首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Magee J  Cygler M 《Biochemistry》2011,50(18):3696-3705
Scaffold and adaptor proteins provide means for the spatial organization of signaling cascades. MP1 is a scaffold protein in the RAF/MEK/ERK pathway and together with p14 forms a heterodimer that was shown to be responsible for localization of MEK to the late endosomal compartment. However, the mechanism by which MP1/p14 tethers MEK to the endosomal membrane was not resolved. Recently, an adaptor protein p18 was identified as a binding partner of MP1/p14. p18 is attached to the endosomal surface by myristoyl and palmitoyl groups located at the N-terminus of the protein and tethers the signaling complex to the cytoplasmic surface of late endosomes. p18 expressed in E. coli is retained in inclusion bodies, and we developed a protocol to refold it from the denatured state. Coexpression of p18 with MP1/p14 leads to a soluble protein complex. We examined the interaction of p18 with the MP1/p14 constitutive heterodimer. We cloned various constructs of p18 and characterized their behavior and interactions with MP1/p14 in vitro using SEC and pull-down assays. We determined that the refolded p18 is a monomer in solution with molten globule characteristics. Its binding to MP1/p14 promotes folding and ordering. We also identified a proteolytically stable fragment of p18 and showed that it binds to MP1/p14 with similar affinity to the full-length construct and determined an apparent dissociation constant in the low micromolar range for the interaction. Finally, we show that the ~60 C-terminal residues of p18 are not required for in vitro interaction with MP1/p14 heterodimer, in contrast to previously reported findings showing that truncation of 41 C-terminal residues of p18 prevents endosomal localization of MP1/p14.  相似文献   

2.
The adaptor protein p14 is associated with the cytoplasmic face of late endosomes that is involved in cell-surface receptor endocytosis and it also directly interacts with MP1, a scaffolding protein that binds the MAP kinase ERK1 and its upstream kinase activator MEK1. The interaction of p14 with MP1 recruits the latter to late endosomes and the endosomal localization of p14/MP1-MEK1-ERK1 scaffolding complex is required for signaling via ERK MAP kinase in an efficient and specific manner upon receptor stimulation. Here, we report the three-dimensional solution structure of the adaptor protein p14. The structure reveals a profilin-like fold with a central five-stranded beta-sheet sandwiched between alpha-helices. Unlike profilin, however, p14 exhibits weak interaction with selective phosphoinositides but no affinity towards proline-rich sequences. Structural comparison between profilin and p14 reveals the molecular basis for the differences in these functions. We further mapped the MP1 binding sites on p14 by NMR, and discuss the implications of these important findings on the possible function of p14.  相似文献   

3.
The late endosome/lysosome membrane adaptor p18 (or LAMTOR1) serves as an anchor for the mammalian target of rapamycin complex 1 (mTORC1) and is required for its activation on lysosomes. The loss of p18 causes severe defects in cell growth as well as endosome dynamics, including membrane protein transport and lysosome biogenesis. However, the mechanisms underlying these effects on lysosome biogenesis remain unknown. Here, we show that the p18-mTORC1 pathway is crucial for terminal maturation of lysosomes. The loss of p18 causes aberrant intracellular distribution and abnormal sizes of late endosomes/lysosomes and an accumulation of late endosome specific components, including Rab7, RagC, and LAMP1; this suggests that intact late endosomes accumulate in the absence of p18. These defects are phenocopied by inhibiting mTORC1 activity with rapamycin. Loss of p18 also suppresses the integration of late endosomes and lysosomes, resulting in the defective degradation of tracer proteins. These results suggest that the p18-mTORC1 pathway plays crucial roles in the late stages of lysosomal maturation, potentially in late endosome-lysosome fusion, which is required for processing of various macromolecules.  相似文献   

4.
Eukaryotic cells use the extracellular signal regulated kinase (ERK) cascade to connect cell-surface receptors to intracellular targets. Although various signals are routed through the ERK pathway, cells respond accordingly to a given stimulus. To regulate proper signal transduction, scaffolds and adaptors are employed to organize specific signaling units. The scaffold protein MP1 (MEK1 partner) assembles a scaffold complex in the ERK cascade. We show that p14 functions as an adaptor protein, which is required and sufficient to localize MP1 to endosomes. Reduction of MP1 or p14 protein levels by siRNAi results in defective signal transduction. Therefore, our results suggest that the endosomal localization of the p14/MP1-MAPK scaffold complex is crucial for signal transduction.  相似文献   

5.
StAR‐related lipid transfer domain‐3 (STARD3) is a sterol‐binding protein that creates endoplasmic reticulum (ER)–endosome contact sites. How this protein, at the crossroad between sterol uptake and synthesis pathways, impacts the intracellular distribution of this lipid was ill‐defined. Here, by using in situ cholesterol labeling and quantification, we demonstrated that STARD3 induces cholesterol accumulation in endosomes at the expense of the plasma membrane. STARD3‐mediated cholesterol routing depends both on its lipid transfer activity and its ability to create ER–endosome contacts. Corroborating this, in vitro reconstitution assays indicated that STARD3 and its ER‐anchored partner, Vesicle‐associated membrane protein‐associated protein (VAP), assemble into a machine that allows a highly efficient transport of cholesterol within membrane contacts. Thus, STARD3 is a cholesterol transporter scaffolding ER–endosome contacts and modulating cellular cholesterol repartition by delivering cholesterol to endosomes.  相似文献   

6.
7.
To study spatiotemporal regulation of the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK1/2) signaling cascade in living cells, a HeLa cell line in which MAPK kinase of ERK kinase (MEK) 2 (MAPK kinase) was knocked down by RNA interference and replaced with the green fluorescent protein (GFP)-tagged MEK2 was generated. In these cells, MEK2-GFP was stably expressed at a level similar to that of the endogenous MEK2 in the parental cells. Upon activation of the EGF receptor (EGFR), a pool of MEK2-GFP was found initially translocated to the plasma membrane and then accumulated in a subset of early and late endosomes. However, activated MEK was detected only at the plasma membrane and not in endosomes. Surprisingly, MEK2-GFP endosomes did not contain active EGFR, suggesting that endosomal MEK2-GFP was separated from the upstream signaling complexes. Knockdown of clathrin by small interfering RNA (siRNA) abolished MEK2 recruitment to endosomes but resulted in increased activation of ERK without affecting the activity of MEK2-GFP. The accumulation of MEK2-GFP in endosomes was also blocked by siRNA depletion of RAF kinases and by the MEK1/2 inhibitor, UO126. We propose that the recruitment of MEK2 to endosomes can be a part of the negative feedback regulation of the EGFR-MAPK signaling pathway by endocytosis.  相似文献   

8.
We have identified a novel, highly conserved protein of 14 kD copurifying with late endosomes/lysosomes on density gradients. The protein, now termed p14, is peripherally associated with the cytoplasmic face of late endosomes/lysosomes in a variety of different cell types.In a two-hybrid screen with p14 as a bait, we identified the mitogen-activated protein kinase (MAPK) scaffolding protein MAPK/extracellular signal-regulated kinase (ERK) kinase (MEK) partner 1 (MP1) as an interacting protein. We confirmed the specificity of this interaction in vitro by glutathione S-transferase pull-down assays and by coimmunoprecipitation, cosedimentation on glycerol gradients, and colocalization. Moreover, expression of a plasma membrane-targeted p14 causes mislocalization of coexpressed MP1. In addition, we could reconstitute protein complexes containing the p14-MP1 complex associated with ERK and MEK in vitro.The interaction between p14 and MP1 suggests a MAPK scaffolding activity localized to the cytoplasmic surface of late endosomes/lysosomes, thereby combining catalytic scaffolding and subcellular compartmentalization as means to modulate MAPK signaling within a cell.  相似文献   

9.
Ferlins are a family of transmembrane‐anchored vesicle fusion proteins uniquely characterized by 5–7 tandem cytoplasmic C2 domains, Ca2+‐regulated phospholipid‐binding domains that regulate vesicle fusion in the synaptotagmin family. In humans, dysferlin mutations cause limb‐girdle muscular dystrophy type 2B (LGMD2B) due to defective Ca2+‐dependent, vesicle‐mediated membrane repair and otoferlin mutations cause non‐syndromic deafness due to defective Ca2+‐triggered auditory neurotransmission. In this study, we describe the tissue‐specific expression, subcellular localization and endocytic trafficking of the ferlin family. Studies of endosomal transit together with 3D‐structured illumination microscopy reveals dysferlin and myoferlin are abundantly expressed at the PM and cycle to Rab7‐positive late endosomes, supporting potential roles in the late‐endosomal pathway. In contrast, Fer1L6 shows concentrated localization to a specific compartment of the trans‐Golgi/recycling endosome, cycling rapidly between this compartment and the PM via Rab11 recycling endosomes. Otoferlin also shows trans‐Golgi to PM cycling, with very low levels of PM otoferlin suggesting either brief PM residence, or rare incorporation of otoferlin molecules into the PM. Thus, type‐I and type‐II ferlins segregate as PM/late‐endosomal or trans‐Golgi/recycling ferlins, consistent with different ferlins mediating vesicle fusion events in specific subcellular locations.   相似文献   

10.
Kinesin-2 is a motor for late endosomes and lysosomes   总被引:3,自引:2,他引:1  
The bidirectional nature of late endosome/lysosome movement suggests involvement of at least two distinct motors, one minus-end directed and one plus-end directed. Previous work has identified dynein as the minus-end-directed motor for late endosome/lysosome localization and dynamics. Conventional kinesin (kinesin-1) has been implicated in plus-end-directed late endosome/lysosome movement, but other kinesin family members may also be involved. Kinesin-2 is known to drive the movement of pigment granules, a type of lysosomally derived organelle, and was recently found to be associated with purified late endosomes. To determine whether kinesin-2 might also power endosome movement in non-pigmented cells, we overexpressed dominant negative forms of the KIF3A motor subunit and KAP3 accessory subunit and knocked down KAP3 levels using RNAi. We found kinesin-2 to be required for the normal steady-state localization of late endosomes/lysosomes but not early endosomes or recycling endosomes. Despite the abnormal subcellular distribution of late endosomes/lysosomes, the uptake and trafficking of molecules through the conventional endocytic pathway appeared to be unaffected. The slow time-course of inhibition suggests that both kinesin-2 itself and its attachment to membranes do not turn over quickly.  相似文献   

11.
Molecules travel through the yeast endocytic pathway from the cell surface to the lysosome-like vacuole by passing through two sequential intermediates. Immunofluorescent detection of an endocytosed pheromone receptor was used to morphologically identify these intermediates, the early and late endosomes. The early endosome is a peripheral organelle that is heterogeneous in appearance, whereas the late endosome is a large perivacuolar compartment that corresponds to the prevacuolar compartment previously shown to be an endocytic intermediate. We demonstrate that inhibiting transport through the early secretory pathway in sec mutants quickly impedes transport from the early endosome. Treatment of sensitive cells with brefeldin A also blocks transport from this compartment. We provide evidence that Sec18p/N-ethylmaleimide-sensitive fusion protein, a protein required for membrane fusion, is directly required in vivo for forward transport early in the endocytic pathway. Inhibiting protein synthesis does not affect transport from the early endosome but causes endocytosed proteins to accumulate in the late endosome. As newly synthesized proteins and the late steps of secretion are not required for early to late endosome transport, but endoplasmic reticulum through Golgi traffic is, we propose that efficient forward transport in the early endocytic pathway requires delivery of lipid from secretory organelles to endosomes.  相似文献   

12.
The intracellular functions of myosin motors requires a number of adaptor molecules, which control cargo attachment, but also fine‐tune motor activity in time and space. These motor–adaptor–cargo interactions are often weak, transient or highly regulated. To overcome these problems, we use a proximity labelling‐based proteomics strategy to map the interactome of the unique minus end‐directed actin motor MYO6. Detailed biochemical and functional analysis identified several distinct MYO6‐adaptor modules including two complexes containing RhoGEFs: the LIFT (LARG‐Induced F‐actin for Tethering) complex that controls endosome positioning and motility through RHO‐driven actin polymerisation; and the DISP (DOCK7‐Induced Septin disPlacement) complex, a novel regulator of the septin cytoskeleton. These complexes emphasise the role of MYO6 in coordinating endosome dynamics and cytoskeletal architecture. This study provides the first in vivo interactome of a myosin motor protein and highlights the power of this approach in uncovering dynamic and functionally diverse myosin motor complexes.  相似文献   

13.
The extracellular signal-regulated kinase (ERK) cascade regulates proliferation, differentiation, and survival in multicellular organisms. Scaffold proteins regulate intracellular signaling by providing critical spatial and temporal specificity. The scaffold protein MEK1 (mitogen-activated protein kinase and ERK kinase 1) partner (MP1) is localized to late endosomes by the adaptor protein p14. Using conditional gene disruption of p14 in mice, we now demonstrate that the p14-MP1-MEK1 signaling complex regulates late endosomal traffic and cellular proliferation. This function its essential for early embryogenesis and during tissue homeostasis, as revealed by epidermis-specific deletion of p14. These findings show that endosomal p14-MP1-MEK1 signaling has a specific and essential function in vivo and, therefore, indicate that regulation of late endosomal traffic by extracellular signals is required to maintain tissue homeostasis.  相似文献   

14.
Differential sorting and fate of endocytosed GPI-anchored proteins   总被引:1,自引:0,他引:1  
In this paper, we studied the fate of endocytosed glycosylphosphatidyl inositol anchored proteins (GPI- APs) in mammalian cells, using aerolysin, a bacterial toxin that binds to the GPI anchor, as a probe. We find that GPI-APs are transported down the endocytic pathway to reducing late endosomes in BHK cells, using biochemical, morphological and functional approaches. We also find that this transport correlates with the association to raft-like membranes and thus that lipid rafts are present in late endosomes (in addition to the Golgi and the plasma membrane). In marked contrast, endocytosed GPI-APs reach the recycling endosome in CHO cells and this transport correlates with a decreased raft association. GPI-APs are, however, diverted from the recycling endosome and routed to late endosomes in CHO cells, when their raft association is increased by clustering seven or less GPI-APs with an aerolysin mutant. We conclude that the different endocytic routes followed by GPI-APs in different cell types depend on the residence time of GPI-APs in lipid rafts, and hence that raft partitioning regulates GPI-APs sorting in the endocytic pathway.  相似文献   

15.
In yeast, certain resident trans-Golgi network (TGN) proteins achieve steady-state localization by cycling through late endosomes. Here, we show that chitin synthase III (Chs3p), an enzyme involved in the assembly of the cell wall at the mother-bud junction, populates an intracellular reservoir that is maintained by a cycle of transport between the TGN and early endosomes. Traffic of Chs3p from the TGN/early endosome to the cell surface requires CHS5 and CHS6, mutant alleles of which trap Chs3p in the TGN/early endosome. Disruption of the clathrin adaptor protein complex 1 (AP-1) restores Chs3p transport to the plasma membrane. Similarly, in AP-1 deficient cells, the resident TGN/early endosome syntaxin, Tlg1p, is missorted. We propose that clathrin and AP-1 act to recycle Chs3p and Tlg1p from the early endosome to the TGN.  相似文献   

16.
Scaffold proteins of the mitogen-activated protein kinase (MAPK) pathway have been proposed to form an active signaling module and enhance the specificity of the transduced signal. Here, we report a 2-A resolution structure of the MAPK scaffold protein MP1 in a complex with its partner protein, p14, that localizes the complex to late endosomes. The structures of these two proteins are remarkably similar, with a five-stranded beta-sheet flanked on either side by a total of three helices. The proteins form a heterodimer in solution and interact mainly through the edge beta-strand in each protein to generate a 10-stranded beta-sheet core. Both proteins also share structural similarity with the amino-terminal regulatory domains of the membrane trafficking proteins, sec22b and Ykt6p, as well as with sedlin (a component of a Golgi-associated membrane-trafficking complex) and the sigma2 and amino-terminal portion of the mu2 subunits of the clathrin adaptor complex AP2. Because neither MP1 nor p14 have been implicated in membrane traffic, we propose that the similar protein folds allow these relatively small proteins to be involved in multiple and simultaneous protein-protein interactions. Mapping of highly conserved, surface-exposed residues on MP1 and p14 provided insight into the potential sites of binding of the signaling kinases MEK1 and ERK1 to this complex, as well as the areas potentially involved in other protein-protein interactions.  相似文献   

17.
A cycling cis-Golgi protein mediates endosome-to-Golgi traffic   总被引:3,自引:0,他引:3       下载免费PDF全文
Toxins can invade cells by using a direct endosome-to-Golgi endocytic pathway that bypasses late endosomes/prelysosomes. This is also a route used by endogenous proteins, including GPP130, which is an integral membrane protein retrieved via the bypass pathway from endosomes to its steady-state location in the cis-Golgi. An RNA interference-based test revealed that GPP130 was required for efficient exit of Shiga toxin B-fragment from endosomes en route to the Golgi apparatus. Furthermore, two proteins whose Golgi targeting depends on endosome-to-Golgi retrieval in the bypass pathway accumulated in early/recycling endosomes in the absence of GPP130. GPP130 activity seemed specific to bypass pathway trafficking because the targeting of other tested proteins, including those retrieved to the Golgi via the more conventional late endosome route, was unaltered. Thus, a distally cycling Golgi protein mediates exit from endosomes and thereby underlies Shiga toxin invasion and retrieval-based targeting of other cycling Golgi proteins.  相似文献   

18.
The molecular scaffold kinase suppressor of Ras 1 (KSR1) regulates the activation of the Raf/MEK/extracellular signal-regulated kinase (ERK) signal transduction pathway. KSR1 disruption in mouse embryo fibroblasts (MEFs) abrogates growth factor-induced ERK activation, H-RasV12-induced replicative senescence, and H-RasV12-induced transformation. Caveolin-1 has been primarily described as a major component of the coating structure of caveolae, which can serve as a lipid binding adaptor protein and coordinates the assembly of Ras, Raf, MEK, and ERK. In this study, we show that KSR1 interacts with caveolin-1 and is responsible for MEK and ERK redistribution to caveolin-1-rich fractions. The interaction between KSR1 and caveolin-1 is essential for optimal activation of ERK as a KSR1 mutant unable to interact with caveolin-1 does not efficiently mediate growth factor-induced ERK activation at the early stages of pathway activation. Furthermore, abolishing the KSR1–caveolin-1 interaction increases growth factor demands to promote H-RasV12-induced proliferation and has adverse effects on H-RasV12-induced cellular senescence and transformation. These data show that caveolin-1 is necessary for optimal KSR1-dependent ERK activation by growth factors and oncogenic Ras.  相似文献   

19.
Mannose 6-phosphate receptors (MPRs) are transported from endosomes to the trans-Golgi via a transport process that requires the Rab9 GTPase and the cargo adaptor TIP47. We have generated green fluorescent protein variants of Rab9 and determined their localization in cultured cells. Rab9 is localized primarily in late endosomes and is readily distinguished from the trans-Golgi marker galactosyltransferase. Coexpression of fluorescent Rab9 and Rab7 revealed that these two late endosome Rabs occupy distinct domains within late endosome membranes. Cation-independent mannose 6-phosphate receptors are enriched in the Rab9 domain relative to the Rab7 domain. TIP47 is likely to be present in this domain because it colocalizes with the receptors in fixed cells, and a TIP47 mutant disrupted endosome morphology and sequestered MPRs intracellularly. Rab9 is present on endosomes that display bidirectional microtubule-dependent motility. Rab9-positive transport vesicles fuse with the trans-Golgi network as followed by video microscopy of live cells. These data provide the first indication that Rab9-mediated endosome to trans-Golgi transport can use a vesicle (rather than a tubular) intermediate. Our data suggest that Rab9 remains vesicle associated until docking with the Golgi complex and is rapidly removed concomitant with or just after membrane fusion.  相似文献   

20.
Recent studies have revealed the existence of numerous contact sites between the endoplasmic reticulum (ER) and endosomes in mammalian cells. Such contacts increase during endosome maturation and play key roles in cholesterol transfer, endosome positioning, receptor dephosphorylation, and endosome fission. At least 7 distinct contact sites between the ER and endosomes have been identified to date, which have diverse molecular compositions. Common to these contact sites is that they impose a close apposition between the ER and endosome membranes, which excludes membrane fusion while allowing the flow of molecular signals between the two membranes, in the form of enzymatic modifications, or ion, lipid, or protein transfer. Thus, ER–endosome contact sites ensure coordination of molecular activities between the two compartments while keeping their general compositions intact. Here, we review the molecular architectures and cellular functions of known ER–endosome contact sites and discuss their implications for human health.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号