首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mammals detect temperature with specialized neurons in the peripheral nervous system. Four TRPV-class channels have been implicated in sensing heat, and one TRPM-class channel in sensing cold. The combined range of temperatures that activate these channels covers a majority of the relevant physiological spectrum sensed by most mammals, with a significant gap in the noxious cold range. Here, we describe the characterization of ANKTM1, a cold-activated channel with a lower activation temperature compared to the cold and menthol receptor, TRPM8. ANKTM1 is a distant family member of TRP channels with very little amino acid similarity to TRPM8. It is found in a subset of nociceptive sensory neurons where it is coexpressed with TRPV1/VR1 (the capsaicin/heat receptor) but not TRPM8. Consistent with the expression of ANKTM1, we identify noxious cold-sensitive sensory neurons that also respond to capsaicin but not to menthol.  相似文献   

2.
Wang S  Elitt CM  Malin SA  Albers KM 《生理学报》2008,60(5):565-570
Artemin is a neuronal survival and differentiation factor in the glial cell line-derived neurotrophic factor family.Its receptor GFRα3 is expressed by a subpopulation of nociceptor type sensory neurons in the dorsal root and trigeminal ganglia(DRG and TG).These neurons co-express the heat,capsaicin and proton-sensitive channel TRPV1 and the cold and chemical-sensitive channel TRPA1.To further investigate the effects of artemin on sensory neurons,we isolated transgenic mice(ARTN-OE mice) that overexpress art...  相似文献   

3.
The hippocampus plays an important role in short term memory, learning and spatial navigation. A characteristic feature of the hippocampal region is its expression of different electrical population rhythms and activities during different brain states. Physiological fluctuations in brain temperature affect the activity patterns in hippocampus, but the underlying cellular mechanisms are poorly understood. In this work, we investigated the thermal modulation of hippocampal activity at the cellular network level. Primary cell cultures of mouse E17 hippocampus displayed robust network activation upon light cooling of the extracellular solution from baseline physiological temperatures. The activity generated was dependent on action potential firing and excitatory glutamatergic synaptic transmission. Involvement of thermosensitive channels from the transient receptor potential (TRP) family in network activation by temperature changes was ruled out, whereas pharmacological and immunochemical experiments strongly pointed towards the involvement of temperature-sensitive two-pore-domain potassium channels (K2P), TREK/TRAAK family. In hippocampal slices we could show an increase in evoked and spontaneous synaptic activity produced by mild cooling in the physiological range that was prevented by chloroform, a K2P channel opener. We propose that cold-induced closure of background TREK/TRAAK family channels increases the excitability of some hippocampal neurons, acting as a temperature-sensitive gate of network activation. Our findings in the hippocampus open the possibility that small temperature variations in the brain in vivo, associated with metabolism or blood flow oscillations, act as a switch mechanism of neuronal activity and determination of firing patterns through regulation of thermosensitive background potassium channel activity.  相似文献   

4.
Six members of the mammalian transient receptor potential (TRP) ion channels respond to varied temperature thresholds. The natural compounds capsaicin and menthol activate noxious heat-sensitive TRPV1 and cold-sensitive TRPM8, respectively. The burning and cooling perception of capsaicin and menthol demonstrate that these ion channels mediate thermosensation. We show that, in addition to noxious cold, pungent natural compounds present in cinnamon oil, wintergreen oil, clove oil, mustard oil, and ginger all activate TRPA1 (ANKTM1). Bradykinin, an inflammatory peptide acting through its G protein-coupled receptor, also activates TRPA1. We further show that phospholipase C is an important signaling component for TRPA1 activation. Cinnamaldehyde, the most specific TRPA1 activator, excites a subset of sensory neurons highly enriched in cold-sensitive neurons and elicits nociceptive behavior in mice. Collectively, these data demonstrate that TRPA1 activation elicits a painful sensation and provide a potential molecular model for why noxious cold can paradoxically be perceived as burning pain.  相似文献   

5.
Neurons of the Grueneberg ganglion (GG) residing in the vestibule of the murine nose are activated by cool ambient temperatures. Activation of thermosensory neurons is usually mediated by thermosensitive ion channels of the transient receptor potential (TRP) family. However, there is no evidence for the expression of thermo-TRPs in the GG, suggesting that GG neurons utilize distinct mechanisms for their responsiveness to cool temperatures. In search for proteins that render GG neurons responsive to coolness, we have investigated whether TREK/TRAAK channels may play a role; in heterologous expression systems, these potassium channels have been previously found to close upon exposure to coolness, leading to a membrane depolarization. The results of the present study indicate that the thermosensitive potassium channel TREK-1 is expressed in those GG neurons that are responsive to cool temperatures. Studies analyzing TREK-deficient mice revealed that coolness-evoked responses of GG neurons were clearly attenuated in these animals compared with wild-type conspecifics. These data suggest that TREK-1 channels significantly contribute to the responsiveness of GG neurons to cool temperatures, further supporting the concept that TREK channels serve as thermoreceptors in sensory cells. Moreover, the present findings provide the first evidence of how thermosensory GG neurons are activated by given temperature stimuli in the absence of thermo-TRPs.  相似文献   

6.
TRP channels and pain   总被引:2,自引:0,他引:2  
Since the molecular identification of the capsaicin receptor, now known as TRPV1, transient receptor potential (TRP) channels have occupied an important place in the understanding of sensory nerve function in the context of pain. Several TRP channels exhibit sensitivity to substances previously known to cause pain or pain-like sensations; these include cinnamaldehyde, menthol, gingerol, and icillin. Many TRP channels also exhibit significant sensitivity to increases or decreases in temperature. Some TRP channels are sensitized in vitro by the activation of other receptors such that these channels may be activated by processes, such as inflammation that result in pain. TRP channels are suggested to be involved in processes as diverse as sensory neuron activation events, neurotransmitter release and action in the spinal cord, and release of inflammatory mediators. These functions strongly suggest that specific and selective inhibition of TRP channel activity will be of use in alleviating pain.  相似文献   

7.
Since the molecular identification of the capsaicin receptor, now known as TRPV1, transient receptor potential (TRP) channels have occupied an important place in the understanding of sensory nerve function in the context of pain. Several TRP channels exhibit sensitivity to substances previously known to cause pain or pain-like sensations; these include cinnamaldehyde, menthol, gingerol, and icillin. Many TRP channels also exhibit significant sensitivity to increases or decreases in temperature. Some TRP channels are sensitized in vitro by the activation of other receptors such that these channels may be activated by processes, such as inflammation that result in pain. TRP channels are suggested to be involved in processes as diverse as sensory neuron activation events, neurotransmitter release and action in the spinal cord, and release of inflammatory mediators. These functions strongly suggest that specific and selective inhibition of TRP channel activity will be of use in alleviating pain.  相似文献   

8.
Sensory neurons report a wide range of temperatures, from noxious heat to noxious cold. Natural products that elicit psychophysical sensations of hot or cold, such as capsaicin or menthol, were instrumental in the discovery of thermal detectors belonging to the transient receptor potential (TRP) family of cation channels. Studies are now beginning to reveal how these channels contribute to thermosensation and how chemical signaling pathways, such as those activated by tissue injury, alter thermal sensitivity through TRP channel modulation. Analysis of TRP channel expression among sensory neurons is also providing insight into how thermal stimuli are encoded by the peripheral nervous system.  相似文献   

9.
Transient receptor potential (TRP) ion channels mediate key aspects of taste, smell, pain, temperature sensation, and pheromone detection. To deepen our understanding of TRP channel physiology, we require more diverse pharmacological tools. Citral, a bioactive component of lemongrass, is commonly used as a taste enhancer, as an odorant in perfumes, and as an insect repellent. Here we report that citral activates TRP channels found in sensory neurons (TRPV1 and TRPV3, TRPM8, and TRPA1), and produces long-lasting inhibition of TRPV1-3 and TRPM8, while transiently blocking TRPV4 and TRPA1. Sustained citral inhibition is independent of internal calcium concentration, but is state-dependent, developing only after TRP channel opening. Citral's actions as a partial agonist are not due to cysteine modification of the channels nor are they a consequence of citral's stereoisoforms. The isolated aldehyde and alcohol cis and trans enantiomers (neral, nerol, geranial, and geraniol) each reproduce citral's actions. In juvenile rat dorsal root ganglion neurons, prolonged citral inhibition of native TRPV1 channels enabled the separation of TRPV2 and TRPV3 currents. We find that TRPV2 and TRPV3 channels are present in a high proportion of these neurons (94% respond to 2-aminoethyldiphenyl borate), consistent with our immunolabeling experiments and previous in situ hybridization studies. The TRPV1 activation requires residues in transmembrane segments two through four of the voltage-sensor domain, a region previously implicated in capsaicin activation of TRPV1 and analogous menthol activation of TRPM8. Citral's broad spectrum and prolonged sensory inhibition may prove more useful than capsaicin for allodynia, itch, or other types of pain involving superficial sensory nerves and skin.  相似文献   

10.
Transient receptor potential (TRP) ion channels mediate key aspects of taste, smell, pain, temperature sensation, and pheromone detection. To deepen our understanding of TRP channel physiology, we require more diverse pharmacological tools. Citral, a bioactive component of lemongrass, is commonly used as a taste enhancer, as an odorant in perfumes, and as an insect repellent. Here we report that citral activates TRP channels found in sensory neurons (TRPV1 and TRPV3, TRPM8, and TRPA1), and produces long-lasting inhibition of TRPV1–3 and TRPM8, while transiently blocking TRPV4 and TRPA1. Sustained citral inhibition is independent of internal calcium concentration, but is state-dependent, developing only after TRP channel opening. Citral''s actions as a partial agonist are not due to cysteine modification of the channels nor are they a consequence of citral''s stereoisoforms. The isolated aldehyde and alcohol cis and trans enantiomers (neral, nerol, geranial, and geraniol) each reproduce citral''s actions. In juvenile rat dorsal root ganglion neurons, prolonged citral inhibition of native TRPV1 channels enabled the separation of TRPV2 and TRPV3 currents. We find that TRPV2 and TRPV3 channels are present in a high proportion of these neurons (94% respond to 2-aminoethyldiphenyl borate), consistent with our immunolabeling experiments and previous in situ hybridization studies. The TRPV1 activation requires residues in transmembrane segments two through four of the voltage-sensor domain, a region previously implicated in capsaicin activation of TRPV1 and analogous menthol activation of TRPM8. Citral''s broad spectrum and prolonged sensory inhibition may prove more useful than capsaicin for allodynia, itch, or other types of pain involving superficial sensory nerves and skin.  相似文献   

11.
The transient receptor potential (TRP) channels are thermo‐sensors, and transient receptor potential vanilloid (TRPV)1 and V4 are widely expressed in primary afferent neurons and nonneuronal cells. Although heat acclimation is considered as changes of thermoregulatory responses by thermo‐effectors to heat, functional changes of TRP channels in heat acclimation has not been fully elucidated. Here, we investigated whether heat acclimation induces capsaicin tolerance. NIH3T3 cells were incubated at 39.5°C. We determined the expression level of TRPV1 and TRPV4 messenger RNA (mRNA), performed cellular staining of TRPV1 and TRPV4, and investigated actin assembly and activation of the extracellular signal‐regulated kinase (ERK). Exposure to moderate heat decreased the levels of TRPV1 but not TRPV4 mRNA. It also induced stress fiber formation and the intensity of TRPV1 seemed to be decreased by chronic heat stimuli. In addition, heat acclimation attenuated the capsaicin‐induced activation of ERK. Heat acclimation may induce capsaicin tolerance via the downregulation of TRPV1.  相似文献   

12.
K+ channels with two-pore domain (K2p) form a large family of hyperpolarizing channels. They produce background currents that oppose membrane depolarization and cell excitability. They are involved in cellular mechanisms of apoptosis, vasodilatation, anesthesia, pain, neuroprotection and depression. This review focuses on TREK-1, TREK-2 and TRAAK channels subfamily and on the mechanisms that contribute to their molecular heterogeneity and functional regulations. Their molecular diversity is determined not only by the number of genes but also by alternative splicing and alternative initiation of translation. These channels are sensitive to a wide array of biophysical parameters that affect their activity such as unsaturated fatty acids, intra- and extracellular pH, membrane stretch, temperature, and intracellular signaling pathways. They interact with partner proteins that influence their activity and their plasma membrane expression. Molecular heterogeneity, regulatory mechanisms and protein partners are all expected to contribute to cell specific functions of TREK currents in many tissues.  相似文献   

13.
Six highly temperature-sensitive ion channels of the transient receptor potential (TRP) family have been implicated to mediate temperature sensation. These channels, expressed in sensory neurons innervating the skin or the skin itself, are active at specific temperatures ranging from noxious cold to burning heat. In addition to temperature sensation thermoTRPs are the receptors of a growing number of environmental chemicals (chemesthesis). Recent studies have provided some striking new insights into the molecular mechanism of thermal and chemical activation of these biological thermometers.  相似文献   

14.
Schizophrenia is a chronic mental illness affecting 0.4% of the population. Existing antipsychotic drugs are mainly used to treat positive symptoms such as hallucinations but have only poor effects on negative symptoms such as cognitive deficits or depression. TREK and TRAAK channels are two P domain background potassium channels activated by polyunsaturated fatty acids and mechanical stress. TREK but not TRAAK channels are regulated by Gs- and Gq-coupled pathways. The inactivation of the TREK-1 but not the TRAAK channel in mice results in a depression-resistant phenotype. In addition, it has been shown that antidepressants such as fluoxetine or paroxetine directly inhibit TREK channel activity. Here we show that different antipsychotic drugs directly inhibit TREK currents with IC(50) values of approximately 1 to approximately 20 microM. No effect is seen on TRAAK channel activity. We conclude that TREK channels might be involved in the therapeutic action of antipsychotics or in their secondary effects. Furthermore, TREK channels could play a role in the pathophysiology of psychiatric disorders such as depression and schizophrenia.  相似文献   

15.
We studied the effects of selective loss of capsaicin-sensitive primary sensory neurons on thermosensation and thermoregulation in rats. Neonatal capsaicin treatment in rats caused a remarkable decrease in the number of small-diameter neurons in the dorsal root ganglion (DRG) compared with their number in the control rats. Gene expression analysis for various thermo-sensitive transient receptor potential (TRP) channels indicated marked reductions in the mRNA levels of TRPV1 (70%), TRPM8 (46%) and TRPA1 (64%), but not of TRPV2, in the DRG of capsaicin-treated rats compared with those in the control rats. In addition to the heat and cold insensitivity, capsaicin-treated rats showed lower rectal core temperature, higher skin temperature and decreased sensitivity to ambient temperature alteration under normal housing at room temperature, suggesting impaired thermosensation and change in thermoregulation in the rats. Uncoupling protein 1 (UCP1) expression and the thermogenic ability in brown adipose tissues were attenuated in the capsaicin-treated rats. These results indicate a critical role of capsaicin-sensitive sensory neurons in both heat and cool sensation and hence in basal thermal homeostasis, which is balanced by heat release and production including UCP1 thermogenesis, following sensation of the ambient temperature.  相似文献   

16.
Living organisms must evaluate changes in environmental and internal temperatures to mount appropriate physiological and behavioral responses conducive to survival. Classical physiology has provided a wealth of information regarding the specialization of thermosensory functions among subclasses of peripheral sensory neurons and intrinsically thermosensitive neurons within the hypothalamus. However, until recently, the molecular mechanisms by which these cells carry out thermometry have remained poorly understood. The demonstration that certain ion channels of the transient receptor potential (TRP) family can be activated by increases or decreases in ambient temperature, along with the recognition of their heterogeneous expression patterns and heterogeneous temperature sensitivities, has led investigators to evaluate these proteins as candidate endogenous thermosensors. Much of this work has involved one specific channel, TRP vanilloid 1 (TRPV1), which is both a receptor for capsaicin and related pungent vanilloid compounds and a "heat receptor," capable of directly depolarizing neurons in response to temperatures >42 degrees C. Evidence for a contribution of TRPV1 to peripheral thermosensation has come from pharmacological, physiological, and genetic approaches. In contrast, although capsaicin-sensitive mechanisms clearly influence core body temperature regulation, the specific contribution of TRPV1 to this process remains a matter of debate. Besides TRPV1, at least six additional thermally sensitive TRP channels have been identified in mammals, and many of these also appear to participate in thermosensation. Moreover, the identification of invertebrate TRP channels, whose genetic ablation alters thermally driven behaviors, makes it clear that thermosensation represents an evolutionarily conserved role of this ion channel family.  相似文献   

17.
A fluorescence-immunohistochemical investigation was performed in lumbar dorsal root ganglia (DRGs) neurons of the rat with regard to ERK1/2-, p38- and STAT3-phosphorylation in response to nociceptor activation in the rat. The stimuli applied were perineural capsaicin treatment of the sciatic nerve, mustard oil application to the hind paw and heat or cold stimulation of the hind paw. The time points of investigations were 15 min/30 min after perineural capsaicin, 30 min/2 h/4 h for mustard oil, 10 min/4 h for cold and 30 min/2 h/8 h for the heat stimulus. All four stimuli lead to a time-dependent, significant 2-3 fold increase in the number of small and medium size DRG cells displaying cytoplasmic staining for p-ERK1/2, but to no activation of satellite cells. Phosphorylated p38 immunoreactivity was increased in the cytoplasma of DRG cells at 2 h after the mustard oil treatment of the hind paw and 30 min after the perineural capsaicin application to the sciatic nerve axons, but not following heat or cold stimuli to the hind paws. Phospho-STAT3 staining was characteristically observed as nuclear and cytoplasmic staining. It was found increased after the perineural capsaicin application to the sciatic nerve axons, however, no marked increase was found with the other 3 noxious stimuli. The present results show that sensory neurons respond with a selective long-lasting increase in p-ERK1/2 in small and medium-size DRG cells, when their axons or axon terminals are stimulated by capsaicin, mustard oil, noxious heat or noxious cold.  相似文献   

18.
Substantial progress in understanding thermal transduction in peripheral sensory nerve endings was achieved with the recent cloning of six thermally gated ion channels from the TRP (transient receptor potential) super-family. Two of these channels, TRP melastatin 8 (TRPM8) and TRP ankyrin 1 (TRPA1), are expressed in dorsal root ganglion (DRG) and trigeminal ganglion (TG) neurons, are activated by various degrees of cooling, and are candidates for mediating gentle cooling and noxious cold, respectively. However, accumulating evidence suggests that more than just these two channels are involved in cold sensing in mammals. A recent report described a critical role of the voltage-gated tetrodotoxin-resistant sodium channel Nav1.8 in perceiving intense cold and noxious stimuli at cold temperatures. Other ion channels, such as two-pore domain background potassium channels (K2P), are known to be expressed in peripheral nerves, have pronounced temperature dependence, and may contribute to cold sensing and/or cold hypersensitivity in pain states. This article reviews the evidence supporting a role for each of these channels in cold transduction, focusing on their biophysical properties, expression pattern, and modulation by pro-inflammatory mediators.  相似文献   

19.
A TRP channel that senses cold stimuli and menthol   总被引:48,自引:0,他引:48  
A distinct subset of sensory neurons are thought to directly sense changes in thermal energy through their termini in the skin. Very little is known about the molecules that mediate thermoreception by these neurons. Vanilloid Receptor 1 (VR1), a member of the TRP family of channels, is activated by noxious heat. Here we describe the cloning and characterization of TRPM8, a distant relative of VR1. TRPM8 is specifically expressed in a subset of pain- and temperature-sensing neurons. Cells overexpressing the TRPM8 channel can be activated by cold temperatures and by a cooling agent, menthol. Our identification of a cold-sensing TRP channel in a distinct subpopulation of sensory neurons implicates an expanded role for this family of ion channels in somatic sensory detection.  相似文献   

20.
Common food irritants elicit oral heat or cool sensations via actions at thermosensitive transient receptor potential (TRP) channels. We used a half-tongue, 2-alternative forced-choice procedure coupled with bilateral pain intensity ratings to investigate irritant effects on heat and cold pain. The method was validated in a bilateral thermal difference detection task. Capsaicin, mustard oil, and cinnamaldehyde enhanced lingual heat pain elicited by a 49 degrees C stimulus. Mustard oil and cinnamaldehyde weakly enhanced lingual cold pain (9.5 degrees C), whereas capsaicin had no effect. Menthol significantly enhanced cold pain and weakly reduced heat pain. To address if capsaicin's effect was due to summation of perceptually similar thermal and chemical sensations, one-half of the tongue was desensitized by application of capsaicin. Upon reapplication, capsaicin elicited little or no irritant sensation yet still significantly enhanced heat pain on the capsaicin-treated side, ruling out summation. In a third experiment, capsaicin significantly enhanced pain ratings to graded heat stimuli (47 degrees C to 50 degrees C) resulting in an upward shift of the stimulus-response function. Menthol may induce cold hyperalgesia via enhanced thermal gating of TRPM8 in peripheral fibers. Capsaicin, mustard oil, and cinnamaldehyde may induce heat hyperalgesia via enhanced thermal gating of TRPV1 that is coexpressed with TRPA1 in peripheral nociceptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号