首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
In molecular phylogenetic studies, Lophopyxidaceae and Putranjivaceae are well supported as sisters in the large rosid order Malpighiales. As the floral structure of both families is poorly known and the two families have never been compared, the present comparative study was carried out, as part of a larger project on the comparative floral structure of Malpighiales, using microtome section series and scanning electron microscopy (SEM) studies. Similar to other angiosperm clades, it appears that the structure of the ovules is a strong marker for suprafamilial relationships in Malpighiales. Both families have two collateral pendant antitropous ovules per carpel associated with obturators (as in some Euphorbiaceae s.l., to which Putranjivaceae belonged in earlier classifications). However, in contrast with Euphorbiaceae s.l., the ovules are not crassinucellar, but either incompletely tenuinucellar or only weakly crassinucellar with a long and conspicuously slender nucellus and an endothelium, and do not have a nucellar beak, but a normal micropyle, features they share with families other than Euphorbiaceae s.l. among Malpighiales. Other shared features of the two families include the following. The outer sepals tend to be smaller than the inner ones and the sepals do not protect the gynoecium in older buds. Sepals of some taxa have a single vascular trace. A short zone of synsepaly tends to be present. Stamens tend to be antesepalous in haplostemonous flowers. A short gynophore is present. The synascidiate zone extends up to above the placenta, but is restricted to the ovary in taxa with more than one carpel. The micropyle is formed by the inner integument. The ventral carpel slits extend down into the synascidiate zone as postgenitally fused furrows. The carpels have a broad dorsal band of vascular bundles in the style. The overall floral structure of the two families corroborates their sister position well and does not support the earlier association of Putranjivaceae with Euphorbiaceae s.l. or of Lophopyxidaceae with Geraniales–Sapindales–Celastrales, which rely on shared superficial floral similarities. © 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2013, 172 , 404–448.  相似文献   

3.
Based on molecular phylogenetic studies, Balsaminaceae, Tetrameristaceae (including Pellicieraceae) and Marcgraviaceae form the strongly supported first branching clade in the asterid order Ericales. Marcgraviaceae and Tetrameristaceae were proposed to be closely related in pre‐molecular studies, but the systematic position of Balsaminaceae has been controversial for some time and a relationship with the other two families was never suggested in pre‐molecular/pre‐cladistic times. However, interfamilial relationships in the clade are still unclear because of conflicting phylogenetic hypotheses from molecular analyses. In order to assess the validity of these molecular hypotheses from a morphological point of view, the floral morphology, anatomy and histology of Balsaminaceae, Tetrameristaceae and Marcgraviaceae are comparatively studied in detail. In addition, earlier literature is reviewed. The monophyly of the balsaminoid clade is strongly supported by floral structure, and a series of potential floral synapomorphies is identified for the clade. Prominent features shared by the three families include broad and dorsiventrally flattened filaments, thread‐like structures lining the stomia of dehisced anthers, secretory inner morphological surfaces of the gynoecium, ovules intermediate between uni‐ and bitegmic, incompletely tenuinucellar ovules, fruits with persistent style and stigma, seeds lacking endosperm and several anatomical/histological traits. The families are also distinctive because the bracts and/or sepals are petaloid and nectariferous. Further, the floral structure supports a sister group relationship between Balsaminaceae and Tetrameristaceae rather than any of the other possible interfamilial relationships. These two families share a caducous calyx, post‐genital fusion/coherence of filaments and ovary surface, latrorse anther dehiscence, commissural carpel lobes and ovules with a thickened funiculus and a constricted chalazal region. The occurrence of these features in Ericales is discussed. Future structural studies in other ericalean lineages and additional molecular studies are needed to further test these features with respect to their systematic value for the balsaminoid clade. Some may turn out to be true synapomorphies, whereas others may be recognized as plesiomorphies, as they may be more widely spread in Ericales than currently thought. © 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2013, 173 , 325–386.  相似文献   

4.
Ochnaceae s.l. (Ochnaceae, Quiinaceae and Medusagynaceae), one of the well‐supported subclades of the large order Malpighiales retrieved so far in molecular phylogenetic studies, were comparatively studied with regard to floral structure using microtome section series and scanning electron microscopy (SEM). Floral morphology, anatomy and histology also strongly reflect this close relationship. Potential synapomorphies of the subclade include: flowers nectarless, sepals of different sizes within a flower, petals not retarded in development and forming the protective organs of advanced floral buds, petal aestivation contort, petals with three vascular traces, petals reflexed over the sepals and directed toward the pedicel, polystemony, anthers almost or completely basifixed, gynoecium often with more than five carpels, short gynophore present, styles separate for at least their uppermost part and radiating outwards, suction‐cup‐shaped stigmas, vasculature forming a dorsal band of bundles in the upper stylar region, gynoecium epidermis with large, radially elongate cells, ovules either weakly crassinucellar or incompletely tenuinucellar with an endothelium, abundance of tanniferous tissues and sclerenchyma in floral organs. The most strongly supported subclade of two of the three families in molecular analyses, Quiinaceae and Medusagynaceae, is also particularly well supported by floral structural features, including the presence of functionally and morphologically unisexual flowers, a massive thecal septum that persists after anther dehiscence, styles radiating outward from the ovary, two lateral ovules per carpel, positioned one above the other, conspicuous longitudinal ribs on the ovary wall at anthesis, and a ‘false endothelium’ on the nucellus at anthesis. Additionally, the group fits well in Malpighiales and further emphasizes the relationship of Malpighiales with Celastrales and Oxalidales, and thus the unity of the COM clade. © 2012 The Linnean Society of London, Botanical Journal of the Linnean Society, 2012, 170 , 299–392.  相似文献   

5.
Floral structure of all putative families of Crossosomatales as suggested by molecular studies was comparatively studied. The seven comprise Crossosomataceae, Stachyuraceae, Staphyleaceae, Aphloiaceae, Geissolomataceae, Ixerbaceae, and Strasburgeriaceae. The entire clade (1) is highly supported by floral structure, also the clades (in sequence of diminishing structural support): Ixerbaceae/Strasburgeriaceae (2), Geissolomataceae/Ixerbaceae/Strasburgeriaceae (3), Aphloiaceae/Geissolomataceae/Ixerbaceae/Strasburgeriaceae (4), and Crossosomataceae/Stachyuraceae/Staphyleaceae (5). Among the prominent floral features of Crossosomatales (1) are solitary flowers, presence of a floral cup, imbricate sepals with outermost smaller than inner, pollen grains with horizontally extended endoapertures, shortly stalked gynoecium, postgenitally united carpel tips forming a compitum, stigmatic papillae two‐ or more‐cellular, ovary locules tapering upwards, long integuments forming zigzag micropyles, cell clusters with bundles of long yellow crystals, mucilage cells, seeds with smooth, sclerified testa and without a differentiated tegmen. Clade (2) is characterized by large flowers, petals forming a tight, pointed cone in bud, stamens with long, stout filaments and sagittate anthers, streamlined, conical gynoecium, antitropous ovules, rudimentary aril, lignified, unicellular, T‐shaped hairs and idioblasts with striate mucilaginous cell walls. Clade (3) is characterized by alternisepalous carpels, punctiform stigma formed by postgenitally united and twisted carpel tips, synascidiate ovary, only one or two pendant ovules per carpel, nectary recesses between androecium and gynoecium. Clade (4) is characterized by pronounced ‘pollen buds’. Clade (5) is characterized by polygamous or functionally unisexual flowers, x‐shaped anthers, free and follicular carpels (not in Stachyuraceae). Crossosomataceae and Aphloiaceae, although not retrieved as a clade in molecular studies, share several special floral features: polystemonous androecium; basifixed anthers without a connective protrusion; stigma with two more or less decurrent crests; camplyotropous ovules and reniform seeds; simple, disc‐shaped nectaries and absence of hairs. © 2005 The Linnean Society of London, Botanical Journal of the Linnean Society, 2005, 147 , 1–46.  相似文献   

6.
Floral morphology, anatomy and histology in the newly circumscribed order Celastrales, comprising Celastraceae, Parnassiaceae and Lepidobotryaceae are studied comparatively. Several genera of Celastraceae and Lepidobotrys (Lepidobotryaceae) were studied for the first time in this respect. Celastraceae are well supported as a group by floral structure (including genera that were in separate families in earlier classifications); they have dorsally bulged‐up locules (and thus apical septa) and contain oxalate druses in their floral tissues. The group of Celastraceae and Parnassiaceae is also well supported. They share completely syncarpous gynoecia with commissural stigmatic lobes (and strong concomitant development of the commissural vascular bundles but weak median carpel bundles), only weakly crassinucellar or incompletely tenuinucellar ovules with an endothelium, partly fringed sepals and petals, protandry in bisexual flowers combined with herkogamy by the movement of stamens and anther abscission, and stamens fused with the ovary. In contrast, Lepidobotryaceae are more distant from the other two families, sharing only a handful of features with Celastraceae (not Parnassiaceae), such as pseudohermaphroditic flowers, united stamen bases forming a collar around the gynoecium and seeds with a conspicuous aril. However, all three families together are also somewhat supported as a group and share petals that are not retarded in late floral bud development, 3‐carpellate gynoecia, ventral slits of carpels closed by long interlocking epidermal cells and pollen tube transmitting tissue encompassing several cell layers, both integuments usually more than two cell layers thick, and only weak or lacking floral indumentum. In some molecular analyses Celastrales form an unsupported clade with Malpighiales and Oxalidales. This association is supported by floral structure, especially between Celastrales and Malpighiales. Among Celastrales, Lepidobotryaceae especially share special features with Malpighiales, including a diplostemonous androecium with ten fertile stamens, epitropous ovules with an obturator and strong vascularization around the chalaza. © 2005 The Linnean Society of London, Botanical Journal of the Linnean Society, 2005, 149 , 129–194.  相似文献   

7.
WANNAN, B. S. & QUINN, C. J., 1992. Inflorescence structure and affinities of Laurophyllus (Anacardiaceae). The inflorescence structure, pollen and floral anatomy are investigated in Laurophyllus . The inflorescence is a panicle sensu Briggs & Johnson, but with marked differences between the male and female. Sistergroup comparison with the Burseraceae indicates that the plesiomorphic inflorescence in the Anacardiaceae is a thyrsoid, the apomorph being the panicle. Laurophyllus has Rhus -type pollen and therefore has no close affinity with Dobinea or Campylopeialum . Floral anatomy reveals that Laurophyllus is unicarpellary with a dorsally attached style and an apically attached ovule. These characters suggest that rather than being related to Anacardium or Mangifera , it has some affinity with Blepharocarya or perhaps with one of the poorly known African or Madagascan genera.  相似文献   

8.
The comparative vegetative and reproductive morphology and anatomy of the Malagasy endemic family Sphaerosepalaceae is examined in light of two current competing hypotheses of relationship from recent molecular studies. Sphaerosepalaceae are similar to Thymelaeaceae on the basis of leaf architecture, calyx vasculature and in having endostomal micropyles. Comparisons with Tepuianthus and Thymelaeaceae subfamily Octolepidoideae are drawn on the basis of seed structure, indument type, perianth structure and pollen. Resin-filled, sclerenchymatous idioblasts, floral (positional) monosymmetry, a single series of stamen trunk bundles and a well-developed bixoid chalaza in the seed of Dialyceras parvifolium link Sphaerosepalaceae with its other putative sister group: a clade containing Bixaceae, Cochlospermaceae and Diegodendraceae. Synapomorphies of Sphaerosepalaceae include: fused, intrapetiolar stipules, embryo structure, pollen with endoapertures encompassing the ectoapertures and a tetramerous perianth. The extremely well-developed apical septum in the eusyncarpous gynoecium of Rhopalocarpus suggests that the gynoterminal style present in this genus has been secondarily derived from an ancestor with a fully syncarpous, basistylous gynoecium, as in Dialyceras . The morphological and evolutionary nature of basistylous and apically septate gynoecia is discussed. A rosette arrangement of ovules in each carpel coccus of D. coriaceum expands the bauplan concept of Sphaerosepalaceae and is probably unique among angiosperms as a whole.  © 2004 The Linnean Society of London, Botanical Journal of the Linnean Society , 2004, 144 , 1–40.  相似文献   

9.
10.
The pedicel of the female flower of Rhus lancea is distinctly articulated and usually carries three bracteoles. In the linear tetrad the micropylar megaspore forms the 8-nucleate embryo sac of the Oenothera-type. The single, bitegmic ovule is anatropous. The ripe, loose, papery exocarp consists mainly of the outer epidermis and a sclerified hypodermis. The mesocarp is not a typical sarcocarp, since the ridges and the inner layers are sclerenchymatous. The endocarp, originating from the inner epidermis, consists of four layers and its structure and microchemistry emphasize the close alliance of Rhus with other genera of the section Rhoideae. The endotestal seed indicates a phylogenetic affinity between the Anacardiaceae and the Burseraceae.  相似文献   

11.
The floral development of Phyllanthus chekiangensis has been studied by scanning electron microscopy. The perianth organs are initiated in two whorls, dimerous in male flowers and trimerous in female flowers, with a longer plastochron between whorls than between the organs within a whorl. Male flowers have two stamens. The prominent connective protrusions begin development simultaneously with the floral disk. The disk is two-lobed in male flowers but continuous in female flowers. In female flowers, the developing gynoecium remains open relatively long, so the developing ovules are visible from the outside for some time. The direction of the hemitropous ovules in the carpels is antitropous (epitropous). Two small obturators are formed per carpel, one above each ovule. The prominent nucellar beak extends far beyond the “micropyle”. A micropyle in the classical sense formed by integuments closing over the nucellus apex is not present at any stage of development. Thus, it is not correct to say that the nucellar beak “grows through the micropyle”. The exposed nucellar beak continues the curvature of the antitropous (epitropous) ovule and becomes contiguous with the obturator. The unusual length of the nucellar beak may be a potential synapomorphy of the enlarged Phyllanthus clade as inferred from molecular phylogenetics.  相似文献   

12.
Xyridaceae belongs to the xyrid clade of Poales, but the phylogenetic position of the xyrid families is only weakly supported. Xyridaceae is divided into two subfamilies and five genera, the relationships of which remain unclear. The development of the ovule, fruit and seed of Abolboda spp. was studied to identify characteristics of taxonomic and phylogenetic value. All of the studied species share anatropous, tenuinucellate and bitegmic ovules with a micropyle formed by the inner and outer integuments, megagametophyte development of the Polygonum type, seeds with a tanniferous hypostase, a helobial and starchy endosperm and an undifferentiated embryo, seed coat derived from both integuments with a tanniferous tegmen and a micropylar operculum, and fruits with a parenchymatous endocarp and mesocarp and a sclerenchymatous exocarp. Most of the ovule and seed characteristics described for Abolboda are also present in Xyris and may represent a pattern for the family. Abolboda is distinguished by the ovule type, endosperm formation and the number of layers in the seed coat, in agreement with its classification in Abolbodoideae. The following characteristics link Xyridaceae to Eriocaulaceae and Mayacaceae, supporting the xyrid clade: tenuinucellate, bitegmic ovules; seeds with a tanniferous hypostase, a starchy endosperm and an undifferentiated embryo; and a seed coat with a tanniferous tegmen. A micropylar operculum in the seeds of Abolboda is described for the first time here and may represent a synapomorphy for the xyrids. © 2014 The Linnean Society of London, Botanical Journal of the Linnean Society, 2014, 175 , 144–154.  相似文献   

13.
According to recent molecular phylogenetic data, the rare Australian endemic Maundia triglochinoides does not form a clade with taxa traditionally classified as members of Juncaginaceae. Therefore, views on the morphological evolution and taxonomy of Alismatales require re‐assessment. As the morphology of Maundia is poorly known and some key features have been controversially described in the literature, the flowers, fruits, inflorescence axes and peduncles were studied using light and scanning electron microscopy. Inflorescences are bractless spikes with flowers arranged in trimerous whorls. Except in the inflorescence tip (where the flower groundplan is variable), flowers possess two tepals in transversal‐abaxial positions, six stamens in two trimerous whorls and four carpels in median and transversal positions. Fruits are indehiscent. The shared possession of orthotropous ovules supports the molecular phylogenetic placement of Maundia as sister to a large clade including Potamogetonaceae and related families. Maundia and Aponogeton spp. share the same highly unusual floral groundplan, a homoplastic similarity that can be explained by spatial constraints in developing inflorescences. The nucellar coenocyte of Maundia appears to be unique among monocots. As Maundia exhibits a mosaic of features characteristic of other families of tepaloid core Alismatales, its segregation as a separate family is plausible. © 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2013, 173 , 12–45.  相似文献   

14.
Gynoecium diversity and systematics of the basal eudicots   总被引:6,自引:0,他引:6  
Gynoecium and ovule structure was compared in representatives of the basal eudicots, including Ranunculales (Berberidaceae, Circaeasteraceae, Eupteleaceae, Lardizabalaceae, Menispermaceae, Papaveraceae, Ranunculaceae), Proteales (Nelumbonaceae, Platanaceae, Proteaceae), some families of the former ‘lower’ hamamelids that have been moved to Saxifragales (Altingiaceae, Cercidiphyllaceae, Daphniphyllaceae, Hamamelidaceae), and some families of uncertain position (Gunneraceae, Myrothamnaceae, Buxaceae, Sabiaceae, Trochodendraceae). In all representatives studied, the carpels (or syncarpous gynoecia) are closed at anthesis. This closure is attained in different ways: (1) by secretion without postgenital fusion (Berberidaceae, Papaveraceae, Nelumbonaceae, probably Circaeaster); (2) by a combination of postgenital fusion and secretion; (2a) with a complete secretory canal and partly postgenitally fused periphery (Lardizabalaceae, Menispermaceae, some Ranunculaceae, Sabiaceae); (2b) with an incomplete secretory canal and completely fused periphery (Tro-chodendron); (3) by complete postgenital fusion without a secretory canal (most Ranunculaceae, Eupteleaceae, Platanaceae, Proteaceae, all families of Saxifragales and incertae sedis studied here). Stigmas are double-crested and decurrent in most of the non-ranunculalian taxa; unicellular-papillate in most taxa, but with multicellular protuberances in Daphniphyllaceae and Hamamelidaceae. Carpels predominantly have three vascular bundles, but five in Proteales (without Nelumbonaceae), Myrothamnaceae and Trochodendraceae. The latter two also share ‘oil’ cells in the carpels. Stomata on the outer carpel surface are present in the majority of Ranunculales and Proteales, but tend to be lacking in the saxifragalian families. In basal eudicots, especially in the non-ranunculalian families there is a trend to form more than one ovule per carpel but to develop only one seed, likewise there is a trend to have immature ovules at anthesis. Ovule number per carpel is predominantly one or two. Proteales (without Nelumbonales) mainly have orthotropous ovules, the other groups have anatropous (or hemitropous or campylotropous) ovules. The outer integument is annular in the groups with orthotropous or hemitropous ovules, and also in a number of saxifragalian families with anatropous ovules. In Proteales the integuments are predominantly lobed but there is no distinct pattern in this feature among the other groups. Among Ranunculales two pairs of families (Lardizabalaceae/Menispermaceae and Bcrberidaceae/Papaveraceae) due to similarities in gynoecium structure can be recognized, which are not apparent in molecular analyses. The close relationship of Platanaceae and Proteaceae is supported by gynoecium structure but gynoecial features do not support their affinity to Nelumbonaceae. The alliance of Daphniphyllaceae with Hamamelidaceae s.l. is also supported.  相似文献   

15.
Evaluating the morphological relationships of angiosperm families that still remain unplaced in the current systems of classification is challenging because it requires comparative data across a broad phylogenetic range. The small neotropical family Metteniusaceae was recently placed within the lamiids, as sister to either the enigmatic Oncothecaceae or the clade (Boraginaceae + Gentianales + Lamiales + Solanales + Vahliaceae). We examined the development of two of the primary diagnostic traits of Metteniusaceae, the moniliform anthers and the unilocular gynoecium. The gynoecium is 5-carpellate, and contains two ovules with a massive, vascularized integument. Late sympetaly and unitegmic ovules support placement of Metteniusaceae in the lamiids. The 5-carpellate gynoecium is consistent with a sister-group relationship between Metteniusaceae and Oncothecaceae. The gynoecium of Metteniusaceae is unusual in that it is monosymmetric throughout ontogeny, which indicates pseudomonomery; the five carpel initials are congenitally fused by their margins and form a single locule; the two ovules develop from the two smallest and most poorly developed lateral carpels. Comparisons with other pseudomonomerous taxa allow us to propose division of the complex processes leading to pseudomonomery into eight characters, including carpel number and fusion, gynoecial symmetry, timing of carpel reduction, and number and position of nonfertile carpels.  相似文献   

16.
Floral structure is compared in Pelagodoxa and Sommieria (Arecaceae, Arecoideae). Male flowers have three free, imbricate sepals, three basally congenitally united and apically valvate petals, and six stamens. Anthers are dorsifixed and dehiscence introrse. The sterile gynoecium is tricarpellate. Female flowers have three free, imbricate sepals and three free, imbricate petals, which are slightly fused with the sepals at the base. Four to six staminodes are congenitally united at the base and fused with the ovary for a short distance. The gynoecium is syncarpous. Carpels are almost equal in early development; later the gynoecium becomes pseudomonomerous. The three stigmatic branches are equally developed, apical and sessile. The carpels are (syn-)ascidiate up to the level of the placenta and (sym-)plicate above. Each carpel has one ovule, in the sterile carpels it is aborted at anthesis. The fertile ovule is erect up to anthesis and pendant afterwards because of the bulging out of the ovary. Pollen tube transmitting tracts (PTTT) encompass the secretory epidermis of the ventral slits of each carpel. Floral structure in Pelagodoxa and Sommieria supports the sister group relationship between the two genera suggested in recent molecular phylogenies and reflects their close relationships to a major clade of pseudomonomerous arecoid palms from the Indo-Pacific region.  © 2004 The Linnean Society of London, Botanical Journal of the Linnean Society , 2004, 146 , 27–39.  相似文献   

17.
Summary Only one ovule matures into a seed inMelilotus officinalis. Although eight ovules form within an ovary, only the basal ovule develops into a mature seed, whereas the other ovules degenerate. The investigation of ovule and seed structure at different developmental stages and a comparison of quantitative characters of differently fated ovules within an ovary were undertaken by light, phase contrast, and fluorescence microscopy. In this species, campylotropous ovules develop simultaneously on marginal placentae in an apocarpous unilocular gynoecium. Megasporo- and megagametogenesis proceed normally and are completed in bud. The maturation of the Polygonum type embryo sac takes place after the flower opens. Shortly before fertilization, synergids show signs of degeneration in all ovules. At this stage, neither the structure nor the sizes of ovules within one ovary differ significantly. In spite of this, only the basal ovule develops into a seed. Rarely, one of the upper-situated ovules or the basal and another ovule mature into seeds. Seed enlargement is insignificant until the stage when globular embryo and nuclear endosperm are formed. At the seed-filling stage, other ovules have collapsed and the seed gradually comes to occupy the total volume of the pod. The fruit-to-seed length ratio decreases considerably during seed ripening. At fertilization, ovary length is four times greater than ovule length. In the mature state, the fruit and seed lengths are approximately equal. Seed size and weight diminish with an increase in seed number within a pod, although pod size remains constant. It is assumed that nonrandom abortion of young seeds inM. officinalis is under maternal control and is not related to structural abnormalities in ovule development or with limitation in pollen. We suppose that evolution of this species may have proceeded in the direction of a decrease in seed number and an increase in its sizes, which may play an important role in seed dispersal and seedling establishment.  相似文献   

18.
Study of floral anatomy, micromorphology, palynology and onotogeny has revealed new characters for phylogenetic analysis in the genus Scleranthus . Cladistic analysis of these characters, along with those previously available, suggests that the genus consists of Eurasian/Mediterranean and Australasian sister clades. Gynoecial morphology and development are closely similar in all species, suggesting the genus is monophyletic despite its disjunct northern and southern hemisphere distribution. Variation in pollen:ovule ratios and their implications for the evolution of Scleranthus species are also discussed and it is concluded that a range of breeding strategies intermediate between autogamy and xenogamy exists in the genus. Single-stamened species of Scleranthus are likely to be obligate autogams, despite their comparatively high pollen:ovule ratios in relation to autogamic species of other genera.  © 2002 The Linnean Society of London, Botanical Journal of the Linnean Society , 2002, 140 , 15–29.  相似文献   

19.
Ovule development, megasporogenesis, and megagametogenesis were studied in six cryptically dioecious species of Consolea. All species showed uniform development typical for the Opuntioideae. Ovule development proceeds acropetally, but shows developmental asynchrony across floral morphs. At anthesis, female morph ovules are functional and available for fertilization, whereas staminate flower ovules are senescing and incapable of being fertilized. In occasional plants of some species, staminate flowers may reach anthesis with a few functional apical ovules capable of seed formation. Such plants are described as inconstant/leaky males. Ovule fertility differences across morphs are interpreted as resulting from heterochronic ovule development and senescence, although variation in embryo sac longevity cannot be ruled out. Significantly, ovule abortion follows a common pattern and timing in staminate flowers of both male morphs in all species. Thus, on the basis of this uniformity, a common origin for the cryptically dioecious breeding system in Consolea is hypothesized. Furthermore, staminate expression in Consolea appears to be controlled by a common, genetically determined heterochronic ovule developmental programme affecting the relative timing of ovule receptivity and flower opening. This is the first report of heterochrony as a mechanism of male sex determination.  © 2008 The Linnean Society of London, Botanical Journal of the Linnean Society , 2008, 156 , 305–326.  相似文献   

20.
Floral simplifications and specializations in the evolution of Gyrostemonaceae have confused the systematics of the family. Recent phylogenetic analyses have demonstrated their placement among Capparales. This investigation presents a phylogenetic analysis of Gyrostemonaceae, demonstrating that Codonocarpus and Gyrostemon form a clade that is the sister group of Cypselocarpus, Tersonia, and Walteranthus. These phylogenetic results and data on development of Gyrostemon and Tersonia are used to discuss the morphology and evolutionary diversification of female flowers of Gyrostemonaceae. The uniseriate perianth of Gyrostemonaceae consists of four to eight tepals with an unusual lateral to median developmental sequence. The female flowers of Gyrostemon and Tersonia display no distinctive evidence of an androecium, although the former has late-forming, primordium-like structures positioned between the tepals and gynoecium that may be the vestiges of either a second perianth series or the androecium. The gynoecium of Gyrostemonaceae is syncarpous, although the two main clades in the family differ in the expression of ovarian synorganization. The Codonocarpus–Gyrostemon clade is unusual in having largely separate carpels that are only syncarpous because the ventral side of each is formed by the flank of the floral apex. All Gyrostemonaceae, however, incorporate the flank of the floral apex as the ventral side of the carpel, and this is the location of ovule development. On the basis of its placement in a clade that includes Tersonia and Walteranthus, the uniloculate and uniovulate gynoecium of Cypselocarpus may be pseudomonomerous. All Gyrostemonaceae have large stigmas that are typical of anemophilous taxa, and they differ from most other Capparales in this attribute. Among Capparales, Gyrostemonaceae may be most similar to Ochradenus (Resedaceae), which also appears to be anemophilous. It is unclear whether the similarities of Ochradenus and Gyrostemonaceae are homologies, indicative of a close relationship between the two groups, or evolutionary parallelisms associated with separate shifts to anemophily.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号