首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Scyllaeidae represents a small clade of dendronotoid nudibranchs. Notobryon wardi Odhner, 1936, has been reported to occur in tropical oceans from the Indo‐Pacific and eastern Pacific to temperate South Africa. The systematics of Notobryon has not been reviewed using modern systematic tools. Here, specimens of Notobryon were examined from the eastern Pacific, the Indo‐Pacific, and from temperate South Africa. Additionally, representatives of Scyllaea and Crosslandia were studied. Scyllaeidae was found to be monophyletic. Notobryon was also found to be monophyletic and is the sister group to Crosslandia plus Scyllaea. The molecular data also clearly indicate that within Notobryon, at least three distinct species are present, two of which are here described. Genetic distance data indicate that eastern Pacific and South African exemplars are 10–23% divergent from Indo‐Pacific exemplars of Notobryon wardi. Scyllaea pelagica has been regarded as a single, circumtropical species. Our molecular studies clearly indicate that the Atlantic and Indo‐Pacific populations are distinct and we resurrect Scyllaea fulva Quoy & Gaimard, 1824 for the Indo‐Pacific species. Our morphological studies clearly corroborate our molecular findings and differences in morphology distinguish closely related species. Different species clearly have distinct penial morphology. These studies clearly reinforce the view that eastern Pacific, Indo‐Pacific, and temperate biotas consist largely of distinct faunas, with only a minor degree of faunal overlap. © 2012 The Linnean Society of London, Zoological Journal of the Linnean Society, 2012, 165 , 311–336.  相似文献   

2.
We previously reported the occurrence of genetically‐diverse symbiotic dinoflagellates (zooxanthellae) within and between 7 giant clam species (Tridacnidae) from the Philippines based on the algal isolates' allozyme and random amplified polymorphic DNA (RAPD) patterns. We also reported that these isolates all belong to clade A of the Symbiodinium phylogeny with identical 18S rDNA sequences. Here we extend the genetic characterization of Symbiodinium isolates from giant clams and propose that they are conspecific. We used the combined DNA sequences of the internal transcribed spacer (ITS)1, 5.8S rDNA, and ITS2 regions (rDNA‐ITS region) because the ITS1 and ITS2 regions evolve faster than 18S rDNA and have been shown to be useful in distinguishing strains of other dinoflagellates. DGGE of the most variable segment of the rDNA‐ITS region, ITS1, from clonal representatives of clades A, B, and C showed minimal intragenomic variation. The rDNA‐ITS region shows similar phylogenetic relationships between Symbiodinium isolates from symbiotic bivalves and some cnidarians as does 18S rDNA, and that there are not many different clade A species or strains among cultured zooxanthellae (CZ) from giant clams. The CZ from giant clams had virtually identical sequences, with only a single nucleotide difference in the ITS2 region separating two groups of isolates. These data suggest that there is one CZ species and perhaps two CZ strains, each CZ strain containing individuals that have diverse allozyme and RAPD genotypes. The CZ isolated from giant clams from different areas in the Philippines (21 isolates, 7 clam species), the Australian Great Barrier Reef (1 isolate, 1 clam species), Palau (8 isolates, 7 clam species), and Okinawa, Japan (1 isolate, 1 clam species) shared the same rDNA‐ITS sequences. Furthermore, analysis of fresh isolates from giant clams collected from these geographical areas shows that these bivalves also host indistinguishable clade C symbionts. These data demonstrate that conspecific Symbiodinium genotypes, particularly clade A symbionts, are distributed in giant clams throughout the Indo‐Pacific.  相似文献   

3.
Pyrgomatid barnacles are a family of balanomorphs uniquely adapted to symbiosis on corals. The evolution of the coral‐dwelling barnacles is explored using a multi‐gene phylogeny (COI, 16S, 12S, 18S, and H3) and phenotypic trait‐mapping. We found that the hydrocoral associate Wanella should be excluded, while some archaeobalanids in the genus Armatobalanus should be included in the Pyrgomatidae. Three well supported clades were recovered: clade I is the largest group and is exclusively Indo‐West Pacific, clade II contains two plesiomorphic Indo‐West Pacific genera, while clade III is comprised of East and West Atlantic taxa. Some genera did not form reciprocally monophyletic groups, while the genus Trevathana was found to be paraphyletic and to include members of three other apomorphic genera/tribes. The highly unusual coral‐parasitic hoekiines appear to be of recent origin and rapidly evolving from Trevathana sensu lato. Pyrgomatids include six‐, four‐, and one‐plated forms, and exhibit convergent evolutionary tendencies towards skeletal reduction and fusion, loss of cirral armature, and increased host specificity. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 113 , 162–179.  相似文献   

4.
We report a nearly complete skeleton of a new species of stem roller (Aves, Coracii) from the early Eocene Green River Formation of North America. The new species is most closely related to two species‐depauperate lineages, Coraciidae (rollers) and Brachypteraciidae (ground rollers), that form a monophyletic crown clade (Coracioidea) with an exclusively Old World extant distribution. Phylogenetic analysis utilizing a matrix of 133 morphological characters and sequence data from three genes (RAG‐1, c‐myc, and ND2) identifies the new species as a stem member of the Coracii more closely related to the crown clade than the only previously identified New World taxon, Primobucco mcgrewi. The phylogenetic placement of the new species and Primobucco mcgrewiindicates a widespread northern hemisphere distribution in the Eocene with subsequent restriction to Africa, Madagascar, Australia, and temperate to tropical parts of Europe and Asia. It provides evidence of further ecological diversity in early stem Coracii and convergence on crown morphologies. The new species contributes to mounting evidence that extant distributions for major avian subclades may be of comparatively recent origin. Further late Palaeogene sampling is needed to elucidate potential drivers for shifting avian distributions and disappearance of Coracii from North America. © 2009 The Linnean Society of London, Zoological Journal of the Linnean Society, 2009, 157 , 586–611.  相似文献   

5.

Background

Varanidae is a clade of tiny (<20 mm pre-caudal length [PCL]) to giant (>600 mm PCL) lizards first appearing in the Cretaceous. True monitor lizards (Varanus) are known from diagnostic remains beginning in the early Miocene (Varanus rusingensis), although extremely fragmentary remains have been suggested as indicating earlier Varanus. The paleobiogeographic history of Varanus and timing for origin of its gigantism remain uncertain.

Methodology/Principal Findings

A new Varanus from the Mytilini Formation (Turolian, Miocene) of Samos, Greece is described. The holotype consists of a partial skull roof, right side of a braincase, partial posterior mandible, fragment of clavicle, and parts of six vertebrae. A cladistic analysis including 83 taxa coded for 5733 molecular and 489 morphological characters (71 previously unincluded) demonstrates that the new fossil is a nested member of an otherwise exclusively East Asian Varanus clade. The new species is the earliest-known giant (>600 mm PCL) terrestrial lizard. Importantly, this species co-existed with a diverse continental mammalian fauna.

Conclusions/Significance

The new monitor is larger (longer) than 99% of known fossil and living lizards. Varanus includes, by far, the largest limbed squamates today. The only extant non-snake squamates that approach monitors in maximum size are the glass-snake Pseudopus and the worm-lizard Amphisbaena. Mosasauroids were larger, but exclusively marine, and occurred only during the Late Cretaceous. Large, extant, non-Varanus, lizards are limbless and/or largely isolated from mammalian competitors. By contrast, our new Varanus achieved gigantism in a continental environment populated by diverse eutherian mammal competitors.  相似文献   

6.
Although ratites have been studied in considerable detail, avian systematists have been unable to reach a consensus regarding their relationships. Morphological studies indicate a basal split separating Apterygidae from all other extant ratites, and a sister‐group relationship between Rheidae and Struthionidae. Molecular studies have provided evidence for the paraphyly of the Struthionidae and Rheidae, with respect to a clade of Australasian extant ratites. The position of the extinct Dinornithidae and Aepyornithidae also remains hotly debated. A novel pattern of diversification of ratites is presented herein. The phylogenetic analysis is based on 17 taxa and 129 morphological characters, including 77 new characters. The resultant tree yields a sister‐group relationship between New Zealand ratites (Apterygidae plus Dinornithidae) and all other ratites. Within this clade, the Aepyornithidae and Struthionidae are successive sister taxa to a new, strongly supported clade comprising the Rheidae, Dromaiidae, and Casuariidae. The link between South American and Australian biotas proposed here is congruent with numerous studies that have evidenced closely related taxa on opposite sides of the Southern Pacific. These repeated patterns of area relationships agree with current knowledge on Gondwana break‐up, which indicates that Australia and South America remained in contact across Antarctica until the earliest Tertiary. © 2009 The Linnean Society of London, Zoological Journal of the Linnean Society, 2009, 156 , 641–663.  相似文献   

7.
Twenty‐two chromosome counts are reported in 16 species, four subspecies and two varieties of the genus Centaurea. These are mostly Turkish local endemics of section Cheirolepis, a complicated group from the Eastern clade of the Jacea group. Twenty‐one reports are new. Prevalence of the basic chromosome number x = 9 among the eastern sections of the Jacea group is confirmed. © 2009 The Linnean Society of London, Botanical Journal of the Linnean Society, 2009, 159 , 280–286.  相似文献   

8.
The gastropod genus Cominella Gray, 1850 consists of approximately 20 species that inhabit a wide range of marine environments in New Zealand and Australia, including its external territory, the geographically isolated Norfolk Island. This distribution is puzzling, however, with apparently closely‐related species occurring either side of the Tasman Sea, even though all species are considered to have limited dispersal abilities. To determine how Cominella attained its current distribution, we derived a dated molecular phylogeny, which revealed a clade comprising all the Australian and Norfolk Island species nested within four clades of solely New Zealand species. This Australian clade diverged well after the vicariant separation of New Zealand from Australia, and implies two long‐distance dispersal events: a counter‐current movement across the Tasman Sea from New Zealand to Australia, occurring at the origination of the clade, followed by the colonization of Norfolk Island. The biology of Cominella suggests that the most likely method of long‐distance dispersal is rafting as egg capsules. Our robust phylogeny also means that the current Cominella classification requires revision. We propose that our clades be recognized as subgenera: Cominella (s.s.), Cominista, Josepha, Cominula, and Eucominia, with each subgenus comprising only of New Zealand or Australian species. © 2015 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, 115 , 315–332.  相似文献   

9.
The taxonomic value and evolutionary significance of 30 leaf epidermal characters from 238 samples representing 127 species of all seven genera in the tribe Gaultherieae (Ericaceae) and two outgroup genera were investigated by scanning electron microscopy. The character states were coded and optimized onto a maximum‐likelihood tree based on previous molecular data with Fitch parsimony and hierarchical Bayesian analysis to trace the evolution of character states throughout all internodes in the phylogenetic tree for Gaultherieae. Leaf epidermal characters were found to be largely consistent within species, but highly variable at interspecific and higher taxonomic levels. The most recent common ancestral states of 15 characters diagnosed various lineages recovered from prior studies, some with no prior morphological support. Relatively high frequencies of state change occur in the eastern Asian clade Gaultheria series Gymnobotrys + Diplycosia, the American clade G. subsection Dasyphyta p.p., the core East Asian clade and the Australia/New Zealand clade. The characters with the highest frequencies of state change are the outer stomatal ledge ornamentation type, the stomatal apparatus level, stomatal density and area, and the type of abaxial trichomes. These character state change patterns may provide insight into the ecological adaptions of Gaultherieae during their evolutionary history. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 178 , 686–710.  相似文献   

10.
The jumping spider genus Onomastus Simon, 1900 is revised. Four new species: Onomastus indra sp. nov. , Onomastus kaharian sp. nov. , Onomastus pethiyagodai sp. nov. , and Onomastus rattotensis sp. nov. are described. Parsimony analysis of 26 morphological characters supported the monophyly of Onomastus. Lyssomanes is sister to Onomastus. Onomastus separates into two clades: the widespread South‐East Asia clade and the South Asia clade. The South Asia clade is restricted to the Sri Lanka–Western Ghats biodiversity hotspot. Species of the South Asia clade appear to be spot endemics, highly in danger of extinction because of habitat loss and climate change. Male palps are complex and species‐specific, suggesting rapid divergent evolution. © 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 159 , 711–745.  相似文献   

11.
Although migratory pelagic fishes generally exhibit little geographic differentiation across oceans, as expected from their life history (broadcast spawning, pelagic larval life, swimming ability of adults) and the assumed homogeneity of the pelagic habitat, exceptions to the rule deserve scrutiny. One such exception is the narrow‐barred Spanish mackerel (Scomberomorus commerson Lacepède, 1800), where strong genetic heterogeneity at the regional scale has been previously reported. We investigated the genetic composition of S. commerson across the Indo‐West Pacific range using control‐region sequences (including previously published data sets), cytochrome b gene partial sequences, and eight microsatellite loci, to further explore its phylogeographic structure. All haplotypes sampled from the Indo‐Malay‐Papua archipelago (IMPA) and the south‐western Pacific coalesced into a clade (clade II) that was deeply separated (14.5% nucleotide divergence) from a clade grouping all haplotypes from the Persian Gulf and Oman Sea (clade I). Such a high level of genetic divergence suggested the occurrence of two sister species. Further phylogeographic partition was evident between the western IMPA and the regions sampled east and south of it, i.e. northern Australia, West Papua, and the Coral Sea. Strong allele‐frequency differences were found between local populations in the south‐western Pacific, both at the mitochondrial locus (Φst = 0.282–0.609) and at microsatellite loci ( = 0.202–0.313). Clade II consisted of four deeply divergent subclades (9.0–11.8% nucleotide divergence for the control region; 0.3–2.5% divergence at the cytochrome b locus). Mitochondrial subclades within clade II generally had narrow geographic distribution, demonstrating further genetic isolation. However, one particular haplogroup within clade II was present throughout the central Indo‐West Pacific: this haplogroup was found to be the sister group to a haplogroup restricted to West Papua and the Coral Sea, yielding evidence of recent secondary westward colonization. Such a complex structure is in sharp contrast with the generally weak phylogeographic patterns uncovered to date in other widely distributed, large pelagic fishes with pelagic eggs and larvae. We hypothesize that in S. commerson and possibly other Scomberomorus species, philopatric migration may play a role in maintaining the geographic isolation of populations by annihilating the potential consequences of passive dispersal. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 104 , 886–902.  相似文献   

12.
Stingless bees (Meliponini) are one of only two highly eusocial bees, the other being the well studied honey bee (Apini). Unlike Apini, with only 11 species in the single genus Apis, stingless bees are a large and diverse taxon comprising some 60 genera, many of which are poorly known. This is the first attempt to infer a phylogeny of the group that includes the world fauna and extensive molecular data. Understanding the evolutionary relationships of these bees would provide a basis for behavioural studies within an evolutionary framework, illuminating the origins of complex social behaviour, such as the employment of dance and sound to communicate the location of food or shelter. In addition to a global phylogeny, we also provide estimates of divergence times and ancestral biogeograhic distributions of the major groups. Bayesian and maximum likelihood analyses strongly support a principal division of Meliponini into Old and New World groups, with the Afrotropical+Indo‐Malay/Australian clades comprising the sister group to the large Neotropical clade. The meliponine crown clade is inferred to be of late Gondwanan origin (approximately 80 Mya), undergoing radiations in the Afrotropical and Indo‐Malayan/Australasian regions, approximately 50–60 Mya. In the New World, major diversifications occurred approximately 30–40 Mya. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 99 , 206–232.  相似文献   

13.
The Indo‐Australian Archipelago (IAA) is the richest area of biodiversity in the marine realm, yet the processes that generate and maintain this diversity are poorly understood and have hardly been studied in the mangrove biotope. Cerithidea is a genus of marine and brackish‐water snails restricted to mangrove habitats in the Indo‐West Pacific, and its species are believed to have a short pelagic larval life. Using molecular and morphological techniques, we demonstrate the existence of 15 species, reconstruct their phylogeny and plot their geographical ranges. Sister species show a pattern of narrowly allopatric ranges across the IAA, with overlap only between clades that show evidence of ecological differentiation. These allopatric mosaic distributions suggest that speciation may have been driven by isolation during low sea‐level stands, during episodes preceding the Plio‐Pleistocene glaciations. The Makassar Strait forms a biogeographical barrier hindering eastward dispersal, corresponding to part of Wallace's Line in the terrestrial realm. Areas of maximum diversity of mangrove plants and their associated molluscs do not coincide closely. © 2013 The Natural History Museum. Biological Journal of the Linnean Society © 2013 The Linnean Society of London, 2013, 110 , 564–580.  相似文献   

14.
The Empis macrorrhyncha group (Diptera: Empididae) from cool to warm temperate areas of South America and Australia is diagnosed and cladistically analysed, and five new species, Empis animosa sp.n. , E. austera sp.n. , E. maculosa sp.n. , E. occidentalis sp.n. and E. pedivillosula sp.n. , are described. Cladistic analysis of 23 adult morphological characters for 14 species of the group generated a single tree of 28 steps (CI = 0.82; RI = 0.93). Monophyly was established on the basis of a single apomorphy, possession of a bilobed cercus of the male hypopygium. Three main clades were inferred: clade 1 included three Patagonian and a single southwestern Australian species; clade 2 included two species from southeastern Australia; clade 3 included a large Patagonian group of five species and a single southeastern Australian species. The E. fulvicollis complex (clade 1) is a sister‐group of the E. macrorrhyncha complex (clades 2 + 3). A provisional historical biogeographic hypothesis is advanced correlating the appearance of the South American and Australian sister lineages with the timing of the break‐up of Gondwana.  相似文献   

15.
16.
The evolution of bipedal postures in varanoid lizards   总被引:1,自引:1,他引:0  
The bipedal posture (BP) and gait of humans are unique evolutionary hallmarks, but similar stances and forms of locomotion have had enormous influences on a range of phylogenetically diverse tetrapods, particularly dinosaurs and birds, and a range of mammalian lineages, including non-human apes. The complex movements involved in bipedalism appear to have modest evolutionary origins, and it is presumed that a stable and erect posture is a prerequisite for erect strides and other bipedal movements. Facultative bipedalism in several lineages of lizards is achieved by running, but some varanid lizards (genus Varanus) exhibit BPs without running. In these cases, BPs (BPstanding) are not used as a form of locomotion; rather, BPstanding is associated with defensive displays, and such postures also probably permit better inspection of the environment. Yet, in other varanids, BPs have been observed only during combat episodes (BPcombat), where both contestants rise together and embrace in the so-called clinch phase. Numerous other species, however, show neither type of BP. Past researchers have commented that only large-bodied varanids exhibit BP, a behaviour that appears to show phylogenetic trends. We termed this idea the King–Green–Pianka (KGP) bipedal hypothesis. In this article, we address two main questions derived from the KGP hypothesis. First, what is the phylogenetic distribution of BP in Varanus and close relatives (varanoids)? Second, is BP positively correlated with the phylogenetic distribution of large body size (e.g. snout–vent length, SVL)? In addition, we asked a related question: do the lengths of the femur and tail show body size-independent adaptive trends in association with BP? Because varanid species that show BPstanding also use these postures during combat (BPcombat), both types of BP were analysed collectively and simply termed BP. Using comparative phylogenetic analyses, the reconstruction of BP required three steps, involving a single gain and two losses. Specifically, BP was widespread in the monophyletic Varanus, and the single gain occurred at the most recent common ancestor of the African clade. The two losses of BP occurred in different clades (Indo-Asian B clade and Indo-Australian Odatria clade). BPs are absent in the sister group to Varanus (Lanthanotus borneensis) and the other outgroup species (Heloderma spp.). Our phylogenetic reconstruction supports the KGP prediction that BP is restricted to large-bodied taxa. Using the Hansen model of adaptive evolution on a limited, but highly relevant morphological dataset (i.e. SVL; femur length, FL; tail length, TL), we demonstrated that these characters were not equivalent in their contribution to the evolution of BP in Varanus. SVL was significantly correlated with BP when modelled in a phylogenetic context, but the model identified random processes as dominant over adaptive evolution, suggesting that a body size threshold might be involved in the evolution of BP. A Brownian motion (BM) model outperformed the selection model in our analysis of relative TL, suggesting that TL and BP evolved independently. The selection model for relative FL outperformed the BM model, indicating that FL and BP share an adaptive history. Our non-phylogenetic analyses involving regression residuals of FL and TL vs. SVL showed no significant correlation between these characters and BP. We suggest that BP in Varanus provides a convergent or analogue model from which to investigate various forms of bipedalism in tetrapod vertebrates, especially other reptiles, such as theropod dinosaurs. Because BPstanding in varanids is possibly an incipient stage to some form of upright locomotion, its inclusion as a general model in evolutionary analyses of bipedalism of vertebrates will probably provide novel and important insights. © 2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2009, 97 , 652–663.  相似文献   

17.
18.
The predominantly Afrotropical genus Charaxes is represented by 31 known species outside of Africa (excluding subgenus Polyura Billberg). We explored the biogeographic history of the genus using every known non‐African species, with several African species as outgroup taxa. A phylogenetic hypothesis is proposed, based on molecular characters of the mitochondrial genes cytochrome oxidase subunit I (COI) and NADH dehydrogenase 5 (ND5), and the nuclear wingless gene. Phylogenetic analyses based on maximum parsimony and Bayesian inference of the combined dataset implies that the Indo‐Pacific Charaxes form a monophyletic assemblage, with the exception of Charaxes solon Fabricius. Eight major lineages are recognized in the Indo‐Pacific, here designated the solon (+African), elwesi, harmodius, amycus, mars, eurialus, latona, nitebis, and bernardus clades. Species group relationships are concordant with morphology and, based on the phylogeny, we present the first systematic appraisal and classification of all non‐African species. A biogeographical analysis reveals that, after the genus originated in Africa, the evolutionary history of Charaxes in the Indo‐Pacific, in particular Wallacea, may be correlated with the inferred geological and climatic history of the region. We propose that Wallacea was the area of origin of all Charaxes (excluding C. solon) occurring to the east of Wallace's [1863] Line. The earliest Indo‐Pacific lineages appear to have diverged subsequent to the initial fragmentation of a palaeo‐continent approximately 13 million years ago. Further diversification in Indo‐Pacific Charaxes appears primarily related to climatic changes during the Pliocene and possibly as recently as the Pleistocene. Although both dispersal and vicariance have played important roles in the evolution of the genus within the region, the latter has been particularly responsible for diversification of Charaxes in Wallacea. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 100 , 457–481.  相似文献   

19.
The first scolopocryptopid centipede known from the fossil record is a specimen of the subfamily Scolopocryptopinae in Miocene amber from Chiapas, southern Mexico. It is described here as Scolopocryptops simojovelensis sp. nov. , displaying a distinct combination of morphological characters compared to extant congeners. Anatomical details of the fossil specimen were acquired by non‐invasive 3D synchrotron microtomography using X‐ray phase contrast. The phylogenetic position of the new species is inferred based on a combination of morphological data with sequences for six genes (nuclear 18S and 28S rRNA, nuclear protein‐coding histone H3, and mitochondrial 12S rRNA, 16S rRNA, and protein‐coding cytochrome c oxidase subunit I) for extant Scolopendromorpha. The data set includes eight extant species of Scolopocryptops and Dinocryptops from North America, east Asia, and the Pacific, rooted with novel sequence data for other blind scolopendromorphs. The molecular and combined data sets, analysed in a parsimony/direct optimization framework, identified a stable pattern of two main clades within Scolopocryptopinae. North American and Asian species of Scolopocryptops are united as a clade supported by both morphological and molecular characters. Its sister group is a Neotropical clade in which the type species of Dinocryptops is nested within a paraphyletic assemblage of Scolopocryptops species; Dinocryptops is placed in synonymy with Scolopocryptops. The strength of support for the relationships of extant taxa from the molecular data allow the Chiapas fossil to be assigned with precision, despite ambiguity in the morphological data; the fossil is resolved as sister species to the extant Laurasian clade. © 2012 The Linnean Society of London, Zoological Journal of the Linnean Society, 2012, 166 , 768–786.  相似文献   

20.
Amongst the most significant metazoan taxa associated with gastropod molluscs is the endoparasitic copepod family Splanchnotrophidae. Currently it contains five genera with highly modified morphology and exclusively infesting nudibranch and sacoglossan sea slug hosts. The present study is a first approach towards reconstructing their phylogeny and evolution. Cladistic analysis of 109 morphological characters including 24 known splanchnotrophid species resulted in a fully resolved strict consensus tree that is discussed in morphological, functional, and geographical frameworks. Alternative topologies are also explored. Originating from paraphyletic Philoblennidae, the Splanchnotrophidae emerge as sister group to the genus Briarella. Unique synapomorphies, such as the bizarre body shapes and successive reduction of mouthparts, are discussed as adaptive traits to endoparasitism that evolved only once within copepods infesting shell‐less heterobranch gastropods. The ancestrally Indo‐Pacific Splanchnotrophidae split up into a clade of the still Indo‐Pacific genera Ceratosomicola and Arthurius, sister to a clade composed of the monophyletic amphi‐American genus Ismaila and European Splanchnotrophus emerging from paraphyletic Lomanoticola. Although initial radiation of Briarella and Splanchnotrophidae is likely to have involved chromodoridid nudibranch hosts, later phylogenies of parasites and their hosts are incongruent; intriguingly, host shifts from nudibranch to only distantly related sacoglossan species occurred at least two times independently. Such remarkable ecological plasticity is assumed to have driven splanchnotrophid diversification. Topological hypotheses and historical biogeographical and evolutionary scenarios inferred herein can be tested by future molecular research. © 2013 The Linnean Society of London  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号