首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Comparative tryptic peptide mapping and partial amino-terminal primary sequence analysis of the light chain component associated with the TL antigens showed that the small subunit of TL was identical to the 2m light chain associated with the H-2K or D product of the same strain. Peptide comparison of the 2m from the Tla products of an A strain X-ray induced leukemia RADA1 (Tla a) and of a C57BL/6 strain X-ray induced leukemia ERLD (Tla b) showed differences to the extent of 25–35% in their peptides. This is consistent with previous results showing 2m allelic variations between these mouse strains. The data prove the structural identity of the 2m molecules from TL and H-2K, D antigens as well as reveal the strain specific polymorphism of the 2m associated with these products.  相似文献   

2.
β2-Microglobulin (β2m) forms amyloid fibrils in vitro under acidic conditions. Under these conditions, the residual structure of acid-denatured β2m is relevant to seeding and fibril extension processes. Disulfide (SS) bond-oxidized β2m has been shown to form rigid, ordered fibrils, whereas SS bond-reduced β2m forms curvy, less-ordered fibrils. These findings suggest that the presence of an SS bond affects the residual structure of the monomer, which subsequently influences the fibril morphology. To clarify this process, we herein performed NMR experiments. The results obtained revealed that oxidized β2m contained a residual structure throughout the molecule, including the N- and C-termini, whereas the residual structure of the reduced form was localized and other regions had a random coil structure. The range of the residual structure in the oxidized form was wider than that of the fibril core. These results indicate that acid-denatured β2m has variable conformations. Most conformations in the ensemble cannot participate in fibril formation because their core residues are hidden by residual structures. However, when hydrophobic residues are exposed, polypeptides competently form an ordered fibril. This conformational selection phase may be needed for the ordered assembly of amyloid fibrils.  相似文献   

3.
4.
5.
6.
The 2-microglobulin (2m) is a protein found in the serum in a free form and on the cell surface in a form noncovalently associated with the chain of the class I major histocompatibility complex (Mhc) molecules. In mammals, the 2m-encoding gene (B2m) is found on a chromosome different from the Mhc proper. We have isolated and characterized the B2m gene of the zebrafish, Brachydanio rerio, family Cyprinidae. We obtained both cDNA and genomic clones of the Brre-B2m gene. The cDNA clones contained the entire coding sequence, the entire 3 untranslated (UT) region, and at least part of the 5UT region. The genomic clone contained the entire Brre-B2m gene. The coding sequence specifies 97 amino acid residues of the mature protein so that the zebrafish 2m is two residues shorter than human and one residue shorter than cattle, fowl, or turkey 2m (codons at positions 85 and 86 have been deleted in the Brre-B2m. gene). The amino acid and nucleotide sequence similarities between zebrafish and human 2m (B2m) are 45% and 59%, respectively. Approximately 24% of the positions are invariant and an additional 9% show only conservative substitutions in comparisons which include all known 2m sequences (fish, avian, and mammalian). Most of the conserved positions are in the strands (some 47% of the -strand positions are conserved in the three vertebrate classes). The Brre-B2m gene consists of four exons separated by three introns. All of the introns are considerably shorter than the corresponding introns in the mammalian B2m genes. The coding sequences of the cDNA and the genomic clones are almost identical but the sequences of the 3'UT regions differ at 1.7% of the sites, suggesting that the genes borne by these clones might have diverged at least 0.7 million years (my) ago. In contrast to the human B2m gene, the Brre-B2m gene shows no bias in the distribution of the CpG dinucleotides: the dinucleotides are distributed evenly along the entire available sequence. The haploid genome of the zebrafish contains only one copy of the B2m gene.The nucleotide sequence data reported in this paper have been submitted to the GenBank nucleotide sequence database and have been assigned the accession numbers L05383 (B2M) and L05384 (B2RG). Correspondence to: J. Klein.  相似文献   

7.
β2-Microglobulin (β2M) is believed to have arisen in a basal jawed vertebrate (gnathostome) and is the essential L chain that associates with most MHC class I molecules. It contains a distinctive molecular structure called a constant-1 Ig superfamily domain, which is shared with other adaptive immune molecules including MHC class I and class II. Despite its structural similarity to class I and class II and its conserved function, β2M is encoded outside the MHC in all examined species from bony fish to mammals, but it is assumed to have translocated from its original location within the MHC early in gnathostome evolution. We screened a nurse shark bacterial artificial chromosome library and isolated clones containing β2M genes. A gene present in the MHC of all other vertebrates (ring3) was found in the bacterial artificial chromosome clone, and the close linkage of ring3 and β2M to MHC class I and class II genes was determined by single-strand conformational polymorphism and allele-specific PCR. This study satisfies the long-held conjecture that β2M was linked to the primordial MHC (Ur MHC); furthermore, the apparent stability of the shark genome may yield other genes predicted to have had a primordial association with the MHC specifically and with immunity in general.  相似文献   

8.
MHC class I molecules play an important role in synaptic plasticity of the mammalian nervous system. Proteolytic complexes (proteasomes) produce oligopeptides that are presented on cell surfaces in complexes with MHC class I molecules and regulate many cellular processes beside this. The goal of the present work was to study peculiarities in functioning of proteasomes and associated signaling pathways along with evaluation of NeuN and gFAP expression in different sections of the brain in mice with knockout of β2-microglobulin, a constituent of MHC class I molecules. It was found that the frontal cortex and the brainstem, structures with different ratio of NeuN and gFAP expression, are characterized by opposite changes in the proteasome pool under constant total proteasome levels in B2m-knockout mice in comparison with those in control animals. ChTL-activity as well as expression of LMP7 immune subunit and PA28 regulator of proteasomes was elevated in the cortex of B2m-knockout mice, while these indicators were decreased in the brainstem. The concentrations of the signaling molecules nNOS and HSP70 in B2m-knockout mice were increased in the cortex, while being decreased in the brainstem, and this indicates the possibility of control of expression of the LMP7 subunit and the regulator PA28 by these molecules. Changes in the proteasome pool observed in striatum of B2m-knockout mice are similar to those observed in the brainstem. At the same time, the cerebellum is characterized by a specific pattern of proteasome functioning in comparison with that in all other brain structures. In cerebellum the expression of immune subunits LMP7 and LMP2 and the regulator PA28 was increased, while expression of regulator PA700 was decreased. Deficiency of NeuN and gFAP was revealed in most brain compartments of B2m-knockout mice. Thus, increased expression of the above-mentioned immune subunits and the proteasome regulator PA28 in the cortex and cerebellum may compensate disturbances revealed in the brain structures and the absence of MHC class I molecules. Apparently, this promotes production of peptides necessary for cell-to-cell interactions and maintains nervous system plasticity in B2m-knockout mice.  相似文献   

9.
10.
The non-covalent association of beta 2-microglobulin with MHC class I molecules and MHC class I-type molecules such as FcRn or the hemochromatosis protein (HFE) is of major importance for their function, i.e., antigen presentation, IgG transport, and regulation of iron uptake, respectively. In the human hemochorial placenta, the syncytiotrophoblast forms a continuous epithelial layer covering the villous trees, where it directly contacts maternal blood and, among many other functions, mediates uptake of maternal IgG and iron. The villous syncytiotrophoblast lacks MHC class I molecules but expresses FcRn and HFE. Since data on beta 2-microglobulin synthesis and localization in the term villous syncytiotrophoblast were contradictory, we investigated the subcellular localization of beta 2-microglobulin by immunoelectron microscopy. Synthesis in the trophoblast is demonstrated by colocalization of beta 2-microglobulin with protein disulfide isomerase, a marker protein of the endoplasmic reticulum. The presence of beta 2-microglobulin at the apical plasma membrane corresponds to the recently observed association of beta 2-microglobulin with HFE and FcRn. Localization of beta 2-microglobulin in late endosomes/lysosomes, labeled with antibodies to lysosome membrane antigen LAMP 2, suggests also a degradative route of beta 2-microglobulin internalized by fluid-phase from the maternal blood.  相似文献   

11.
We report structural studies in aqueous solution on backbone cyclic peptides that possess potent antimicrobial activity specifically against Pseudomonas sp. The peptides target the β-barrel outer membrane protein LptD, which plays an essential role in lipopolysaccharide transport to the outer membrane. The peptide L27-11 contains a 12-residue loop (T1W2L3K4K5R6R7W8K9K10A11K12) linked to a DPro–LPro template. Two related peptides were also studied, one with various Lys to ornithine or diaminobutyric acid substitutions as well as a DLys6 (called LB-01), and another containing the same loop sequence, but linked to an LPro–DPro template (called LB-02). NMR studies and MD simulations show that L27-11 and LB-01 adopt β-hairpin structures in solution. In contrast, LB-02 is more flexible and importantly, adopts a wide variety of different backbone conformations, but not β-hairpin conformations. L27-11 and LB-01 show antimicrobial activity in the nanomolar range against Pseudomonas aeruginosa, whereas LB-02 is essentially inactive. Thus the β-hairpin structure of the peptide is important for antimicrobial activity. An alanine scan of L27-11 revealed that tryptophan side chains (W2/W8) displayed on opposite faces of the β-hairpin represent key groups contributing to antimicrobial activity.  相似文献   

12.
Chiral β-amino acids occur as constituents of various natural and synthetic compounds with potentially useful bioactivities. The pyridoxal 5'-phosphate (PLP)-dependent S-selective transaminase from Mesorhizobium sp. strain LUK (MesAT) is a fold type I aminotransferase that can be used for the preparation of enantiopure β-Phe and derivatives thereof. Using x-ray crystallography, we solved structures of MesAT in complex with (S)-β-Phe, (R)-3-amino-5-methylhexanoic acid, 2-oxoglutarate, and the inhibitor 2-aminooxyacetic acid, which allowed us to unveil the molecular basis of the amino acid specificity and enantioselectivity of this enzyme. The binding pocket of the side chain of a β-amino acid is located on the 3'-oxygen side of the PLP cofactor. The same binding pocket is utilized by MesAT to bind the α-carboxylate group of an α-amino acid. A β-amino acid thus binds in a reverse orientation in the active site of MesAT compared with an α-amino acid. Such a binding mode has not been reported before for any PLP-dependent aminotransferase and shows that the active site of MesAT has specifically evolved to accommodate both β- and α-amino acids.  相似文献   

13.
Among various amyloidogenic proteins, β2-microglobulin (β2-m) responsible for dialysis-related amyloidosis is a target of extensive study because of its clinical importance and suitable size for examining the formation of amyloid fibrils in comparison with protein folding to the native state. The structure and stability of amyloid fibrils have been studied with various physicochemical methods, including H/D exchange of amyloid fibrils combined with dissolution of fibrils by dimethylsulfoxide and NMR analysis, thermodynamic analysis of amyloid fibril formation by isothermal calorimetry, and analysis of the effects of pressure on the structure of amyloid fibrils. The results are consistent with the view that amyloid fibrils are a main-chain-dominated structure with larger numbers of hydrogen bonds and pressure-accessible cavities in the interior, in contrast to the side-chain-dominated native structure with the optimal packing of amino acid residues. We consider that a main-chain dominated structure provides the structural basis for various conformational states even with one protein. When this feature is combined with another unique feature, template-dependent growth, propagation and maturation of the amyloid conformation, which cannot be predicted with Anfinsen's dogma, take place.  相似文献   

14.
The main pathogenic process underlying dialysis-related amyloidosis is the accumulation of β-2-microglobulin (β2m) as amyloid fibrils in the musculoskeletal system, and some evidence suggests that Cu(II) may play a role in β2m amyloid formation. Cu(II)-induced β2m fibril formation is preceded by the formation of discrete, oligomeric intermediates, including dimers, tetramers, and hexamers. In this work, we use selective covalent labeling reactions combined with mass spectrometry to investigate the amino acids responsible for mediating tetramer formation in wild-type β2m. By comparing the labeling patterns of the monomer, dimer, and tetramer, we find evidence that the tetramer interface is formed by the interaction of D strands from one dimer unit and G strands from another dimer unit. These covalent labeling data along with molecular dynamics calculations allow the construction of a tetramer model that indicates how the protein might proceed to form even higher-order oligomers.  相似文献   

15.
Classical MHC molecules present processed peptides from endogenous protein antigens on the cell surface, which allows CD8(+) cytotoxic T lymphocytes (CTLs) to recognize and respond to the abnormal antigen repertoire of hazardous cells, including tumor cells. The light chain, β2-microglobulin (β2m), is an essential constant component of all trimeric MHC class I molecules. There is convincing evidence that β2m deficiency generates immune escape phenotypes in different tumor entities, with an exceptionally high frequency in colorectal carcinoma (CRC) and melanoma. Damage of a single β2m gene by LOH on chromosome 15 may be sufficient to generate a tumor cell precommitted to escape. In addition, this genetic lesion is followed in some tumors by a mutation of the second gene (point mutation or insertion/deletion), which produces a tumor cell unable to express any HLA class I molecule. The pattern of mutations found in microsatellite unstable colorectal carcinoma (MSI-H CRC) and melanoma showed a striking similarity, namely the predominance of frameshift mutations in repetitive CT elements. This review emphasizes common but also distinct molecular mechanisms of β2m loss in both tumor types. It also summarizes recent studies that point to an acquired β2m deficiency in response to cancer immunotherapy, a barrier to successful vaccination or adoptive cellular therapy.  相似文献   

16.
β(2)-Microglobulin (β(2)M) modified with advanced glycation end products (AGEs) is a major component of the amyloid deposits in hemodialysis-associated amyloidosis (HAA). However, the effect of glycation on the misfolding and aggregation of β(2)M has not been studied so far. Here we examine the molecular mechanism of aggregate formation of HAA-related ribosylated β(2)M in vitro. We find that the glycating agent d-ribose interacts with human β(2)M to generate AGEs that form aggregates in a time-dependent manner. Ribosylated β(2)M molecules are highly oligomerized compared with unglycated β(2)M, and have granular morphology. Furthermore, such ribosylated β(2)M aggregates show significant cytotoxicity to both human SH-SY5Y neuroblastoma and human foreskin fibroblast FS2 cells and induce intracellular reactive oxygen species (ROS). Presence of the antioxidant N-acetylcysteine (1.0mM) attenuated intracellular ROS and prevented cell death induction in both SH-SY5Y and FS2 cells, indicating that the cytotoxicity of ribosylated β(2)M aggregates depends on a ROS-mediated pathway in both cell lines. In other words, d-ribose reacts with β(2)M and induces the ribosylated protein to form granular aggregates with high cytotoxicity through a ROS-mediated pathway. These findings suggest that ribosylated β(2)M aggregates could contribute to the dysfunction and death of cells and could play an important role in the pathogenesis of β(2)M-associated diseases such as HAA.  相似文献   

17.
Expression of the two isoforms p55 and p40 of HIV-1 Gag proteins relies on distinct translation initiation mechanisms, a cap-dependent initiation and two internal ribosome entry sites (IRESs). The regulation of these processes is complex and remains poorly understood. This study was focused on the influence of the 5'-UTR and on the requirement for the eukaryotic initiation factor (eIF)4F complex components. By using an in?vitro system, we showed substantial involvement of the 5'-UTR in the control of p55 expression. This highly structured 5'-UTR requires the eIF4F complex, especially RNA helicase eIF4A, which mediates initiation at the authentic AUG codon. In addition, the 5'-UTR regulates expression in an RNA concentration-dependent manner, with a high concentration of RNA triggering specific reduction of full-length Gag p55 production. HIV-1 genomic RNA also has the ability to use a strong IRES element located in the gag coding region. We show that this mechanism is particularly efficient, and that activity of this IRES is only poorly dependent on RNA helicase eIF4A when the viral 5'-UTR is removed. HIV-1 genomic mRNA exhibits in?vitro translational features that allow the expression of Gag p55 protein by different mechanisms that involve different requirements for eIF4E, eIF4G, and eIF4A. This suggests that HIV-1 could adapt to its mode of translation according to the availability of the initiation factors in the infected cell.  相似文献   

18.
19.
β-Lactamase inhibitory protein (BLIP) binds and inhibits a diverse collection of class A β-lactamases. Widespread resistance to β-lactam antibiotics currently limits the treatment strategies for Staphylococcus infections. The goals of this study were to determine the binding affinity of BLIP for Staphylococcus aureus PC1 β-lactamase and to identify mutants that alter binding affinity. The BLIP inhibition constant (Ki) for PC1 β-lactamase was measured at 350 nM, and isothermal titration calorimetry experiments indicated a binding constant (Kd) of 380 nM. Twenty-three residue positions in BLIP that contact β-lactamase were randomized, and phage display was used to sort the libraries for tight binders to immobilized PC1 β-lactamase. The BLIPK74G mutant was the dominant clone selected, and it was found to inhibit the PC1 β-lactamase with a Ki of 42 nM, while calorimetry indicated a Kd of 26 nM. Molecular modeling studies suggested that BLIP binds weakly to the PC1 β-lactamase due to the presence of alanine at position 104 of PC1. This position is occupied by glutamate in the TEM-1 enzyme, where it forms a salt bridge with the BLIP residue Lys74 that is important for the stability of the complex. This hypothesis was confirmed by showing that the PC1A104E enzyme binds BLIP with 15-fold greater affinity than wild-type PC1 β-lactamase. Kinetic measurements indicated similar association rates for all complexes with variation in affinity due to altered dissociation rate constants, suggesting that changes in short-range interactions are responsible for the altered binding properties of the mutants.  相似文献   

20.
A melanocyte-stimulating hormone (MSH) has been isolated from extracts of the neurointermediate lobe of the pituitary of the dogfish Squalus acanthias by gel-filtration and ion-exchange chromatography. It had approximately 1% of the potency of mammalian alpha-MSH on bioassays in vitro on frog skin and dogfish skin. Sequence analysis revealed it to be a hexadecapeptide with the following primary structure: Asp-Gly-Asp-Asp-Tyr-Lys-Phe-Gly-His-Phe-Arg-Trp-Ser-Val-Pro-Leu. It appears to be related to the beta-MSH species of mammalian species but has only the sequence -His-Phe-Arg-Trp- in common with the heptapeptide core -Met-Glu-His-Phe-Arg-Trp-Gly- which is characteristic not only of the MSH peptides but also of the adrenocorticotrophins and lipotrophins studied so far. An alpha-MSH was also isolated, 50% of which was amidated at the C-terminus group. Sequence data from this study taken in conjunction with those from a previous study (Lowry & Chadwick, 1970b) revealed it to be a tridecapeptide which is identical with the N-terminal sequence of dogfish adrenocorticotrophin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号