首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The spirochete Treponema pallidum is the causative agent of syphilis, a sexually transmitted infection of major global importance. Other closely related subspecies of Treponema also are the etiological agents of the endemic treponematoses, such as yaws, pinta, and bejel. The inability of T. pallidum and its close relatives to be cultured in vitro has prompted efforts to characterize T. pallidum's proteins structurally and biophysically, particularly those potentially relevant to treponemal membrane biology, with the goal of possibly revealing the functions of those proteins. This report describes the structure of the treponemal protein Tp0737; this polypeptide has a fold characteristic of a class of periplasmic ligand‐binding proteins associated with ABC‐type transporters. Although no ligand for the protein was observed in electron‐density maps, and thus the nature of the native ligand remains obscure, the structural data described herein provide a foundation for further efforts to elucidate the ligand and thus the function of this protein in T. pallidum.  相似文献   

3.
The adenosine monoposphate‐forming acyl‐CoA synthetase enzymes catalyze a two‐step reaction that involves the initial formation of an acyl adenylate that reacts in a second partial reaction to form a thioester between the acyl substrate and CoA. These enzymes utilize a Domain Alternation catalytic mechanism, whereby a ~110 residue C‐terminal domain rotates by 140° to form distinct catalytic conformations for the two partial reactions. The structure of an acetoacetyl‐CoA synthetase (AacS) is presented that illustrates a novel aspect of this C‐terminal domain. Specifically, several acetyl‐ and acetoacetyl‐CoA synthetases contain a 30‐residue extension on the C‐terminus compared to other members of this family. Whereas residues from this extension are disordered in prior structures, the AacS structure shows that residues from this extension may interact with key catalytic residues from the N‐terminal domain. Proteins 2015; 83:575–581. © 2014 Wiley Periodicals, Inc.  相似文献   

4.
True catalases are tyrosine‐liganded, usually tetrameric, hemoproteins with subunit sizes of ~55–84 kDa. Recently characterized hemoproteins with a catalase‐related structure, yet lacking in catalatic activity, include the 40–43 kDa allene oxide synthases of marine invertebrates and cyanobacteria. Herein, we describe the 1.8 Å X‐ray crystal structure of a 33 kDa subunit hemoprotein from Mycobacterium avium ssp. paratuberculosis (annotated as MAP‐2744c), that retains the core elements of the catalase fold and exhibits an organic peroxide‐dependent peroxidase activity. MAP‐2744c exhibits negligible catalatic activity, weak peroxidatic activity using hydrogen peroxide (20/s) and strong peroxidase activity (~300/s) using organic hydroperoxides as co‐substrate. Key amino acid differences significantly impact prosthetic group conformation and placement and confer a distinct activity to this prototypical member of a group of conserved bacterial “minicatalases”. Its structural features and the result of the enzyme assays support a role for MAP‐2744c and its close homologues in mitigating challenge by a variety of reactive oxygen species.  相似文献   

5.
The active sites and substrate bindings of Rhizobium trifolii molonyl-CoA synthetase (MCS) catalyzing the malonyl-CoA formation from malonate and CoA have been determined based on NMR spectroscopy, site-directed mutagenesis, and comparative modeling methods. The MCS-bound conformation of malonyl-CoA was determined from two-dimensional-transferred nuclear Overhauser effect spectroscopy data. MCS protein folds into two structural domains and consists of 16 alpha-helices, 24 beta-strands, and several long loops. The core active site was determined as a wide cleft close to the end of the small C-terminal domain. The catalytic substrate malonate is placed between ATP and His206 in the MCS enzyme, supporting His206 in its catalytic role as it generates reaction intermediate, malonyl-AMP. These findings are strongly supported by previous biochemical data, as well as by the site-directed mutagenesis data reported here. This structure reveals the biochemical role as well as the substrate specificity that conservative residues of adenylate-forming enzymes have.  相似文献   

6.
7.
Microalgal oils in the form of triacylglycerols (TAGs) are broadly used as nutritional supplements and biofuels. Diacylglycerol acyltransferase (DGAT) catalyzes the final step of acyl‐CoA‐dependent biosynthesis of TAG, and is considered a key target for manipulating oil production. Although a growing number of DGAT1s have been identified and over‐expressed in some algal species, the detailed structure?function relationship, as well as the improvement of DGAT1 performance via protein engineering, remain largely untapped. Here, we explored the structure?function features of the hydrophilic N‐terminal domain of DGAT1 from the green microalga Chromochloris zofingiensis (CzDGAT1). The results indicated that the N‐terminal domain of CzDGAT1 was less disordered than those of the higher eukaryotic enzymes and its partial truncation or complete removal could substantially decrease enzyme activity, suggesting its possible role in maintaining enzyme performance. Although the N‐terminal domains of animal and plant DGAT1s were previously found to bind acyl‐CoAs, replacement of CzDGAT1 N‐terminus by an acyl‐CoA binding protein (ACBP) could not restore enzyme activity. Interestingly, the fusion of ACBP to the N‐terminus of the full‐length CzDGAT1 could enhance the enzyme affinity for acyl‐CoAs and augment protein accumulation levels, which ultimately drove oil accumulation in yeast cells and tobacco leaves to higher levels than the full‐length CzDGAT1. Overall, our findings unravel the distinct features of the N‐terminus of algal DGAT1 and provide a strategy to engineer enhanced performance in DGAT1 via protein fusion, which may open a vista in generating improved membrane‐bound acyl‐CoA‐dependent enzymes and boosting oil biosynthesis in plants and oleaginous microorganisms.  相似文献   

8.
Tuberculosis, caused by the bacterium Mycobacterium tuberculosis, continues to be a major threat to populations worldwide. Whereas the disease is treatable, the drug regimen is arduous at best with the use of four antimicrobials over a six‐month period. There is clearly a pressing need for the development of new therapeutics. One potential target for structure‐based drug design is the enzyme RmlA, a glucose‐1‐phosphate thymidylyltransferase. This enzyme catalyzes the first step in the biosynthesis of l ‐rhamnose, which is a deoxysugar critical for the integrity of the bacterium's cell wall. Here, we report the X‐ray structures of M. tuberculosis RmlA in complex with either dTTP or dTDP‐glucose to 1.6 Å and 1.85 Å resolution, respectively. In the RmlA/dTTP complex, two magnesium ions were observed binding to the nucleotide, both ligated in octahedral coordination spheres. In the RmlA/dTDP‐glucose complex, only a single magnesium ion was observed. Importantly, for RmlA‐type enzymes with known three‐dimensional structures, not one model shows the position of the magnesium ion bound to the nucleotide‐linked sugar. As such, this investigation represents the first direct observation of the manner in which a magnesium ion is coordinated to the RmlA product and thus has important ramifications for structure‐based drug design. In the past, molecular modeling procedures have been employed to derive a three‐dimensional model of the M. tuberculosis RmlA for drug design. The X‐ray structures presented herein provide a superior molecular scaffold for such endeavors in the treatment of one of the world's deadliest diseases.  相似文献   

9.
10.
The UBR‐box is a 70‐residue zinc finger domain present in the UBR family of E3 ubiquitin ligases that directly binds N‐terminal degradation signals in substrate proteins. UBR6, also called FBXO11, is an UBR‐box containing E3 ubiquitin ligase that does not bind N‐terminal signals. Here, we present the crystal structure of the UBR‐box domain from human UBR6. The dimeric crystal structure reveals a unique form of domain swapping mediated by zinc coordination, where three independent protein chains come together to regenerate the topology of the monomeric UBR‐box fold. Analysis of the structure suggests that the absence of N‐terminal residue binding arises from the lack of an amino acid binding pocket.  相似文献   

11.
The essential RNA helicase, Mtr4, performs a critical role in RNA processing and degradation as an activator of the nuclear exosome. The molecular basis for this vital function is not understood and detailed analysis is significantly limited by the lack of structural data. In this study, we present the crystal structure of Mtr4. The structure reveals a new arch‐like domain that is specific to Mtr4 and Ski2 (the cytosolic homologue of Mtr4). In vivo and in vitro analyses demonstrate that the Mtr4 arch domain is required for proper 5.8S rRNA processing, and suggest that the arch functions independently of canonical helicase activity. In addition, extensive conservation along the face of the putative RNA exit site highlights a potential interface with the exosome. These studies provide a molecular framework for understanding fundamental aspects of helicase function in exosome activation, and more broadly define the molecular architecture of Ski2‐like helicases.  相似文献   

12.
A novel ligand‐binding site with functional implications has been identified in phospholipase A2 (PLA2). The binding of non‐steroidal anti‐inflammatory agent indomethacin at this site blocks both catalytic and anti‐coagulant actions of PLA2. A group IIA PLA2 has been isolated from Daboia russelli pulchella (Russell's viper) which is enzymatically active as well as induces a strong anti‐coagulant action. The binding studies have shown that indomethacin reduces the effects of both anti‐coagulant and pro‐inflammatory actions of PLA2. A group IIA PLA2 was co‐crystallized with indomethacin and the structure of the complex has been determined at 1.4 Å resolution. The structure determination has revealed the presence of an indomethacin molecule in the structure of PLA2 at a site which is distinct from the conventional substrate‐binding site. One of the carboxylic group oxygen atoms of indomethacin interacts with Asp 49 and His 48 through the catalytically important water molecule OW 18 while the second carboxylic oxygen atom forms an ionic interaction with the side chain of Lys 69. It is well known that the residues, His 48 and Asp 49 are essential for catalysis while Lys 69 is a part of the anti‐coagulant loop (residues, 54–77). Indomethacin binds in such a manner that it blocks the access to both, it works as a dual inhibitor for catalytic and anti‐coagulant actions of PLA2. This new binding site in PLA2 has been observed for the first time and indomethacin is the first compound that has been shown to bind at this novel site resulting in the prevention of anti‐coagulation and inflammation. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
The structure of the Atu1476 protein from Agrobacterium tumefaciens was determined at 2 Å resolution. The crystal structure and biochemical characterization of this enzyme support the conclusion that this protein is an S-formylglutathione hydrolase (AtuSFGH). The three-dimensional structure of AtuSFGH contains the α/β hydrolase fold topology and exists as a homo-dimer. Contacts between the two monomers in the dimer are formed both by hydrogen bonds and salt bridges. Biochemical characterization reveals that AtuSFGH hydrolyzes C—O bonds with high affinity toward short to medium chain esters, unlike the other known SFGHs which have greater affinity toward shorter chained esters. A potential role for Cys54 in regulation of enzyme activity through S-glutathionylation is also proposed.  相似文献   

14.
15.
16.
Protease inhibitors of the Bowman‐Birk (BBI) family are commonly found in plants and animals where they play a protective role against invading pathogens. Here, we report an atomic resolution (1Å) crystal structure of a peptide inhibitor isolated from a skin secretion of a Chinese bamboo odorous frog Huia versabilis (HV‐BBI) in complex with trypsin. HV‐BBI shares significant similarities in sequence with a previously described inhibitor from a diskless‐fingered odorous frog Odorrana graham (ORB). However, the latter is characterized by more than a 16,000 fold higher Ki against trypsin than HV‐BBI. Comparative analysis of trypsin cocrystal structures of HV‐BBI and ORB and additionally that of Sunflower Trypsin Inhibitor (SFTI‐1) together with accessory information on the affinities of inhibitor variants allowed us to pinpoint the inhibitor moiety responsible for the observed large difference in activity and also to define the extent of modifications permissible within the common protease‐binding loop scaffold of BBI inhibitors. We suggest that modifications outside of the inhibitory loop permit the evolution of specificity toward different enzymes characterized by trypsin‐like specificity. Proteins 2015; 83:582–589. © 2014 Wiley Periodicals, Inc.  相似文献   

17.
18.
19.
Signal transduction mediated by Ser/Thr phosphorylation in Mycobacterium tuberculosis has been intensively studied in the last years, as its genome harbors eleven genes coding for eukaryotic‐like Ser/Thr kinases. Here we describe the crystal structure and the autophosphorylation sites of the catalytic domain of PknA, one of two protein kinases essential for pathogen's survival. The structure of the ligand‐free kinase domain shows an auto‐inhibited conformation similar to that observed in human Tyr kinases of the Src‐family. These results reinforce the high conservation of structural hallmarks and regulation mechanisms between prokaryotic and eukaryotic protein kinases. Proteins 2015; 83:982–988. © 2015 Wiley Periodicals, Inc.  相似文献   

20.
α‐Aminoadipate aminotransferase (AAA‐AT) catalyzes the amination of 2‐oxoadipate to α‐aminoadipate in the fourth step of the α‐aminoadipate pathway of lysine biosynthesis in fungi. The aromatic aminotransferase Aro8 has recently been identified as an AAA‐AT in Saccharomyces cerevisiae. This enzyme displays broad substrate selectivity, utilizing several amino acids and 2‐oxo acids as substrates. Here we report the 1.91Å resolution crystal structure of Aro8 and compare it to AAA‐AT LysN from Thermus thermophilus and human kynurenine aminotransferase II. Inspection of the active site of Aro8 reveals asymmetric cofactor binding with lysine‐pyridoxal‐5‐phosphate bound within the active site of one subunit in the Aro8 homodimer and pyridoxamine phosphate and a HEPES molecule bound to the other subunit. The HEPES buffer molecule binds within the substrate‐binding site of Aro8, yielding insights into the mechanism by which it recognizes multiple substrates and how this recognition differs from other AAA‐AT/kynurenine aminotransferases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号