectors are highly conserved across prokaryotes and eukaryotes. Therefore, it was a surprise that genes encoding the a and b subunits as well as other components of the Fo sector were undetectable in the sequenced genomes of a variety of apicomplexan parasites. While the parasitic existence of these organisms could explain the apparent incomplete nature of ATP synthase in Apicomplexa, genes for these essential components were absent even in Tetrahymena thermophila, a free-living ciliate belonging to a sister clade of Apicomplexa, which demonstrates robust oxidative phosphorylation. This observation raises the possibility that the entire clade of Alveolata may have invented novel means to operate ATP synthase complexes. To assess this remarkable possibility, we have carried out an investigation of the ATP synthase from T. thermophila. Blue native polyacrylamide gel electrophoresis (BN-PAGE) revealed the ATP synthase to be present as a large complex. Structural study based on single particle electron microscopy analysis suggested the complex to be a dimer with several unique structures including an unusually large domain on the intermembrane side of the ATP synthase and novel domains flanking the c subunit rings. The two monomers were in a parallel configuration rather than the angled configuration previously observed in other organisms. Proteomic analyses of well-resolved ATP synthase complexes from 2-D BN/BN-PAGE identified orthologs of seven canonical ATP synthase subunits, and at least 13 novel proteins that constitute subunits apparently limited to the ciliate lineage. A mitochondrially encoded protein, Ymf66, with predicted eight transmembrane domains could be a substitute for the subunit a of the Fo sector. The absence of genes encoding orthologs of the novel subunits even in apicomplexans suggests that the Tetrahymena ATP synthase, despite core similarities, is a unique enzyme exhibiting dramatic differences compared to the conventional complexes found in metazoan, fungal, and plant mitochondria, as well as in prokaryotes. These findings have significant implications for the origins and evolution of a central player in bioenergetics.  相似文献   

16.
Wenjun Zheng 《Proteins》2009,76(3):747-762
F1 ATPase, a rotary motor comprised of a central stalk ( γ subunit) enclosed by three α and β subunits alternately arranged in a hexamer, features highly cooperative binding and hydrolysis of ATP. Despite steady progress in biophysical, biochemical, and computational studies of this fascinating motor, the structural basis for cooperative ATPase involving its three catalytic sites remains not fully understood. To illuminate this key mechanistic puzzle, we have employed a coarse‐grained elastic network model to probe the allosteric couplings underlying the cyclic conformational transition in F1 ATPase at a residue level of detail. We will elucidate how ATP binding and product (ADP and phosphate) release at two catalytic sites are coupled with the rotation of γ subunit via various domain motions in α 3 β 3 hexamer (including intrasubunit hinge‐bending motions in β subunits and intersubunit rigid‐body rotations between adjacent α and β subunits). To this end, we have used a normal‐mode‐based correlation analysis to quantify the allosteric couplings of these domain motions to local motions at catalytic sites and the rotation of γ subunit. We have then identified key amino acid residues involved in the above couplings, some of which have been validated against past studies of mutated and γ ‐truncated F1 ATPase. Our finding strongly supports a binding change mechanism where ATP binding to the empty catalytic site triggers a series of intra‐ and intersubunit domain motions leading to ATP hydrolysis and product release at the other two closed catalytic sites. Proteins 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

17.
P1B‐ATPases are among the most common resistance factors to metal‐induced stress. Belonging to the superfamily of P‐type ATPases, they are capable of exporting transition metal ions at the expense of adenosine triphosphate (ATP) hydrolysis. P1B‐ATPases share a conserved structure of three cytoplasmic domains linked by a transmembrane domain. In addition, they possess a unique class of domains located at the N‐terminus. In bacteria, these domains are primarily associated with metal binding and either occur individually or as serial copies of each other. Within this study, the roles of the two adjacent metal‐binding domains (MBDs) of CopA, the copper export ATPase of Escherichia coli were investigated. From biochemical and physiological data, we deciphered the protein‐internal pathway of copper and demonstrate the distal N‐terminal MBD to possess a function analogous to the metallochaperones of related prokaryotic copper resistance systems, that is its involvement in the copper transfer to the membrane‐integral ion‐binding sites of CopA. In contrast, the proximal domain MBD2 has a regulatory role by suppressing the catalytic activity of CopA in absence of copper. Furthermore, we propose a general functional divergence of tandem MBDs in P1B‐ATPases, which is governed by the length of the inter‐domain linker.  相似文献   

18.
Extracellular ATP formation from ADP and inorganic phosphate, attributed to the activity of a cell surface ATP synthase, has so far only been reported in cultures of some proliferating and tumoral cell lines. We now provide evidence showing the presence of a functionally active ecto-FoF1-ATP synthase on the plasma membrane of normal tissue cells, i.e. isolated rat hepatocytes. Both confocal microscopy and flow cytometry analysis show the presence of subunits of F1 (α/β and γ) and Fo (FoI-PVP(b) and OSCP) moieties of ATP synthase at the surface of rat hepatocytes. This finding is confirmed by immunoblotting analysis of the hepatocyte plasma membrane fraction. The presence of the inhibitor protein IF1 is also detected on the hepatocyte surface. Activity assays show that the ectopic-ATP synthase can work both in the direction of ATP synthesis and hydrolysis. A proton translocation assay shows that both these mechanisms are accompanied by a transient flux of H+ and are inhibited by F1 and Fo-targeting inhibitors. We hypothesise that ecto-FoF1-ATP synthase may control the extracellular ADP/ATP ratio, thus contributing to intracellular pH homeostasis.  相似文献   

19.
A key structural element in the ion translocating F-, A-, and V-ATPases is the peripheral stalk, an assembly of two polypeptides that provides a structural link between the ATPase and ion channel domains. Previously, we have characterized the peripheral stalk forming subunits E and H of the A-ATPase from Thermoplasma acidophilum and demonstrated that the two polypeptides interact to form a stable heterodimer with 1:1 stoichiometry (Kish-Trier, E., Briere, L. K., Dunn, S. D., and Wilkens, S. (2008) J. Mol. Biol. 375, 673–685). To define the domain architecture of the A-ATPase peripheral stalk, we have now generated truncated versions of the E and H subunits and analyzed their ability to bind each other. The data show that the N termini of the subunits form an α-helical coiled-coil, ∼80 residues in length, whereas the C-terminal residues interact to form a globular domain containingα- and β-structure. We find that the isolated C-terminal domain of the E subunit exists as a dimer in solution, consistent with a recent crystal structure of the related Pyrococcus horikoshii A-ATPase E subunit (Lokanath, N. K., Matsuura, Y., Kuroishi, C., Takahashi, N., and Kunishima, N. (2007) J. Mol. Biol. 366, 933–944). However, upon the addition of a peptide comprising the C-terminal 21 residues of the H subunit (or full-length H subunit), dimeric E subunit C-terminal domain dissociates to form a 1:1 heterodimer. NMR spectroscopy was used to show that H subunit C-terminal peptide binds to E subunit C-terminal domain via the terminal α-helices, with little involvement of the β-sheet region. Based on these data, we propose a structural model of the A-ATPase peripheral stalk.The archaeal ATP synthase (A1A0-ATPase),2 along with the related F1F0- and V1V0-ATPases (proton pumping vacuolar ATPases), is a rotary molecular motor (14). The rotary ATPases are bilobular in overall architecture, with one lobe comprising the water-soluble A1, F1, or V1 and the other comprising the membrane-bound A0, F0, or V0 domain, respectively. The subunit composition of the A-ATPase is A3B3DE2FH2 for the A1 and CIKx for the A0. In the A1 domain, the three A and B subunits come together in an alternating fashion to form a hexamer with a hydrophobic inner cavity into which part of the D subunit is inserted. Subunits D and F comprise the central stalk connection to A0, whereas two heterodimeric EH complexes are thought to form the peripheral stalk attachment to A0 seen in electron microscopy reconstructions (5, 6). In the A0 domain (subunits CIKx), the K subunits (proteolipids) form a ring that is linked to the central stalk by the C subunit, whereas the cytoplasmic N-terminal domain of the I subunit probably mediates the binding of the EH peripheral stalks to A0, as suggested for the bacterial A/V-type enzyme (7). Although closer in structure to the proton-pumping V-ATPase, the A-ATPase functions in vivo as an ATP synthase, coupling ion motive force to ATP synthesis, most likely via a similar rotary mechanism as demonstrated for the bacterial A/V- and the vacuolar type enzymes (8, 9). During catalysis, substrate binding occurs sequentially on the three catalytic sites, which are formed predominantly by the A subunits. This is accompanied by conformation changes in the A3B3 hexamer that are linked to the rotation of the embedded D subunit together with the rotor subunits F, C, and the proteolipid ring. Each copy of K contains a lipid-exposed carboxyl residue (Asp or Glu), which is transiently interfaced with the membrane-bound domain of I during rotation, thereby catalyzing ion translocation. The EH peripheral stalks function to stabilize the A3B3 hexamer against the torque generated during rotation of the central stalk. Much work has been accomplished to elucidate the architectural features of the rotational and catalytic domains, especially in the related F- and V-type enzymes. However, the peripheral stalk complexes in the A- and V-type enzymes remain an area open to question. Although the stoichiometry of the peripheral stalks in the A/V-type and the vacuolar type ATPases have recently been resolved to two and three, respectively (6, 10), the overall structure of the peripheral stalk, including the nature of attachment to the A3B3 hexamer and I subunit (called subunit a in the F- and V-ATPase), is not well understood. Some structural information exists in the form of the A-ATPase E subunit C-terminal domain (11), although isolation from its binding partner H may have influenced its conformation.Previously, our lab has characterized the Thermoplasma acidophilum A-ATPase E and H subunits individually and in complex (12). We found that despite their tendency to oligomerize when isolated separately, upon mixing, E and H form a tight heterodimer that was monodisperse and elongated in solution, which is consistent with its role as the peripheral stalk element in the A-ATPase. Here, we have expanded our study of the A-ATPase EH complex through the production of various N- and C-terminal truncation mutants of both binding partners. The data show that the EH complex is comprised of two distinct domains, one that contains both N termini interacting via a coiled-coil and a second that contains both C termini folded in a globular structure containing mixed secondary structure. Consistent with recent crystallographic data for the related A-ATPase from Pyrococcus horikoshii (11), we found that the isolated C-terminal domain of the E subunit exists as a stable homodimer in solution. However, the addition of subunit H or a peptide consisting of the 21 C-terminal residues of the subunit to the dimeric C-terminal domain of subunit E resulted in dissociation of the homodimer with concomitant formation of a 1:1 heterodimer containing the C termini of both polypeptides. This study delineates and characterizes the two domains of the EH complex and will aid in the further exploration of the nature of peripheral stalk attachment and function in the intact A1A0-ATPase.  相似文献   

20.
Two proton pumps, the F-ATPase (ATP synthase, FoF1) and the V-ATPase (endomembrane proton pump), have different physiological functions, but are similar in subunit structure and mechanism. They are composed of a membrane extrinsic (F1 or V1) and a membrane intrinsic (Fo or Vo) sector, and couple catalysis of ATP synthesis or hydrolysis to proton transport by a rotational mechanism. The mechanism of rotation has been extensively studied by kinetic, thermodynamic and physiological approaches. Techniques for observing subunit rotation have been developed. Observations of micron-length actin filaments, or polystyrene or gold beads attached to rotor subunits have been highly informative of the rotational behavior of ATP hydrolysis-driven rotation. Single molecule FRET experiments between fluorescent probes attached to rotor and stator subunits have been used effectively in monitoring proton motive force-driven rotation in the ATP synthesis reaction. By using small gold beads with diameters of 40-60 nm, the E. coli F1 sector was found to rotate at surprisingly high speeds (> 400 rps). This experimental system was used to assess the kinetics and thermodynamics of mutant enzymes. The results revealed that the enzymatic reaction steps and the timing of the domain interactions among the β subunits, or between the β and γ subunits, are coordinated in a manner that lowers the activation energy for all steps and avoids deep energy wells through the rotationally-coupled steady-state reaction. In this review, we focus on the mechanism of steady-state F1-ATPase rotation, which maximizes the coupling efficiency between catalysis and rotation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号