首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
We report the 1.7 Å resolution crystal structure of the Lip2 lipase from Yarrowia lipolytica in its closed conformation. The Lip2 structure is highly homologous to known structures of the fungal lipase family (Thermomyces lanuginosa, Rhizopus niveus, and Rhizomucor miehei lipases). However, it also presents some unique features that are described and discussed here in detail. Structural differences, in particular in the conformation adopted by the so-called lid subdomain, suggest that the opening mechanism of Lip2 may differ from that of other fungal lipases. Because the catalytic activity of lipases is strongly dependent on structural rearrangement of this mobile subdomain, we focused on elucidating the molecular mechanism of lid motion. Using the x-ray structure of Lip2, we carried out extensive molecular-dynamics simulations in explicit solvent environments (water and water/octane interface) to characterize the major structural rearrangements that the lid undergoes under the influence of solvent or upon substrate binding. Overall, our results suggest a two-step opening mechanism that gives rise first to a semi-open conformation upon adsorption of the protein at the water/organic solvent interface, followed by a further opening of the lid upon substrate binding.  相似文献   

2.
The membrane‐associated serine hydrolase, monoacylglycerol lipase (MGL), is a well‐recognized therapeutic target that regulates endocannabinoid signaling. Crystallographic studies, while providing structural information about static MGL states, offer no direct experimental insight into the impact of MGL's membrane association upon its structure–function landscape. We report application of phospholipid bilayer nanodiscs as biomembrane models with which to evaluate the effect of a membrane system on the catalytic properties and conformational dynamics of human MGL (hMGL). Anionic and charge‐neutral phospholipid bilayer nanodiscs enhanced hMGL's kinetic properties [apparent maximum velocity (Vmax) and substrate affinity (Km)]. Hydrogen exchange mass spectrometry (HX MS) was used as a conformational analysis method to profile experimentally the extent of hMGL–nanodisc interaction and its impact upon hMGL structure. We provide evidence that significant regions of hMGL lid‐domain helix α4 and neighboring helix α6 interact with the nanodisc phospholipid bilayer, anchoring hMGL in a more open conformation to facilitate ligand access to the enzyme's substrate‐binding channel. Covalent modification of membrane‐associated hMGL by the irreversible carbamate inhibitor, AM6580, shielded the active site region, but did not increase solvent exposure of the lid domain, suggesting that the inactive, carbamylated enzyme remains intact and membrane associated. Molecular dynamics simulations generated conformational models congruent with the open, membrane‐associated topology of active and inhibited, covalently‐modified hMGL. Our data indicate that hMGL interaction with a phospholipid membrane bilayer induces regional changes in the enzyme's conformation that favor its recruiting lipophilic substrate/inhibitor from membrane stores to the active site via the lid, resulting in enhanced hMGL catalytic activity and substrate affinity.  相似文献   

3.
Human monoacylglycerol lipase (MGL) catalyzes the hydrolysis of 2-arachidonoylglycerol to arachidonic and glycerol, which plays a pivotal role in the normal biological processes of brain. Co-crystal structure of the MGL in complex with its inhibitor, compound 1, shows that the helix α4 undergoes large-scale conformational changes in response to the compound 1 binding compared to the apo MGL. However, the detailed conformational transition pathway of the helix α4 in the inhibitor binding process of MGL has remained unclear. Here, conventional molecular dynamics (MD) and nudged elastic band (NEB) simulations were performed to explore the conformational transition pathway of the helix α4. Conventional MD simulations unveiled that the compound 1 induced the closed conformation of the active site of MGL, reduced the conformational flexibility of the helix α4, and elicited the large-scale conformational rearrangement of the helix α4, leading to the complete folding of the helix α4. Moreover, NEB simulations revealed that the conformational transition pathway of helix α4 underwent an almost 180° counter-clockwise rotation of the helix α4. Our computational results advance the structural and mechanistic understanding of the inhibitory mechanism.  相似文献   

4.
BackgroundUnderstanding the dynamics of enzymes in organic solvents has wider implications on their industrial applications. Pancreatic lipases, which show activity in their lid open-state, demonstrate enhanced activity in organic solvents at higher temperatures. However, the lid dynamics of pancreatic lipases in non-aqueous environment is yet to be clearly understood.MethodsDynamics of porcine pancreatic lipase (PPL) in open and closed conformations was followed in ethanol, toluene, and octanol using molecular simulation methods. In silico double mutant D250V and E254L of PPL (PPLmut-Cl) was created and its lid opening dynamics in water and in octanol was analyzed.ResultsPPL showed increase in solvent accessible surface area and decrease in packing density as the polarity of the surrounded solvent decreased. Breaking the interactions between D250-Y115, and D250-E254 in PPLmut-Cl directed the lid to attain open-state conformation. Major energy barriers during the lid movement in water and in octanol were identified. Also, the trajectories of lid movement were found to be different in these solvents.ConclusionsOnly the double mutant at higher temperature showed lid opening movement suggesting the essential role of the three residues in holding the lid in closed conformation. The lid opening dynamics was faster in octanol than water suggesting that non-polar solvents favor open conformation of the lid.General significanceThis study identifies important interactions between the lid and the residues in domain 1 which possibly keeps the lid in closed conformation. Also, it explains the rearrangements of residue–residue interactions during lid opening movement in water and in octanol.  相似文献   

5.
The activation of lipases has been postulated to proceed by interfacial activation, temperature switch activation, or aqueous activation. Recently, based on molecular dynamics (MD) simulation experiments, the T1 lipase activation mechanism was proposed to involve aqueous activation in addition to a double-flap mechanism. Because the open conformation structure is still unavailable, it is difficult to validate the proposed theory unambiguously to understand the behavior of the enzyme. In this study, we try to validate the previous reports and uncover the mystery behind the activation process using structural analysis and MD simulations. To investigate the effects of temperature and environmental conditions on the activation process, MD simulations in different solvent environments (water and water-octane interface) and temperatures (20, 50, 70, 80, and 100°C) were performed. Based on the structural analysis of the lipases in the same family of T1 lipase (I.5 lipase family), we proposed that the lid domain comprises α6 and α7 helices connected by a loop, thus forming a helix-loop-helix motif involved in interfacial activation. Throughout the MD simulations experiments, lid displacements were only observed in the water-octane interface, not in the aqueous environment with respect to the temperature effect, suggesting that the activation process is governed by interfacial activation coupled with temperature switch activation. Examining the activation process in detail revealed that the large structural rearrangement of the lid domain was caused by the interaction between the hydrophobic residues of the lid with octane, a nonpolar solvent, and this conformation was found to be thermodynamically favorable.  相似文献   

6.
BackgroundPancreatic lipases hydrolyze fatty acids in dietary pathway. The activity of porcine pancreatic lipase (PPL) is controlled by lid domain along with a coenzyme, colipase. The active open-state conformation of the protein could be induced by detergents or bile salts which would be further stabilized by binding of colipase. In the absence of these interactions, the lid preferably attains a closed conformation in water.MethodsMolecular dynamic simulation was used to monitor the lid movement of PPL in open and closed conformations in water. Free energy surface was constructed from the simulation. Energy barriers and major structural changes during lid opening were evaluated.ResultsThe lid closure of PPL in water from its open conformation might be initiated by columbic interactions which initially move the lid away from domain 1. This is followed by major dihedral changes on the lid residues which alter the trajectory of motion. The lid then swirls back towards domain 1 to attain closed conformation. This is accompanied with conformational changes around β5- and β9-loops as well. However, PPL in closed conformation shows only the domain movements and the lid remains in its closed conformation.ConclusionsPPL in closed conformation is stable in water and the open conformation is driven towards closed state. The lid follows a swirling trajectory during the closure.General significanceConformational state of the lid regulates the activity and substrate specificity of PPL. Hence, it is essential to understand the lid dynamics and the role of specific amino acid residues involved.  相似文献   

7.
The 173–195 segment corresponding to the helix 2 of the globular PrP domain is a good candidate to be one of the several ‘spots’ of intrinsic structural flexibility, which might induce local destabilization and concur to protein transformation, leading to aggregation‐prone conformations. Here, we report CD and NMR studies on the α2‐helix‐derived peptide of maximal length (hPrP[180–195]) that is able to exhibit a regular structure different from the prevalently random arrangement of other α2‐helix‐derived peptides. This peptide, which has previously been shown to be affected by buffer composition via the ion charge density dependence typical of Hofmeister effects, corresponds to the C‐terminal sequence of the PrPC full‐length α2‐helix and includes the highly conserved threonine‐rich 188–195 segment. At neutral pH, its conformation is dominated by β‐type contributions, which only very strong environmental modifications are able to modify. On TFE addition, an increase of α‐helical content can be observed, but a fully helical conformation is only obtained in neat TFE. However, linking of the 173–179 segment, as occurring in wild‐type and mutant peptides corresponding to the full‐length α2‐helix, perturbs these intrinsic structural propensities in a manner that depends on whether the environment is water or TFE. Overall, these results confirm that the 180–195 parental region in hPrPC makes a strong contribution to the chameleon conformational behavior of the segment corresponding to the full‐length α2‐helix, and could play a role in determining structural rearrangements of the entire globular domain. Copyright © 2008 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

8.
Fourier‐transform infrared (FT‐IR) spectroscopy was employed to investigate potential lyophilization‐induced changes in the secondary structure of lipases from Candida antarctica B and Pseudomonas cepacia. The secondary structure elements were determined by curve fitting of the amide III bands of the two lipases in the lyophilized state in KBr pellets and in solution. It was found that lyophilization decreased the α‐helix and increased the β‐sheet content. However, FT‐IR analysis of crosslinked enzyme crystals of Pseudomonas cepacia lipase also indicated an increase in the β‐sheet content, which appears despite the fact that the enzyme, being in the crystallized state, should possess native conformation. This result partially questions the suitability of FT‐IR for analysis of the structure of solid proteins, at least as far as the β‐sheet content is concerned, because it is possible that the method overestimates the β‐sheets by measuring other hydrogen‐bonded nonperiodic intermolecular structures. No significant modification was observed when lipase from Pseudomonas cepacia was lyophilized in the presence of methoxypoly(ethylene glycol). © 1999 John Wiley & Sons, Inc. Biotechnol Bioeng 64: 545–551, 1999.  相似文献   

9.
In most lipases, a mobile lid covers the substrate binding site. In this closed structure, the lipase is assumed to be inactive. Upon activation of the lipase by contact with a hydrophobic solvent or at a hydrophobic interface, the lid opens. In its open structure, the substrate binding site is accessible and the lipase is active. The molecular mechanism of this interfacial activation was studied for three lipases (from Candida rugosa, Rhizomucor miehei, and Thermomyces lanuginosa) by multiple molecular dynamics simulations for 25 ns without applying restraints or external forces. As initial structures of the simulations, the closed and open structures of the lipases were used. Both the closed and the open structure were simulated in water and in an organic solvent, toluene. In simulations of the closed lipases in water, no conformational transition was observed. However, in three independent simulations of the closed lipases in toluene the lid gradually opened. Thus, pathways of the conformational transitions were investigated and possible kinetic bottlenecks were suggested. The open structures in toluene were stable, but in water the lid of all three lipases moved towards the closed structure and partially unfolded. Thus, in all three lipases opening and closing was driven by the solvent and independent of a bound substrate molecule.  相似文献   

10.
On consideration that intrinsic structural weakness could affect the segment spanning the α2‐helical residues 173–195 of the PrP, we have investigated the conformational stabilities of some synthetic Ala‐scanned analogs of the peptide derived from the 180–195 C‐terminal sequence, using a novel approach whose theoretical basis originates from protein thermodynamics. Even though a quantitative comparison among peptides could not be assessed to rank them according to the effect caused by single amino acid substitution, as a general trend, all peptides invariably showed an appreciable preference for an α‐type organization, consistently with the fact that the wild‐type sequence is organized as an α‐helix in the native protein. Moreover, the substitution of whatever single amino acid in the wild‐type sequence reduced the gap between the α‐ and the β‐propensity, invariably enhancing the latter, but in any case this gap was larger than that evaluated for the full‐length α2‐helix‐derived peptide. It appears that the low β‐conformation propensity of the 180–195 region depends on the simultaneous presence of all of the Ala‐scanned residues, indirectly confirming that the N‐terminal 173–179 segment could play a major role in determining the chameleon conformational behavior of the entire 173–195 region in the PrP. Copyright © 2008 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

11.
ABSTRACT

The lid and flap domains control the catalytic activity of lipase through the opening and closing motion. However, this gating mechanism of diacylglycerol (DAG) lipase is poorly understood due to the lack of 3D structures in open conformations. In this study, the opening and closing states of Mrlip1 DAG lipase are revealed by the homology modelling and molecular dynamic simulations. It was found that the active residues (Ser171, His281 and Asp228) in the catalytic pocket of Mrlip1 DAG lipase are covered by the lid domain in the closed conformation, and exposed to the solvent in the open conformation. The role of residues Phe278 and Gln282 in the flap domain, as well as that of Thr101 and Thr107 in the lid domains are also identified in gating mechanism. The site-directed mutagenesis have been carried out to illustrate the putative alterations of enzyme specificity. Our results suggest that the substrate specificity is achieved by these two key residues Phe278 and Gln282, and the irreversible conversion from DAG to TAG (Triacylglycerol) lipase are enabled by the two-point mutations.  相似文献   

12.
Multiple self‐guided Langevin dynamics (SGLD) simulations were performed to examine structural and dynamical properties of the receiver domain of nitrogen regulatory protein C (NtrCr). SGLD and MD simulations of the phosphorylated active form structure suggest a mostly stable but broad structural ensemble of this protein. The finite difference Poisson–Boltzmann calculations of the pKa values of the active site residues suggest an increase in the pKa of His‐84 on phosphorylation of Asp‐54. In SGLD simulations of the phosphorylated active form with charged His‐84, the average position of the regulatory helix α4 is found closer to the starting structure than in simulations with the neutral His‐84. To model the transition pathway, the phosphate group was removed from the simulations. After 7 ns of simulations, the regulatory helix α4 was found approximately halfway between positions in the NMR structures of the active and inactive forms. Removal of the phosphate group stimulated loss of helix α4, suggesting that the pathway of conformational transition may involve partial unfolding mechanism. The study illustrates the potential utility of the SGLD method in studies of the coupling between ligand binding and conformational transitions. Proteins 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

13.
The effect of organic solvent on the structure and dynamics of proteins was investigated by multiple molecular dynamics simulations (1 ns each) of Candida rugosa lipase in water and in carbon tetrachloride. The choice of solvent had only a minor structural effect. For both solvents the open and the closed conformation of the lipase were near to their experimental X-ray structures (C rms deviation 1–1.3 Å). However, the solvents had a highly specific effect on the flexibility of solvent-exposed side chains: polar side chains were more flexible in water, but less flexible in organic solvent. In contrast, hydrophobic residues were more flexible in organic solvent, but less flexible in water. As a major effect solvent changed the dynamics of the lid, a mobile element involved in activation of the lipase, which fluctuated as a rigid body about its average position. While in water the deviations were about 1.6 Å, organic solvent reduced flexibility to 0.9 Å. This increase rigidity was caused by two salt bridges (Lys85–Asp284, Lys75–Asp79) and a stable hydrogen bond (Lys75–Asn 292) in organic solvent. Thus, organic solvents stabilize the lid but render the side chains in the hydrophobic substrate-binding site more mobile. Figure Superimposition of open (black, PDB entry 1CRL) and closed (gray, PDB entry 1TRH) conformers of C. rugosa lipase. The mobile lid is indicatedThis revised version was published online in October 2004 with corrections to the Graphical Abstract.  相似文献   

14.
15.
Interfacial proteins function in unique heterogeneous solvent environments, such as water–oil interfaces. One important example is microbial lipase, which is activated in an oil‐water emulsion phase and has many important enzymatic functions. A unique aprotic dipolar organic solvent, dimethyl sulfoxide (DMSO), has been shown to increase the activity of lipases, but the mechanism behind this enhancement is still unknown. Here, all‐atom molecular dynamics simulations of lipase in a binary solution were performed to examine the effects of DMSO on the dynamics of the gating mechanism. The amphiphilic α5 region of the lipase was a focal point for the analysis, since the structural ordering of α5 has been shown to be important for gating under other perturbations. Compared to the closed‐gorge ensemble in an aqueous environment, the conformational ensemble shifts towards open‐gorge structures in the presence of DMSO solvents. Increased width of the access channel is particularly prevalent in 45% and 60% DMSO concentrations (w/w). As the amount of DMSO increases, the α5 region of the lipase becomes more α‐helical, as we previously observed in studies that address water–oil interfacial and high pressure activation. We believe that the structural ordering of α5 plays an essential role on gating and lipase activity.  相似文献   

16.
While there is evidence that other ABC transporters can tell between empty and loaded substrate binding protein, reconstitution experiments suggest otherwise for the Escherichia coli vitamin B12 importer BtuCD‐F. Here, we address the question of BtuCD‐F substrate sensitivity in a combined protein–protein docking and molecular dynamics simulation approach. Starting from the BtuCD and holo‐BtuF crystal structures, we model two holo‐BtuCD‐F docking complexes differing by a 180° orientation of BtuF. One of these is similar to the apo‐BtuCD‐F crystal structure. Both docking complexes were embedded in a lipid/water environment to investigate their dynamics and BtuCD's conformational response to the presence and absence of BtuF, vitamin B12, and Mg‐ATP in a series of 28 independent MD simulations. We find holo‐BtuF stabilizing the open conformation of BtuCD, whereas the transporter begins to close again when BtuF or vitamin B12 is removed—suggesting BtuCD‐F is capable of substrate sensitivity. We identified BtuC transmembrane helices 3 and 5, the L‐loops and the adjacent helices comprised of BtuC residues 170–180 as hotspots of conformational change. We propose the latter to act as substrate sensors. BtuF‐Trp44 appears to act as a lid on the vitamin B12 binding cleft in BtuF X‐ray structures and protrudes into the BtuCD transport channel in one of our simulations, which might represent an initial step in vitamin B12 uptake. On an average, we observe subunit motions where the nucleotide binding domains approach each other while the transmembrane domains display an opening trend toward the periplasm. Proteins 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

17.
The conformation of oligopeptides with hydrophobic side chains, Nps-(L -Leu-L -Leu-L -Ala)n-OEt and Nps-(L -Met-L -Met-L -Leu)n-OEt(n = 1–6), in the solid state, obtained either by evaporation of the solvent or by precipitation with diethyl ether from a 1,1,1,3,3,3-hexafluoropropan-2-ol (HFIP) solution, has been studied with ir spectroscopy and x-ray powder-diffraction measurements. The conformation of these peptides in the HFIP solution has been studied by CD spectroscopy. Due to a strong preference of the amino acids to form an α helix, the peptides begin forming α helices at the dodecapeptide in the HFIP solution, and in the solid state by evaporation. In the solid state, with precipitation, the α-helical conformation is first observed at the octadecapeptide and the lower peptides assume a β structure. The conformational change, from the α helix to the β structure of the peptides with 12 to 15 amino acid residues, during the precipitation process, is due to a strong tendency of the amino acids to form the β-structure in rather short peptide lengths.  相似文献   

18.
A joint application of experimental and computational approaches has revealed the exceptionally high attitude of crabrolin, a 13‐residue peptide with sequence FLPLILRKIVTAL‐NH2, to adopt alpha‐helix conformation not only in membrane‐mimicking solvents but also in the presence of a not negligible amount of water. Our study shows that this propensity essentially resides in the intrinsic thermodynamic stability of alpha‐helix conformation whose kinetic stability is drastically reduced in water solvent. Our analysis suggests that this is due to two effects enhanced by water: a more local effect consisting of the demolition of intra‐peptide H‐bonds, essential for the alpha‐helix formation, and a bulk – electrostatic – effect favoring conformational states more polar than alpha‐helix. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

19.
脂肪酶是一种非常重要的水解酶,在工业催化、医药和科学研究等领域中有广泛应用. 大部分脂肪酶的活性部位上方有一段被称为“盖”的α-螺旋,这种盖赋予脂肪酶在水/油界面上有特殊的催化活性,界面活性.而在单一水相或油相中却表现出低活性或无活性.界面活性与盖的组成、大小、构象及其存在环境等密切相关,探明盖与脂肪酶界面活性的关系对于脂肪酶的开发和利用是非常关键的.因此,长期以来人们对盖在脂肪酶催化作用中所扮演的角色进行了孜孜不倦的探索.本文从盖的构象、移动、组成和删除等方面综述了其对脂肪酶催化作用的影响,期望对人们认识脂肪酶盖与其催化作用之间的关系有一定的帮助.  相似文献   

20.
The interfacial activation mechanism of family I.3 lipase from Pseudomonas sp. MIS38 (PML), which has two α-helical lids (lid1 and lid2), was investigated using a combination of X-ray crystallography and molecular dynamics (MD) simulation. The crystal structure of PML in an open conformation was determined at 2.1 Å resolution in the presence of Ca2+ and Triton X-100. Comparison of this structure with that in the closed conformation indicates that both lids greatly change their positions and lid1 is anchored by the calcium ion (Ca1) in the open conformation. This structure was not seriously changed even when the protein was dialyzed extensively against the Ca2+-free buffer containing Triton X-100 before crystallization, indicating that the open conformation is fairly stable unless a micellar substance is removed. The crystal structure of the PML derivative, in which the active site serine residue (Ser207) is diethylphosphorylated by soaking the crystal of PML in the open conformation in a solution containing diethyl p-nitrophenyl phosphate, was also determined. This structure greatly resembles that in the open conformation, indicating that PML structure in the open conformation represents that in the active form. MD simulation of PML in the open conformation in the absence of micelles showed that lid2 closes first, while lid1 maintains its open conformation. Likewise, MD simulation of PML in the closed conformation in the absence of Ca2+ and in the presence of octane or trilaurin micelles showed that lid1 opens, while lid2 remains closed. These results suggest that Ca1 functions as a hook for stabilization of a fully opened conformation of lid1 and for initiation of subsequent opening of lid2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号