首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
The Andes, the world's longest mountain chain, harbours great taxonomic and ecological diversity. Despite their young age, the tropical Andes are highly diverse due to recent geological uplift. Speciation either followed the orogeny closely or occurred after the Andean uplift, as a result of subsequent climatic changes. Different scenarios have been proposed to explain the diversification of high Andean taxa. The Melanoplinae grasshopper Ponderacris Ronderos & Cigliano is endemic to the eastern slopes of the Andes of Peru and Bolivia, mostly distributed between 1000 and 4000 m above sea level. Diversification in several montane habitats of Bolivia and Peru allows tests via cladistic analysis of distinct possible geographic modes of speciation. Eight species are recognized, with three described here as new with revised diagnostic morphological characters provided: Ponderacris carlcarbonelli sp.n., P. chulumaniensis sp.n. and P. amboroensis sp.n. Cladistic analyses of 15 species (8 ingroup and 7 outgroup) and 38 morphological characters, under equal and implied weighting, confirm the monophyly of Ponderacris. Characters from the external morphology and colour pattern provided less phylogenetic information than did the male abdominal terminalia and phallic complex. Species distributed in the Peruvian Andes constituted a monophyletic group, whereas those from the Bolivian Andes formed a basal paraphyletic grade. Dispersal–vicariance analysis resulted in one ancestral distribution reconstruction indicating that the most recent common ancestor was distributed in the Lower Montane Yungas of Bolivia. Eleven dispersal and one vicariant events are postulated, with a South‐to‐North speciation pattern coincident with progressive Andean uplift. Vicariance could relate to fragmentation of montane forest during the dry intervals of the late Cenozoic. From the Bolivian area, ancestral Peruvian Ponderacris may have dispersed northward, coinciding with the rise of the Andes. Ten of 11 dispersal events occurred at terminal taxa and are likely to be recent. However, diversification of Ponderacris cannot be explained solely by the South‐to‐North speciation hypothesis, but may also include both vicariance and dispersal across barriers influenced by Pleistocene climatic cycles.  相似文献   

2.
Köhler, J., Koscinski, D., Padial, J. M., Chaparro, J. C., Handford, P., Lougheed, S. C. & De la Riva, I. (2010). Systematics of Andean gladiator frogs of the Hypsiboas pulchellus species group (Anura, Hylidae). —Zoologica Scripta, 39, 572–590. We revisit the taxonomic status of Andean species and populations of frogs of the Hypsiboas pulchellus group using multiple lines of evidence potentially indicative of evolutionary lineage divergence in anurans: differences in qualitative morphological or bioacoustic character states, no overlap in quantitative characters of advertisement calls, and monophyly of gene genealogies. We found qualitative and quantitative morphological characters to be extremely variable among species and populations of the group and thus of very limited use in assessing lineage divergence. In contrast, phylogenetic analyses based on 16S rRNA and cytochrome b sequences resolved highly supported clades that are in concordance with bioacoustic differences. The results support the specific distinctness of most nominal species recognized in the group, including the Bolivian Hypsiboas balzani and Hypsiboas callipleura, two species that were considered to be synonymous, and revealed the presence of an undescribed species from southern Peru, which is here described as Hypsiboas gladiator sp. n. In contrast, Hypsiboas andinus and Hypsiboas riojanus were mutually paraphyletic, and showed no differences in morphology and acoustic characters. Consequently, we regard the former as a junior synonym of the latter. However, we discovered that populations of H. riojanus from central Bolivia exhibit some degree of genetic differentiation and advertisement call differences with respect to Argentine populations, but sampling of these Bolivian populations is too sparse to draw taxonomic conclusions. Our phylogenetic results support the hypothesis that ancestral lineages of the Andean H. pulchellus group experienced successive splitting events along a latitudinal gradient from north to south.  相似文献   

3.
The taxonomic status of a very poorly known group of Andean frogs (the Eleutherodactylus discoidalis group) is assessed through acoustic and statistical analyses of differences in temporal parameters of advertisement calls, such as the number of pulses and the call duration, and also in a spectral parameter, dominant frequency. As these species are usually misidentified or ignored because of their taxonomic complexity in both ecological and biodiversity studies, we provide a bioacoustical diagnosis for each species in order to facilitate identification in the field. Differences in acoustic parameters support the specific status of Eleutherodactylus cruralis , E. discoidalis , Eleutherodactylus ibischi , and Eleutherodactylus madidi . The name E. cruralis is probably applied to three different species: the nominal form from Amazonian forests of the Andean slopes and adjacent lowlands, and two cryptic species restricted to inter-Andean dry valleys and cloud forests from central Bolivia. Moreover, the distribution of energy through the call and the aggregation of pulses seem to be useful meristic characters for detecting interspecific differences. Populations from each macrohabitat can be recognized by distinctive advertisement calls, usually corresponding to a recognized species. For the whole group, pulse rate is significantly correlated to latitude, which could indicate a speciation process along the Andes in relation to habitat changes and isolation. © 2008 The Linnean Society of London, Zoological Journal of the Linnean Society , 2008, 152 , 353–365.  相似文献   

4.
Andean Condors (Vultur gryphus) are a Near Threatened species that was formerly distributed along the entire length of the Andes from western Venezuela to Tierra del Fuego. Populations have been severely reduced north of Peru, but several thousand Andean Condors still exist in the southern portion of their range in Argentina and Chile. Little is known, however, about the size of the Andean Condor population in the central part of their range in Peru and Bolivia. From June to September 2012, we used feeding stations to attract Andean Condors and estimate the size and structure of the population in the eastern Andes of central and southern Bolivia. We estimated a minimum population of 253 condors, an adult male‐to‐female ratio of 1:0.6, an immature male‐to‐female ratio of 1:0.9, and an adult‐to‐immature ratio of 1:1.1. At our five survey areas, estimated abundance ranged from 15 to 100 condors per area. Males outnumbered females in three areas and the opposite was true in two areas. Our estimated adult‐to‐immature ratio, overall and in each area, suggests that the populations could be reproducing at a high rate. As previously observed in other Andean Condor populations, skewed sex ratios could be associated with differences between sexes and age classes in habitat selection. Although our results suggest that Bolivian populations of Andean Condors are still reasonably large, population monitoring is urgently needed, including use of feeding stations throughout the entire Bolivian range of the species and intensive searches for roosting and nesting sites.  相似文献   

5.
We review the systematics of the Hypsiboas calcaratus species complex, a group of widely distributed Amazonian hylid frogs. A comprehensive analysis of genetic, morphological, and bioacoustic datasets uncovered the existence of eleven candidate species, six of which are confirmed. Two of them correspond to Hypsiboas fasciatus and Hypsiboas calcaratus and the remaining four are new species that we describe here. Hypsiboas fasciatus sensu stricto has a geographic range restricted to the eastern Andean foothills of southern Ecuador while Hypsiboas calcaratus sensu stricto has a wide distribution in the Amazon basin. Hypsiboas almendarizae sp. n. occurs at elevations between 500 and 1950 m in central and northern Ecuador; the other new species (H. maculateralis sp. n., H. alfaroi sp. n., and H. tetete sp. n.) occur at elevations below 500 m in Amazonian Ecuador and Peru. The new species differ from H. calcaratus and H. fasciatus in morphology, advertisement calls, and mitochondrial and nuclear DNA sequences. Five candidate species from the Guianan region, Peru, and Bolivia are left as unconfirmed. Examination of the type material of Hyla steinbachi, from Bolivia, shows that it is not conspecific with H. fasciatus and thus is removed from its synonymy.  相似文献   

6.
7.
Altitudinal zonation of Andean cryptogam communities   总被引:2,自引:0,他引:2  
To test whether cryptogamic plant communities in tropical Andean rain forests are distributed in floristically discrete communities corresponding to altitudinal belts, I subjected the elevational distribution of pteridophytes along two elevational gradients in Bolivia, and of bryophytes and lichens along two transects in Peru and Colombia (data from Gradstein & Frahm, 1987 ; Wolf, 1993 ) to an analysis of deviance. All well‐defined elevational boundaries in floristic composition were related to marked ecological changes: the transition from the steep mountains to the hilly lowland zone coupled with a change in geological substrate at 400 m along the Bolivian Carrasco transect, a strong humidity gradient at 1000 m at the Bolivian Masicurí transect and at 1250–1980 m along the Colombian transect, and the transition from mixed cloud forests to forests dominated by Polylepis or Podocarpus at 3400–3600 m in Carrasco, at 1650–1800 m in Masicurí, and at 3670 m in Colombia. Consequently, floristic elevational belts appear to be well‐defined at strong environmental boundaries and in fairly species‐poor forest communities where the presence or absence of one or a few tree species influences the whole ecosystem while they are ill‐defined in species‐rich communities such as tropical forests at low to mid‐elevations.  相似文献   

8.
Phytogeographical relations of the Andean dry valleys of Bolivia   总被引:1,自引:0,他引:1  
Aim The objective of this study is to examine the phytogeographical affinities of the Andean dry valleys of Bolivia in order to contribute to a better understanding of the Andean dry flora's distribution, origin and diversity. Particular emphasis is given to the analysis of the floristic connections of this flora with more austral parts of South America. Location The dry valleys of Bolivia are located in the Andes of the southern half of the country, at elevations between 1300 and 3200 m. Methods An extensive floristic list compiled by the author to evaluate plant diversity in these Andean regions was used as the base for this study. To accomplish this, all recorded genera and species were assigned, respectively, to 11 and 12 phytogeographical elements established previously by the author. Two phytogeographical spectra were thus obtained and analysed. Results At the genus level, the Andean dry valleys of Bolivia are clearly dominated by genera that have widespread distributions (cosmoplitan and subtropical genera). Many of these reached the Andes from the lowland region of the Chaco. At species level, Andean elements constitute more than 60% of the species total, most of which are restricted to the central‐southern Andes. This suggests that Chaco‐related and Andean genera had considerable levels of speciation in these valleys. Many genera and more than half the species have their northernmost distribution in the dry valleys of Bolivia, thereby underlining strong relationships with central‐southern South America (mainly Argentina, Paraguay and southern Brazil). The data supports the belief of the existence, in central‐southern Peru, of a floristic disjunction in dry to arid environments that separates a tropical dry flora north of this limit from a dry subtropical/warm temperate flora south of it. Main conclusions The Andean dry valleys of Bolivia are diverse plant communities with high levels of endemism (c. 18% of the species). The species of this region are more related to those present in central‐southern South America than to the flora of northern South America that ranges southwards to Peru. Many of the species have restricted distributions in the dry Andes of Bolivia and Argentina, and many genera of these dry valleys have their northernmost distribution in Bolivia/southern Peru, too. The data point to high levels of speciation also in the central Andes.  相似文献   

9.
10.
We present morphological and molecular (mitochondrial DNA, mtDNA) evidence supporting the validity and monophyly of the genus Oreobates . This genus also includes members of the former Eleutherodactylus discoidalis species group plus Eleutherodactylus heterodactylus . The presence of prominent conical subarticular tubercles and prominent supernumerary tubercles associated with the axis of fingers and toes, the presence of glandular axillary pads, and the absence of vocal sacs are proposed as morphological synapomorphies. Species of this taxon form a well-supported crown clade in a phylogeny including members of the genera Craugastor and Eleutherodactylus s.l. The sister taxon to Oreobates is the Eleutherodactylus martinicensis series; Oreobates does not appear to be closely related to the Eleutherodactylus binotatus series or to members of the Eleutherodactylus dolops and Eleutherodactylus nigrovittatus species groups. The taxonomic status of all species of Oreobates is reassessed. Hylodes philippi and Hylodes verrucosus are removed from the synonymy of Oreobates quixensis . We redescribe Oreobates cruralis on the basis of the holotype and new material from Bolivia and Peru, and restrict its distribution to the humid forests of the lowlands and adjacent foothills of the Andes, from southern Peru to central Bolivia. Oreobates granulosus is rediscovered, redescribed, and resurrected, on the basis of the examination of the holotype and additional material from Peru. Phylogenetic analyses of partial 16S mtDNA are used to test the independence of lineages (species). The 14 species of Oreobates are distributed from southern Ecuador to northern Argentina. © 2008 The Linnean Society of London, Zoological Journal of the Linnean Society , 2008, 152 , 737–773.  相似文献   

11.
Indigenous palm species of Peru are listed with data on their distribution patterns, ecology, frequency, density in the ecosystems, and conservation status. Peruvian palm flora includes 140 native species in 34 genera with the following distribution patterns: strictly Andean (17), Andean and Subandean (3), strictly Subandean (19), Subandean and Amazonian (20), strictly Amazonian (78), Amazonian and South peripheral (2), South peripheral (1). About 43% of the species occur at very low or low frequency in the country and about 9% are insufficiently known in situ for their conservation status to be defined. There are no Extinct species. Sixteen of the 17 strictly Andean palms are threatened species; 3 of them are Endangered, while only 5 strictly Subandean, 3 Subandean-Amazonian, and 4 strictly Amazonian palms are in these categories.  相似文献   

12.
The Dorado or Plateado (Gilded catfish) Brachyplatystoma rousseauxii (Pimelodidae, Siluriformes) is a commercially valuable migratory catfish performing the largest migration in freshwaters: from the Amazonian headwaters in the Andean foothills (breeding area) to the Amazon estuary (nursery area). In spite of its importance to inform management and conservation efforts, the genetic variability of this species has only recently begun to be studied. The aim of the present work was to determine the population genetic structure of B. rousseauxii in two regions: the Upper Madera Basin (five locations in the Bolivian Amazon) and the Western Amazon Basin (one regional sample from the Uyucalí–Napo–Marañon–Amazon basin, Peru). Length polymorphism at nine microsatellite loci (284 individuals) was used to determine genetic variability and to identify the most probable panmictic units (using a Bayesian approach), after a significant departure from Hardy–Weinberg equilibrium was observed in the overall dataset (Western Amazon + Upper Madera). Bayesian analyses revealed at least three clusters in admixture in the five locations sampled in the Bolivian Amazon, whereas only two of these clusters were observed in the Western Amazon. Considering the migratory behaviour of B. rousseauxii, different life history strategies, including homing, are proposed to explain the cluster distribution. Our results are discussed in the light of the numerous threats to the species survival in the Madera basin, in particular dam and reservoir construction.  相似文献   

13.
The goal of this study was to define whether cuticular hydrocarbons (CHs) could be used for taxonomic determination of putative species hidden in the Anastrepha fraterculus cryptic species complex, widespread from Argentina to Mexico. Recently, increasing evidence of phenotypic and genetic variability has resulted in the characterization of eight morphotypes within this complex. The CH profiles of six A. fraterculus populations from Argentina, Brazil, Peru, Colombia and Mexico were analysed in this study by two‐dimensional gas chromatography coupled with mass spectrometry. In parallel, multiple factorial analyses were used to elucidate population structures. Vector populations segregated into four distinct groups. The analysis demonstrated that the studied populations from Peru, Argentina and southern Brazil (Vacaria) might be classified in accordance with the earlier division of the Afraterculus complex into Peruvian, and Brazilian‐1 cryptic species, using the specific CH profiles. Population from south‐eastern Brazil (Piracicaba) formed separated group. Mexican and Andean (Colombian) putative species had similar CH signatures, when compared to each other.  相似文献   

14.
An epidemiological survey of the vectors of cutaneous leishmaniasis ("espúndia" type) was carried out in the Alto Beni region of Bolivia, an area of Andean foothills at the Eastern limit of the Amazonian lowlands. The climate is typical wet tropical (15 degrees S latitude). Anthropophilic phlebotomine sandfly species were sampled at 20 sites, all forested. The importance of species from the Psychodopygus group, already suspected as a vector in the transmission of Leishmania from the braziliensis complex, was confirmed by: the aggressiveness and diversity of the species encountered (83% of catches, nine species), the discovery of a new anthropophilic species, P. yucumensis and the isolation of a strain of Leishmania braziliensis braziliensis indistinguishable from human strains from the same area, from two species, P. llanosmartinsi and P. yucumensis.  相似文献   

15.
Marcus Lehnert 《Brittonia》2006,58(3):229-244
A summary is presented of all Bolivian species of Cyatheaceae and Dicksoniaceae. In total two species of Dicksoniaceae (Culcita 1 sp.,Dicksonia 1 sp.) and 34 species of Cyatheaceae (Sphaeropteris 1 sp.,Alsophila 5 spp.,Cyathea 26 spp.,Cnemidaria 2 spp.) are known. One hybrid inCyathea is recognized. The endemicCyathea dintelmannii is newly described, andCyathea herzogii from Bolivia and Peru is separated fromCyathea caracasana var.boliviana. Both species are illustrated. An artificial key to the Bolivian species of Cyatheaceae is provided.  相似文献   

16.
Barneby  Rupert C. 《Brittonia》1986,38(3):222-229

Four new species ofPiptadenia are described:P. anolidurus (from Amazonian Ecuador, Peru and Brazil),P. buchtienii (from trans-Andean Bolivia),P. cuzcoënsis (from southern Peru), andP. imatacae (from Venezuelan Guayana); andP. adiantoides var.peruviana J. F. Macbr. is raised in rank toP. peruviana. In relation toP. imatacae the transfer ofP. uaupensis Benth. andP. floribunda Kleinhoonte toAdenopodia Presl is shown to be ill-advised. The affinities of each new species are discussed and critical characters are illustrated.Mimosa tessmanii Harms is newly synonymized withP. uaupensis.

  相似文献   

17.
Morphologically cryptic species act as a wild card when it comes to biodiversity assessments and conservation, with the capacity to dramatically alter our understanding of the biological landscape at the taxonomic, ecological, biogeographic, evolutionary, and conservation levels. We discuss the potential effects that cryptic species may have on biodiversity assessments and conservation, as well as some of the current issues involving the treatment of cryptic species both at taxonomic and conservation levels. In addition, using a combination of advertisement call and morphological data, we describe a new species of the Leptodactylus marmoratus group from the upper Amazon basin, and we assess how cryptic species can affect conservation assessments of species in the Leptodactylus marmoratus group by examining how recent findings affect our understanding of the distribution of what is assumed to be a widespread Amazonian species, Leptodactylus andreae.  相似文献   

18.
Aim The study aimed to establish areas of endemism and distribution patterns for Neotropical species of the genus Piper in the Neotropical and Andean regions by means of parsimony analysis of endemicity (PAE) and track‐compatibility analysis. Location The study area includes the Neotropical region and the Northern Andean region (Páramo‐Punan subregion). Methods We used distribution information from herbarium specimens and recent monographic revisions for 1152 species of Piper from the Neotropics. First, a PAE was attempted in order to delimit the areas of endemism. Second, we performed a track‐compatibility analysis to establish distribution patterns for Neotropical species of Piper. Terminology for grouping Piper is based on recent phylogenetic analyses. Results The PAE yielded 104 small endemic areas for the genus Piper, 80 of which are in the Caribbean, Amazonian and Paranensis subregions of the Neotropical region, and 24 in the Páramo‐Punan subregion of the Andean region. Track‐compatibility analysis revealed 26 generalized tracks, one in the Páramo‐Punan subregion (Andean region), 19 in the Neotropical region, and six connecting the Andean and Neotropical regions. Both the generalized tracks and endemic areas indicate that distribution of Piper species is restricted to forest areas in the Andes, Amazonia, Chocó, Central America, the Guayana Shield and the Brazilian Atlantic coast. Main conclusions Piper should not be considered an Andean‐centred group as it represents two large species components with distributions centred in the Amazonian and Andean regions. Furthermore, areas of greater species richness and/or endemism are restricted to lowland habitats belonging to the Neotropical region. The distribution patterns of Neotropical species of Piper could be explained by recent events in the Neotropical region, as is the case for the track connecting Chocó and Central America, where most of the species rich groups of the genus are found. Two kinds of event could explain the biogeography of a large part of the Piper taxa with Andean–Amazonian distribution: pre‐Andean and post‐Andean events.  相似文献   

19.
Although biodiversity gradients have been widely documented, the factors governing broad‐scale patterns in species richness are still a source of intense debate and interest in ecology, evolution, and conservation biology. Here, we tested whether spatial hypotheses (species–area effect, topographic heterogeneity, mid‐domain null model, and latitudinal effect) explain the pattern of diversity observed along the altitudinal gradient of Andean rain frogs of the genus Pristimantis. We compiled a gamma‐diversity database of 378 species of Pristimantis from the tropical Andes, specifically from Colombia to Bolivia, using records collected above 500 m.a.s.l. Analyses were performed at three spatial levels: Tropical Andes as a whole, split in its two main domains (Northern and Central Andes), and split in its 11 main mountain ranges. Species richness, area, and topographic heterogeneity were calculated for each 500‐m‐width elevational band. Spatial hypotheses were tested using linear regression models. We examined the fit of the observed diversity to the mid‐domain hypothesis using randomizations. The species richness of Pristimantis showed a hump‐shaped pattern across most of the altitudinal gradients of the Tropical Andes. There was high variability in the relationship between area and species richness along the Tropical Andes. Correcting for area effects had little impact in the shape of the empirical pattern of biodiversity curves. Mid‐domain models produced similar gradients in species richness relative to empirical gradients, but the fit varied among mountain ranges. The effect of topographic heterogeneity on species richness varied among mountain ranges. There was a significant negative relationship between latitude and species richness. Our findings suggest that spatial processes partially explain the richness patterns of Pristimantis frogs along the Tropical Andes. Explaining the current patterns of biodiversity in this hot spot may require further studies on other possible underlying mechanisms (e.g., historical, biotic, or climatic hypotheses) to elucidate the factors that limit the ranges of species along this elevational gradient.  相似文献   

20.
The seamounts chain offers a set of fragmented habitats in which species with poor dispersive ability may undergo divergence in allopatry. Such a scenario may explain the endemism often described on seamounts. In gastropods, it is possible to infer the mode of development of a species from the morphology of its larval shell. Accordingly, we examine the population genetics of several caenogastropods from the Norfolk and Lord Howe seamounts (south‐west Pacific) with contrasting modes of larval development. A prerequisite to our study was to clarify the taxonomic framework. The species delimitation was ruled using an integrative approach, based on both morphological and molecular evidence. Molecular data indicate an unexpected taxonomic diversity within the existing species names. Both the clarification of the taxonomic framework and the importance of the sampling effort allow us to confidently detect cryptic diversity and micro‐endemism. These results are discussed in relation to the dispersive capacities of the organisms. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100 , 420–438.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号