首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inaba K  Murakami S  Suzuki M  Nakagawa A  Yamashita E  Okada K  Ito K 《Cell》2006,127(4):789-801
Oxidation of cysteine pairs to disulfide requires cellular factors present in the bacterial periplasmic space. DsbB is an E. coli membrane protein that oxidizes DsbA, a periplasmic dithiol oxidase. To gain insight into disulfide bond formation, we determined the crystal structure of the DsbB-DsbA complex at 3.7 A resolution. The structure of DsbB revealed four transmembrane helices and one short horizontal helix juxtaposed with Cys130 in the mobile periplasmic loop. Whereas DsbB in the resting state contains a Cys104-Cys130 disulfide, Cys104 in the binary complex is engaged in the intermolecular disulfide bond and captured by the hydrophobic groove of DsbA, resulting in separation from Cys130. This cysteine relocation prevents the backward resolution of the complex and allows Cys130 to approach and activate the disulfide-generating reaction center composed of Cys41, Cys44, Arg48, and ubiquinone. We propose that DsbB is converted by its specific substrate, DsbA, to a superoxidizing enzyme, capable of oxidizing this extremely oxidizing oxidase.  相似文献   

2.
The membrane protein DsbB from Escherichia coli is essential for disulfide bond formation and catalyses the oxidation of the periplasmic dithiol oxidase DsbA by ubiquinone. DsbB contains two catalytic disulfide bonds, Cys41-Cys44 and Cys104-Cys130. We show that DsbB directly oxidizes one molar equivalent of DsbA in the absence of ubiquinone via disulfide exchange with the 104-130 disulfide bond, with a rate constant of 2.7 x 10 M(-1) x s(-1). This reaction occurs although the 104-130 disulfide is less oxidizing than the catalytic disulfide bond of DsbA (E(o)' = -186 and -122 mV, respectively). This is because the 41-44 disulfide, which is only accessible to ubiquinone but not to DsbA, is the most oxidizing disulfide bond in a protein described so far, with a redox potential of -69 mV. Rapid intramolecular disulfide exchange in partially reduced DsbB converts the enzyme into a state in which Cys41 and Cys44 are reduced and thus accessible for reoxidation by ubiquinone. This demonstrates that the high catalytic efficiency of DsbB results from the extreme intrinsic oxidative force of the enzyme.  相似文献   

3.
Kobayashi T  Ito K 《The EMBO journal》1999,18(5):1192-1198
Escherichia coli DsbB has four essential cysteine residues, among which Cys41 and Cys44 form a CXXC redox active site motif and the Cys104-Cys130 disulfide bond oxidizes the active site cysteines of DsbA, the disulfide bond formation factor in the periplasm. Functional respiratory chain is required for the cell to keep DsbA oxidized. In this study, we characterized the roles of essential cysteines of DsbB in the coupling with the respiratory chain. Cys104 was found to form the inactive complex with DsbA under respiration-defective conditions. While DsbB, under normal aerobic conditions, is in the oxidized state, having two intramolecular disulfide bonds, oxidation of Cys104 and Cys130 requires the presence of Cys41-Cys44. Remarkably, the Cys41-Cys44 disulfide bond is refractory to reduction by a high concentration of dithiothreitol, unless the membrane is solubilized with a detergent. This reductant resistance requires both the respiratory function and oxygen, since Cys41-Cys44 became sensitive to the reducing agent when membrane was prepared from quinone- or heme-depleted cells or when a membrane sample was deaerated. Thus, the Cys41-Val-Leu-Cys44 motif of DsbB is kept both strongly oxidized and strongly oxidizing when DsbB is integrated into the membrane with the normal set of respiratory components.  相似文献   

4.
DsbB is a disulfide oxidoreductase present in the Escherichia coli plasma membrane. Its cysteine pairs, Cys41-Cys44 and Cys104-Cys130, facing the periplasm, as well as the bound quinone molecules play crucial roles in oxidizing DsbA, the protein dithiol oxidant in the periplasm. In this study, we characterized quinone-free forms of DsbB prepared from mutant cells unable to synthesize ubiquinone and menaquinone. While such preparations lacked detectable quinones, previously reported lauroylsarcosine treatment was ineffective in removing DsbB-associated quinones. Moreover, DsbB-bound quinone was shown to contribute to the redox-dependent fluorescence changes observed with DsbB. Now we reconfirmed that redox potentials of cysteine pairs of quinone-free DsbB are lower than that of DsbA, as far as determined in dithiothreitol redox buffer. Nevertheless, the quinone-free DsbB was able to oxidize approximately 40% of DsbA in a 1:1 stoichiometric reaction, in which hemi-oxidized forms of DsbB having either disulfide are generated. It was suggested that the DsbB-DsbA system is designed in such a way that specific interaction of the two components enables the thiol-disulfide exchanges in the "forward" direction. In addition, a minor fraction of quinone-free DsbB formed the DsbA-DsbB disulfide complex stably. Our results show that the rapid and the slow pathways of DsbA oxidation can proceed up to significant points, after which these reactions must be completed and recycled by quinones under physiological conditions. We discuss the significance of having such multiple reaction pathways for the DsbB-dependent DsbA oxidation.  相似文献   

5.
DsbB is an Escherichia coli plasma membrane protein that reoxidizes the Cys30-Pro-His-Cys33 active site of DsbA, the primary dithiol oxidant in the periplasm. Here we describe a novel activity of DsbB to induce an electronic transition of the bound ubiquinone molecule. This transition was characterized by a striking emergence of an absorbance peak at 500 nm giving rise to a visible pink color. The ubiquinone red-shift was observed stably for the DsbA(C33S)-DsbB complex as well as transiently by stopped flow rapid scanning spectroscopy during the reaction between wild-type DsbA and DsbB. Mutation and reconstitution experiments established that the unpaired Cys at position 44 of DsbB is primarily responsible for the chromogenic transition of ubiquinone, and this property correlates with the functional arrangement of amino acid residues in the neighborhood of Cys44. We propose that the Cys44-induced anomaly in ubiquinone represents its activated state, which drives the DsbB-mediated electron transfer.  相似文献   

6.
Inaba K  Ito K 《The EMBO journal》2002,21(11):2646-2654
Protein disulfide bond formation in the bacterial periplasm is catalyzed by the Dsb enzymes in conjunction with the respiratory quinone components. Here we characterized redox properties of the redox active sites in DsbB to gain further insights into the catalytic mechanisms of DsbA oxidation. The standard redox potential of DsbB was determined to be -0.21 V for Cys41/Cys44 in the N-terminal periplasmic region (P1) and -0.25 V for Cys104/Cys130 in the C-terminal periplasmic region (P2), while that of Cys30/Cys33 in DsbA was -0.12 V. To our surprise, DsbB, an oxidant for DsbA, is intrinsically more reducing than DsbA. Ubiquinone anomalously affected the apparent redox property of the P1 domain, and mutational alterations of the P1 region significantly lowered the catalytic turnover. It is inferred that ubiquinone, a high redox potential compound, drives the electron flow by interacting with the P1 region with the Cys41/Cys44 active site. Thus, DsbB can mediate electron flow from DsbA to ubiquinone irrespective of the intrinsic redox potential of the Cys residues involved.  相似文献   

7.
Malojcić G  Owen RL  Grimshaw JP  Glockshuber R 《FEBS letters》2008,582(23-24):3301-3307
Disulfide bond formation is a critical step in the folding of many secretory proteins. In bacteria, disulfide bonds are introduced by the periplasmic dithiol oxidase DsbA, which transfers its catalytic disulfide bond to folding polypeptides. Reduced DsbA is reoxidized by ubiquinone Q8, catalyzed by inner membrane quinone reductase DsbB. Here, we report the preparation of a kinetically stable ternary complex between wild-type DsbB, containing all essential cysteines, Q8 and DsbA covalently bound to DsbB. The crystal structure of this trapped DsbB reaction intermediate exhibits a charge-transfer interaction between Q8 and the Cys44 in the DsbB reaction center providing experimental evidence for the mechanism of de novo disulfide bond generation in DsbB.  相似文献   

8.
Building bridges: disulphide bond formation in the cell   总被引:26,自引:1,他引:25  
Disulphides are often vital for the folding and stability of proteins. Dedicated enzymatic systems have been discovered that catalyse the formation of disulphides in the periplasm of prokaryotes. These discoveries provide compelling evidence for the actual catalysis of protein folding in vivo. Disulphide bond formation in Escherichia coli is catalysed by at least three ‘Dsb’ proteins; DsbA, -B and -C. The DsbA protein has an extremely reactive, oxidizing disulphide which it simply donates directly to other proteins. DsbB is required for the reoxidation of DsbA. DsbC is active in disulphide rearrangements and appears to work synergistically with DsbA. The relative rarity of disulphides in cytoplasmic proteins appears to be dependent upon a disulphide-destruction machine. One pivotal cog in this machine is thioredoxin reductase.  相似文献   

9.
Oxidative protein folding in Gram-negative bacteria results in the formation of disulfide bonds between pairs of cysteine residues. This is a multistep process in which the dithiol-disulfide oxidoreductase enzyme, DsbA, plays a central role. The structure of DsbA comprises an all helical domain of unknown function and a thioredoxin domain, where active site cysteines shuttle between an oxidized, substrate-bound, reduced form and a DsbB-bound form, where DsbB is a membrane protein that reoxidizes DsbA. Most DsbA enzymes interact with a wide variety of reduced substrates and show little specificity. However, a number of DsbA enzymes have now been identified that have narrow substrate repertoires and appear to interact specifically with a smaller number of substrates. The transient nature of the DsbA-substrate complex has hampered our understanding of the factors that govern the interaction of DsbA enzymes with their substrates. Here we report the crystal structure of a complex between Escherichia coli DsbA and a peptide with a sequence derived from a substrate. The binding site identified in the DsbA-peptide complex was distinct from that observed for DsbB in the DsbA-DsbB complex. The structure revealed details of the DsbA-peptide interaction and suggested a mechanism by which DsbA can simultaneously show broad specificity for substrates yet exhibit specificity for DsbB. This mode of binding was supported by solution nuclear magnetic resonance data as well as functional data, which demonstrated that the substrate specificity of DsbA could be modified via changes at the binding interface identified in the structure of the complex.  相似文献   

10.
In Escherichia coli, DsbA introduces disulphide bonds into secreted proteins. DsbA is recycled by DsbB, which generates disulphides from quinone reduction. DsbA is not known to have any proofreading activity and can form incorrect disulphides in proteins with multiple cysteines. These incorrect disulphides are thought to be corrected by a protein disulphide isomerase, DsbC, which is kept in the reduced and active configuration by DsbD. The DsbC/DsbD isomerization pathway is considered to be isolated from the DsbA/DsbB pathway. We show that the DsbC and DsbA pathways are more intimately connected than previously thought. dsbA(-)dsbC(-) mutants have a number of phenotypes not exhibited by either dsbA(-), dsbC(-) or dsbA(-)dsbD(-) mutations: they exhibit an increased permeability of the outer membrane, are resistant to the lambdoid phage Phi80, and are unable to assemble the maltoporin LamB. Using differential two-dimensional liquid chromatographic tandem mass spectrometry/mass spectrometry analysis, we estimated the abundance of about 130 secreted proteins in various dsb(-) strains. dsbA(-)dsbC(-) mutants exhibit unique changes at the protein level that are not exhibited by dsbA(-)dsbD(-) mutants. Our data indicate that DsbC can assist DsbA in a DsbD-independent manner to oxidatively fold envelope proteins. The view that DsbC's function is limited to the disulphide isomerization pathway should therefore be reinterpreted.  相似文献   

11.
DsbA and DsbB are responsible for disulfide bond formation. DsbA is the direct donor of disulfides, and DsbB oxidizes DsbA. DsbB has the unique ability to generate disulfides by quinone reduction. It is thought that DsbB oxidizes DsbA via thiol disulfide exchange. In this mechanism, a disulfide is formed across the N-terminal pair of cysteines (Cys-41/Cys-44) in DsbB by quinone reduction. This disulfide is then transferred on to the second pair of cysteine residues in DsbB (Cys-104/Cys-130) and then finally transferred to DsbA. We have shown here the redox potential of the two disulfides in DsbB are -271 and -284 mV, respectively, and considerably less oxidizing than the disulfide of DsbA at -120 mV. In addition, we have found the Cys-104/Cys-130 disulfide of DsbB to actually be a substrate for DsbA in vitro. These findings indicate that the disulfides in DsbB are unsuitable to function as the oxidant of DsbA. Furthermore, we have shown that mutants in DsbB that lack either pair or all of its cysteines are also capable of oxidizing DsbA. These unexpected findings raise the possibility that the oxidation of DsbA by DsbB does not occur via thiol disulfide exchange as is widely assumed but rather, directly via quinone reduction.  相似文献   

12.
In the protein disulfide-introducing system of Escherichia coli, plasma membrane-integrated DsbB oxidizes periplasmic DsbA, the primary disulfide donor. Whereas the DsbA-DsbB system utilizes the oxidizing power of ubiquinone (UQ) under aerobic conditions, menaquinone (MK) is believed to function as an immediate electron acceptor under anaerobic conditions. Here, we characterized MK reactivities with DsbB. In the absence of UQ, DsbB was complexed with MK8 in the cell. In vitro studies showed that, by binding to DsbB in a manner competitive with UQ, MK specifically oxidized Cys41 and Cys44 of DsbB and activated its catalytic function to oxidize reduced DsbA. In contrast, menadione used in earlier studies proved to be a more nonspecific oxidant of DsbB. During catalysis, MK8 underwent a spectroscopic transition to develop a visible violet color (lambdamax = 550 nm), which required a reduced state of Cys44 as shown previously for UQ color development (lambdamax = 500 nm) on DsbB. In an in vitro reaction system of MK8-dependent oxidation of DsbA at 30 degrees C, two reaction components were observed, one completing within minutes and the other taking >1 h. Both of these reaction modes were accompanied by the transition state of MK, for which the slower reaction proceeded through the disulfide-linked DsbA-DsbB(MK) intermediate. The MK-dependent pathway provides opportunities to further dissect the quinone-dependent DsbA-DsbB redox reactions.  相似文献   

13.
Bacterial conjugation: a two-step mechanism for DNA transport   总被引:7,自引:0,他引:7  
Ten years ago it was thought that disulphide bond formation in prokaryotes occurred spontaneously. Now two pathways involved in disulphide bond formation have been well characterized, the oxidative pathway, which is responsible for the formation of disulphides, and the isomerization pathway, which shuffles incorrectly formed disulphides. Disulphide bonds are donated directly to unfolded polypeptides by the DsbA protein; DsbA is reoxidized by DsbB. DsbB generates disulphides de novo from oxidized quinones. These quinones are reoxidized by the electron transport chain, showing that disulphide bond formation is actually driven by electron transport. Disulphide isomerization requires that incorrect disulphides be attacked using a reduced catalyst, followed by the redonation of the disulphide, allowing alternative disulphide pairing. Two isomerases exist in Escherichia coli, DsbC and DsbG. The membrane protein DsbD maintains these disulphide isomerases in their reduced and thereby active form. DsbD is kept reduced by cytosolic thioredoxin in an NADPH-dependent reaction.  相似文献   

14.
In the Escherichia coli protein disulphide bond formation pathway, membrane-bound DsbB oxidizes periplasmic DsbA, the disulphide bond-introducing enzyme. The Cys-41-Val-Leu-Cys-44 motif in the first periplasmic domain of DsbB is kept strongly oxidized by the respiratory function of the cell. We now show that the characteristic dithiothreitol resistance of the Cys-41-Cys-44 bond was retained even when the flanked Val-Leu combination was replaced by XX sequences from other oxidoreductases. Results of insertion mutagenesis showed that only the insertions (1-31 amino acids) in the region C-terminally adjacent to the CXXC motif impaired the oxidized state of DsbB. Deletion of a single amino acid from this region also rendered DsbB reduced and inactive. However, single amino acid substitutions of the four residues flanked by CXXC and the transmembrane segment did not abolish the oxidation of DsbB. These results suggest that some physical property, such as distance of the CXXC motif from the membrane, is important for the respiration-coupled oxidation of DsbB.  相似文献   

15.
Escherichia coli uses the DsbA/DsbB system for introducing disulphide bonds into proteins in the cell envelope. Deleting either dsbA or dsbB or both reduces disulphide bond formation but does not entirely eliminate it. Whether such background disulphide bond forming activity is enzyme-catalysed is not known. To identify possible cellular factors that might contribute to the background activity, we studied the effects of overexpressing endogenous proteins on disulphide bond formation in the periplasm. We find that overexpressing PspE, a periplasmic rhodanese, partially restores substantial disulphide bond formation to a dsbA strain. This activity depends on DsbC, the bacterial disulphide bond isomerase, but not on DsbB. We show that overexpressed PspE is oxidized to the sulphenic acid form and reacts with substrate proteins to form mixed disulphide adducts. DsbC either prevents the formation of these mixed disulphides or resolves these adducts subsequently. In the process, DsbC itself gets oxidized and proceeds to catalyse disulphide bond formation. Although this PspE/DsbC system is not responsible for the background disulphide bond forming activity, we suggest that it might be utilized in other organisms lacking the DsbA/DsbB system.  相似文献   

16.
Escherichia coli DsbA belongs to the thioredoxin family and catalyzes the formation of disulfide bonds during the folding of proteins in the bacterial periplasm. It active site (C30-P31-H32-C33) consists of a disulfide bridge that is transferred to newly translocated proteins. The work reported here refers to the DsbA mutant termed C33A that retains, towards reduced unfolded thrombin inhibitor, an activity comparable with the wild-type enzyme. Besides, C33A is also able to form a stable covalent complex with DsbB, the membrane protein responsible for maintaining DsbA in its active form. We have determined the crystal structure of C33A at 2.0 angstroms resolution. Although the general architecture of wt DsbA is conserved, we observe the trans/cis isomerization of P31 in the active site and further conformational changes in the so-called "peptide binding groove" region. Interestingly, these modifications involve residues that are specific to DsbA but not to the thioredoxin family fold. The C33A crystal structure exhibits as well a hydrophobic ligand bound close to the active site of the enzyme. The structural analysis of C33A may actually explain the peculiar behavior of this mutant in regards with its interaction with DsbB and thus provides new insights for understanding the catalytic cycle of DsbA.  相似文献   

17.
Mutational analysis of the disulfide catalysts DsbA and DsbB   总被引:2,自引:0,他引:2  
In prokaryotes, disulfides are generated by the DsbA-DsbB system. DsbB functions to generate disulfides by quinone reduction. These disulfides are passed to the DsbA protein and then to folding proteins. To investigate the DsbA-DsbB catalytic system, we performed an in vivo selection for chromosomal dsbA and dsbB mutants. We rediscovered many residues previously shown to be important for the activity of these proteins. In addition, we obtained one novel DsbA mutant (M153R) and four novel DsbB mutants (L43P, H91Y, R133C, and L146R). We also mutated residues that are highly conserved within the DsbB family in an effort to identify residues important for DsbB function. We found classes of mutants that specifically affect the apparent K(m) of DsbB for either DsbA or quinones, suggesting that quinone and DsbA may interact with different regions of the DsbB protein. Our results are consistent with the interpretation that the residues Q33 and Y46 of DsbB interact with DsbA, Q95 and R48 interact with quinones, and that residue M153 of DsbA interacts with DsbB. All of these interactions could be due to direct amino acid interactions or could be indirect through, for instance, their effect on protein structure. In addition, we find that the DsbB H91Y mutant severely affects the k(cat) of the reaction between DsbA and DsbB and that the DsbB L43P mutant is inactive, suggesting that both L43 and H91 are important for the activity of DsbB. These experiments help to better define the residues important for the function of these two protein-folding catalysts.  相似文献   

18.
All organisms possess specific cellular machinery that introduces disulfide bonds into proteins newly synthesized and transported out of the cytosol. In E. coli, the membrane-integrated DsbB protein cooperates with ubiquinone to generate a disulfide bond, which is transferred to DsbA, a periplasmic dithiol oxido-reductase that serves as the direct disulfide bond donor to proteins folding oxidatively in this compartment. Despite the extensive accumulation of knowledge on this oxidation system, molecular details of the DsbB reaction mechanisms had been controversial due partly to the lack of structural information until our recent determination of the crystal structure of a DsbA-DsbB-ubiquinone complex. In this review we discuss the structural and chemical nature of reaction intermediates in the DsbB catalysis and the illuminated molecular mechanisms that account for the de novo formation of a disulfide bond and its donation to DsbA. It is suggested that DsbB gains the ability to oxidize its specific substrate, DsbA, having very high redox potential, by undergoing a DsbA-induced rearrangement of cysteine residues. One of the DsbB cysteines that are now reduced then interacts with ubiquinone to form a charge transfer complex, leading to the regeneration of a disulfide at the DsbB active site, and the cycle can begin anew.  相似文献   

19.
Kadokura H  Beckwith J 《The EMBO journal》2002,21(10):2354-2363
Protein disulfide bond formation in Escherichia coli is catalyzed by the periplasmic protein DsbA. A cytoplasmic membrane protein DsbB maintains DsbA in the oxidized state by transferring electrons from DsbA to quinones in the respiratory chain. Here we show that DsbB activity can be reconstituted by co-expression of N- and C-terminal fragments of the protein, each containing one of its redox-active disulfide bonds. This system has allowed us (i) to demonstrate that the two DsbB redox centers interact directly through a disulfide bond formed between the two DsbB domains and (ii) to identify the specific cysteine residues involved in this covalent interaction. Moreover, we are able to capture an intermediate in the process of electron transfer from one redox center to the other. These results lead us to propose a model that describes how the cysteines cooperate in the early stages of oxidation of DsbA. DsbB appears to adopt a novel mechanism to oxidize DsbA, using its two pairs of cysteines in a coordinated reaction to accept electrons from the active cysteines in DsbA.  相似文献   

20.
We describe the NMR structure of DsbB, a polytopic helical membrane protein. DsbB, a bacterial cytoplasmic membrane protein, plays a key role in disulfide bond formation. It reoxidizes DsbA, the periplasmic protein disulfide oxidant, using the oxidizing power of membrane-embedded quinones. We determined the structure of an interloop disulfide bond form of DsbB, an intermediate in catalysis. Analysis of the structure and interactions with substrates DsbA and quinone reveals functionally relevant changes induced by these substrates. Analysis of the structure, dynamics measurements, and NMR chemical shifts around the interloop disulfide bond suggest how electron movement from DsbA to quinone through DsbB is regulated and facilitated. Our results demonstrate the extraordinary utility of NMR for functional characterization of polytopic integral membrane proteins and provide insights into the mechanism of DsbB catalysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号