首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Hsieh MJ  Luo R 《Proteins》2004,56(3):475-486
A well-behaved physics-based all-atom scoring function for protein structure prediction is analyzed with several widely used all-atom decoy sets. The scoring function, termed AMBER/Poisson-Boltzmann (PB), is based on a refined AMBER force field for intramolecular interactions and an efficient PB model for solvation interactions. Testing on the chosen decoy sets shows that the scoring function, which is designed to consider detailed chemical environments, is able to consistently discriminate all 62 native crystal structures after considering the heteroatom groups, disulfide bonds, and crystal packing effects that are not included in the decoy structures. When NMR structures are considered in the testing, the scoring function is able to discriminate 8 out of 10 targets. In the more challenging test of selecting near-native structures, the scoring function also performs very well: for the majority of the targets studied, the scoring function is able to select decoys that are close to the corresponding native structures as evaluated by ranking numbers and backbone Calpha root mean square deviations. Various important components of the scoring function are also studied to understand their discriminative contributions toward the rankings of native and near-native structures. It is found that neither the nonpolar solvation energy as modeled by the surface area model nor a higher protein dielectric constant improves its discriminative power. The terms remaining to be improved are related to 1-4 interactions. The most troublesome term is found to be the large and highly fluctuating 1-4 electrostatics term, not the dihedral-angle term. These data support ongoing efforts in the community to develop protein structure prediction methods with physics-based potentials that are competitive with knowledge-based potentials.  相似文献   

2.
    
Yan C  Xiu Z  Li X  Li S  Hao C  Teng H 《Proteins》2008,73(1):134-149
  相似文献   

3.
    
Fusion of influenza virus with the endosomal membrane of the host cell is mediated by the homotrimer-organized glycoprotein hemagglutinin (HA). Its fusion activity is triggered by a low pH-mediated conformational change affecting the structure of the HA1 and HA2 subunits. The HA2 subunits undergo a loop-to-helix transition leading to a coiled-coil structure, a highly conserved motif for many fusion mediating viral proteins. However, experimental studies showed that the HA2 coiled-coil structure is stable at neutral and low pH, implying that there is no direct relationship between low pH and the HA2 loop-to-helix transition. To interpret this observation, we used a computational approach based on the dielectric continuum solvent model to explore the influence of water and pH on the free energy change of the transition. The computations showed that the electrostatic interaction between HA2 fragments and water is the major driving force of the HA2 loop-to-helix transition leading to the coiled-coil structure, as long as the HA1 globular domain covering the HA2 subunits in the nonfusion competent conformation is reorganized and thereby allows water molecules to interact with the whole loop segments of the HA2 subunits. Moreover, we show that the energy released by the loop-to-helix transition may account for those energies required for driving the subsequent steps of membrane fusion. Such a water-driven process may resemble a general mechanism for the formation of the highly conserved coiled-coil motif of enveloped viruses.  相似文献   

4.
    
Nam K  Maiorov V  Feuston B  Kearsley S 《Proteins》2006,64(2):376-384
Leukocyte function associated antigen-1 (LFA-1) plays a critical role in T cell migration and has been recognized as a therapeutic target for immune disorders. Several classes of small molecule antagonists have been developed to block LFA-1 interaction with intercellular adhesion molecule-1 (ICAM-1). Recent structural studies show that the antagonists bind to an allosteric site in the I-domain of LFA-1. However, it is not yet clear how these small molecules work as antagonists since no significant conformational change is observed in the I-domain-antagonist complex structures. Here we present a computational study suggesting how these allosteric antagonists affect the dynamics of the I-domain. The lowest frequency vibrational mode calculated from an LFA-1 I-domain structure shows large scale \"coil-down\" motion of the C-terminal alpha7 helix, which may lead to the open form of the I-domain. The presence of an allosteric antagonist greatly reduces this motion of the alpha7 helix as well as other parts of the I-domain. Thus, our study suggests that allosteric antagonists work by eliminating breathing motion that leads to the open conformation of the I-domain.  相似文献   

5.
    
Li X  Hassan SA  Mehler EL 《Proteins》2005,60(3):464-484
  相似文献   

6.
Continuum solvent models such as Generalized-Born and Poisson–Boltzmann methods hold the promise to treat solvation effect efficiently and to enable rapid scoring of protein structures when they are combined with physics-based energy functions. Yet, direct comparison of these two approaches on large protein data set is lacking. Building on our previous work with a scoring function based on a Generalized-Born (GB) solvation model, and short molecular-dynamics simulations, we further extended the scoring function to compare with the MM-PBSA method to treat the solvent effect. We benchmarked this scoring function against seven publicly available decoy sets. We found that, somewhat surprisingly, the results of MM-PBSA approach are comparable to the previous GB-based scoring function. We also discussed the effect to the scoring function accuracy due to presence of large ligands and ions in some native structures of the decoy sets.  相似文献   

7.
    
Microtubules are cylindrical polymers found in every eukaryotic cell. They have a unique helical structure that has implications at both the cellular level, in terms of the functions they perform, and at the multicellular level, such as determining the left-right symmetry in plants. Through the combination of an atomically detailed model for a microtubule and large-scale computational techniques for computing electrostatic interactions, we are able to explain the observed microtubule structure. On the basis of the lateral interactions between protofilaments, we have determined that B lattice is the most favorable configuration. Further, we find that these lateral bonds are significantly weaker than the longitudinal bonds along protofilaments. This explains observations of microtubule disassembly and may serve as another step toward understanding the basis for dynamic instability.  相似文献   

8.
  总被引:1,自引:0,他引:1  
We have applied the molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) method (J. Srinivasan, T. E. Cheatham, P. Cieplak, P. A. Kollman, and D. A. Case, Journal of the American Chemical Society, 1998, Vol. 120, pp. 9401-9409) to study the interaction of an RNA aptamer with theophylline and its analogs. The MM-PBSA free energy analysis provides a reasonable absolute binding free energy for the RNA aptamer-theophylline complex formation. Energetic analysis reveals that the van der Waals interaction and the nonpolar contribution to solvation provide the basis for the favorable absolute free energy of complex. This trend is similar to other protein-ligand interactions studied previously. The MM-PBSA method also ranks the relative binding energies of five theophylline analogs approximately correctly, but not as well as the more conventional thermodynamic integration calculations, which were carried out to convert theophylline into its analogs. The comparison of MM-PBSA with TI suggests that the MM-PBSA method has some difficulties with the first-solvation-shell energetics.  相似文献   

9.
    
The fact that protein structures are dynamic by nature and that structure models determined by X‐ray crystallography, electron microscopy (EM) and nuclear magnetic resonance (NMR) spectroscopy have limited accuracy limits the precision with which derived properties can be reported. Here, the issue of the precision of calculated solvent‐accessible surface areas (ASAs) is addressed. A number of protein structures of different sizes were selected and the effect of random shifts applied to the atomic coordinates on ASA values was investigated. Standard deviations of the ASA calculations were found to range from ∼10 to ∼80 Å2. Similar values are obtained for a handful of cases in the Protein Data Bank (PDB) where `ensembles' of crystal structures were refined against the same data set. The ASA values for 69 hen egg‐white lysozyme structures were calculated and a standard deviation of the ASA of 81 Å2 was obtained (the average ASA value was 6571 Å2). The calculated ASA values do not show any correlation with factors such as resolution or overall temperature factors. A molecular‐dynamics (MD) trajectory of lysozyme was also analysed. The ASA values during the simulation covered a range of more than 800 Å2. If different programs are used, the ASA values obtained for one small protein show a spread of almost 600 Å2. These results suggest that in most cases reporting ASA values with a precision better than 10 Å2 is probably not realistic and a precision of 50–100 Å2 would seem prudent. The precision of buried surface‐area calculations for complexes is also discussed.  相似文献   

10.
  总被引:1,自引:0,他引:1  
Martin Carlsen  Peter Røgen 《Proteins》2015,83(9):1616-1624
Knowledge‐based protein potentials are simplified potentials designed to improve the quality of protein models, which is important as more accurate models are more useful for biological and pharmaceutical studies. Consequently, knowledge‐based potentials often are designed to be efficient in ordering a given set of deformed structures denoted decoys according to how close they are to the relevant native protein structure. This, however, does not necessarily imply that energy minimization of this potential will bring the decoys closer to the native structure. In this study, we introduce an iterative strategy to improve the convergence of decoy structures. It works by adding energy optimized decoys to the pool of decoys used to construct the next and improved knowledge‐based potential. We demonstrate that this strategy results in significantly improved decoy convergence on Titan high resolution decoys and refinement targets from Critical Assessment of protein Structure Prediction competitions. Our potential is formulated in Cartesian coordinates and has a fixed backbone potential to restricts motions to be close to those of a dihedral model, a fixed hydrogen‐bonding potential and a variable coarse grained carbon alpha potential consisting of a pair potential and a novel solvent potential that are b‐spline based as we use explicit gradient and Hessian for efficient energy optimization. Proteins 2015; 83:1616–1624. © 2015 Wiley Periodicals, Inc.  相似文献   

11.
工业酶研究中的计算化学方法   总被引:1,自引:0,他引:1  
刘海燕 《生物工程学报》2019,35(10):1819-1828
文中介绍用于工业酶研究特别是用于指导酶工程的主要计算化学方法,包括分子力学力场和分子动力学模拟、量子力学以及量子力学/分子力学结合模型、连续介质静电模型以及分子对接等。文中从以下两个角度分别概要地介绍这些方法:一是方法本身的基本概念、原始计算结果、适用条件和优缺点等;二是通过计算得到有价值的信息,指导突变体和突变库设计。  相似文献   

12.
13.
    
We have analyzed 29 different published matrices of protein pairwise contact potentials (CPs) between amino acids derived from different sets of proteins, either crystallographic structures taken from the Protein Data Bank (PDB) or computer-generated decoys. Each of the CPs is similar to 1 of the 2 matrices derived in the work of Miyazawa and Jernigan (Proteins 1999;34:49-68). The CP matrices of the first class can be approximated with a correlation of order 0.9 by the formula e(ij) = h(i) + h(j), 1 相似文献   

14.
    
It is often discussed, mainly in connection with the rather high macromolecular R factors, that the treatment of bulk solvent in macromolecular refinement may lack the detail needed for modelling the solvent environment of molecules as complex as proteins and nucleic acids. This line of thought directly leads to the hypothesis that improvements in the modelling of the bulk solvent may substantially improve the agreement between the experimental data and the crystallographic models. Here, part of this hypothesis is being tested through the construction, via molecular‐dynamics simulations, of a highly detailed, physics‐based, structure‐specific and crystallographic data‐agnostic model of the bulk solvent of a known crystal structure. The water‐distribution map obtained from the simulation is converted (after imposing space‐group symmetry) to a constant (but scalable) partial structure factor which is then added in a re‐refinement of the crystal structure. Compared with the simple Babinet‐based correction, a reduction of the totally cross‐validated free R value by 0.3% is observed. The implications and possible interpretations of these results are discussed.  相似文献   

15.
16.
    
Antiestradiol antibody 57-2 binds 17beta-estradiol (E2) with moderately high affinity (K(a) = 5 x 10(8) M(-1)). The structurally related natural estrogens estrone and estriol as well synthetic 17-deoxy-estradiol and 17alpha-estradiol are bound to the antibody with 3.7-4.9 kcal mol(-1) lower binding free energies than E2. Free energy perturbation (FEP) simulations and the molecular mechanics-Poisson-Boltzmann surface area (MM-PBSA) method were applied to investigate the factors responsible for the relatively low cross-reactivity of the antibody with these four steroids, differing from E2 by the substituents of the steroid D-ring. In addition, computational alanine scanning of the binding site residues was carried out with the MM-PBSA method. Both the FEP and MM-PBSA methods reproduced the experimental relative affinities of the five steroids in good agreement with experiment. On the basis of FEP simulations, the number of hydrogen bonds formed between the antibody and steroids, which varied from 0 to 3 in the steroids studied, determined directly the magnitude of the steroid-antibody interaction free energies. One hydrogen bond was calculated to contribute about 3 kcal mol(-1) to the interaction energy. Because the relative binding free energies of estrone (two antibody-steroid hydrogen bonds), estriol (three hydrogen bonds), 17-deoxy-estradiol (no hydrogen bonds), and 17alpha-estradiol (two hydrogen bonds) are close to each other and clearly lower than that of E2 (three hydrogen bonds), the water-steroid interactions lost upon binding to the antibody make an important contribution to the binding free energies. The MM-PBSA calculations showed that the binding of steroids to the antiestradiol antibody is driven by van der Waals interactions, whereas specificity is solely due to electrostatic interactions. In addition, binding of steroids to the antiestradiol antibody 57-2 was compared to the binding to the antiprogesterone antibody DB3 and antitestosterone antibody 3-C4F5, studied earlier with the MM-PBSA method.  相似文献   

17.
Zhu J  Zhu Q  Shi Y  Liu H 《Proteins》2003,52(4):598-608
One strategy for ab initio protein structure prediction is to generate a large number of possible structures (decoys) and select the most fitting ones based on a scoring or free energy function. The conformational space of a protein is huge, and chances are rare that any heuristically generated structure will directly fall in the neighborhood of the native structure. It is desirable that, instead of being thrown away, the unfitting decoy structures can provide insights into native structures so prediction can be made progressively. First, we demonstrate that a recently parameterized physics-based effective free energy function based on the GROMOS96 force field and a generalized Born/surface area solvent model is, as several other physics-based and knowledge-based models, capable of distinguishing native structures from decoy structures for a number of widely used decoy databases. Second, we observe a substantial increase in correlations of the effective free energies with the degree of similarity between the decoys and the native structure, if the similarity is measured by the content of native inter-residue contacts in a decoy structure rather than its root-mean-square deviation from the native structure. Finally, we investigate the possibility of predicting native contacts based on the frequency of occurrence of contacts in decoy structures. For most proteins contained in the decoy databases, a meaningful amount of native contacts can be predicted based on plain frequencies of occurrence at a relatively high level of accuracy. Relative to using plain frequencies, overwhelming improvements in sensitivity of the predictions are observed for the 4_state_reduced decoy sets by applying energy-dependent weighting of decoy structures in determining the frequency. There, approximately 80% native contacts can be predicted at an accuracy of approximately 80% using energy-weighted frequencies. The sensitivity of the plain frequency approach is much lower (20% to 40%). Such improvements are, however, not observed for the other decoy databases. The rationalization and implications of the results are discussed.  相似文献   

18.
19.
Protein folding is often difficult to characterize experimentally because of the transience of intermediate states, and the complexity of the protein-solvent system. Atomistic simulations, which could provide more detailed information, have had to employ highly simplified models or high temperatures, to cope with the long time scales of unfolding; direct simulation of folding is even more problematic. We report a fully atomistic simulation of the acid-induced unfolding of apomyoglobin in which the protonation of acidic side-chains to simulate low pH is sufficient to induce unfolding at room temperature with no added biasing forces or other unusual conditions; and the trajectory is validated by comparison to experimental characterization of intermediate states. Novel insights provided by their analysis include: characterization of a dry swollen globule state forming a barrier to initial unfolding or final folding; observation of cooperativity in secondary and tertiary structure formation and its explanation in terms of dielectric environments; and structural details of the intermediate and the completely unfolded states. These insights involve time scales and levels of structural detail that are presently beyond the range of experiment, but come within reach through the simulation methods described here. An implicit solvation model is used to analyze the energetics of protein folding at various pH and ionic strength values, and a reasonable estimate of folding free energy is obtained. Electrostatic interactions are found to disfavor folding.  相似文献   

20.
    
Structure prediction and quality assessment are crucial steps in modeling native protein conformations. Statistical potentials are widely used in related algorithms, with different parametrizations typically developed for different contexts such as folding protein monomers or docking protein complexes. Here, we describe BACH‐SixthSense, a single residue‐based statistical potential that can be successfully employed in both contexts. BACH‐SixthSense shares the same approach as BACH, a knowledge‐based potential originally developed to score monomeric protein structures. A term that penalizes steric clashes as well as the distinction between polar and apolar sidechain‐sidechain contacts are crucial novel features of BACH‐SixthSense. The performance of BACH‐SixthSense in discriminating correctly the native structure among a competing set of decoys is significantly higher than other state‐of‐the‐art scoring functions, that were specifically trained for a single context, for both monomeric proteins (QMEAN, Rosetta, RF_CB_SRS_OD, benchmarked on CASP targets) and protein dimers (IRAD, Rosetta, PIE*PISA, HADDOCK, FireDock, benchmarked on 14 CAPRI targets). The performance of BACH‐SixthSense in recognizing near‐native docking poses within CAPRI decoy sets is good as well. Proteins 2015; 83:621–630. © 2015 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号