首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
生物多样性与生态系统功能之间的关系及其形成的内在机制还存在很多争议。为了揭示植物群落生产力形成的生态学机制, 采用盆栽方法探讨了物种多样性、物种属性以及施肥水平与植物群落生产力之间的关系。研究结果显示: 在不施肥和每盆施5.0 g磷酸二铵的条件下, 随着物种多样性的增加, 地上生物量增加不显著; 在每盆施10.0 g磷酸二铵的条件下, 随着物种多样性的增加, 地上生物量显著增加。相对于中华羊茅(Festuca sinensis)而言, 垂穗披碱草(Elymus nutans)和垂穗鹅观草(Roegneria nutans)对群落生产力的贡献较大, 但在不同施肥水平和播种密度下, 其影响不完全相同。这表明物种多样性对群落生产力的影响随着土壤肥力的变化而变化; 并且植物群落生产力受组成群落的物种属性影响较大, 而物种属性又与特定时间和特定生境下资源的利用方式相联系。在高肥力水平下, 物种多样性之所以对群落生产力具有正效应, 可能是因为高肥力水平增加了可利用的生态位空间, 最终仍体现在物种组合上。因此, 植物群落的生产力与物种多样性之间没有必然的联系, 而与土壤肥力和土壤肥力决定的物种属性有关。  相似文献   

2.
The abundance of microbes in soil is thought to be strongly influenced by plant productivity rather than by plant species richness per se. However, whether this holds true for different microbial groups and under different soil conditions is unresolved. We tested how plant species richness, identity and biomass influence the abundances of arbuscular mycorrhizal fungi (AMF), saprophytic bacteria and fungi, and actinomycetes, in model plant communities in soil of low and high fertility using phospholipid fatty acid analysis. Abundances of saprophytic fungi and bacteria were driven by larger plant biomass in high diversity treatments. In contrast, increased AMF abundance with larger plant species richness was not explained by plant biomass, but responded to plant species identity and was stimulated by Anthoxantum odoratum. Our results indicate that the abundance of saprophytic soil microbes is influenced more by resource quantity, as driven by plant production, while AMF respond more strongly to resource composition, driven by variation in plant species richness and identity. This suggests that AMF abundance in soil is more sensitive to changes in plant species diversity per se and plant species composition than are abundances of saprophytic microbes.  相似文献   

3.
1 We measured competition intensity (CI) between herbaceous vegetation and tree seedlings ( Quercus macrocarpa and Q. ellipsoidalis ) along an experimental moisture–light gradient. Contrasting theories were tested by comparing variation in competition intensity to changes in neighbour biomass and resource supply and demand.
2 CI based on survival was inversely correlated with net soil water supply (gross supply minus demand by herbaceous vegetation). CI was not positively correlated with either gross resource supply or neighbour biomass, contrary to predictions of Grime's triangular model for plant strategies.
3 Many of the inconsistencies and conflicting results that have characterized the recent literature on plant competition could be eliminated if changes in competition intensity along a resource gradient are compared with changes in net resource supply rather than changes in productivity or neighbour biomass.
4 Tree seedling success in savannas and grasslands may be strongly influenced by the intensity of competition from herbaceous vegetation. Factors that reduce soil water content are likely to increase competition intensity (and reduce seedling success) in these environments, while factors that increase soil water content will favour seedling success through decreased competition for water with herbaceous vegetation.  相似文献   

4.
This study used a plant bioassay to investigate the vesicular-arbuscular mycorrhizal (VAM) inoculum potential of soil from three vegetation types (fern, secondary forest, and grass) in an abandoned pasture in the tropical humid lowlands at La Selva, in northeastern Costa Rica. Growth, measured as seedling height, number of leaves, and total (above- and belowground) biomass, of Stryphnodendron microstachyum Poepp. et Endl. (Synon. S. excelsum Harms) seedlings was significantly lower when grown in soil inoculum from the fern areas than in soil inoculum from the forest and grass areas. However, S. microstachyum seedlings grown in the fern inoculum had significantly greater VAM colonization than seedlings grown in the forest and grass inoculum. In addition, roots collected from a dominant plant species from each of the three vegetation types showed that the fern (Nephrolepsis biserrata) had significantly greater mycorrhizal colonization than the tree (Pentaclethra macroloba (Willd.) Kuntze or the grass (Brachiaria spp.). The results of this study suggest that differences in mycorrhizal inoculum potential among vegetation types and its effects on seedling growth may have important implications for the restoration and management of degraded lands.  相似文献   

5.
Jason D. Fridley 《Oecologia》2002,132(2):271-277
Experimental evidence that plant species diversity has positive effects on biomass production appears to conflict with correlations of species diversity and standing biomass in natural communities. This may be due to the confounding effects of a third variable, resource availability, which has strong control over both diversity and productivity in natural systems and may conceal any positive effects of diversity on productivity. To test this hypothesis, I independently manipulated resource availability (soil fertility) and sown species diversity in a field experiment and measured their individual and interactive effects on productivity. Although fertility was a far stronger predictor of productivity than diversity, the effect of diversity on productivity significantly increased with fertility. Relative yield analyses indicated that plant mixtures of high fertility treatments significantly "overyielded," or were more productive than expected based on monoculture yields of component species. In contrast, plant mixtures of low fertility treatments had significantly lower-than-expected yields. The effect of diversity on productivity was also driven by sampling effects, where more species-rich mixtures were more likely to include particularly productive species. Unexpectedly, the strength of sampling effects was largely insensitive to fertility, although the particular species most responsible for sampling effects did change with fertility. These results suggest that positive effects of species diversity on ecosystem productivity in natural systems are likely to be masked by variation in environmental factors among habitats.  相似文献   

6.
Ecosystems worldwide are increasingly impacted by multiple drivers of environmental change, including climate warming and loss of biodiversity. We show, using a long‐term factorial experiment, that plant diversity loss alters the effects of warming on productivity. Aboveground primary productivity was increased by both high plant diversity and warming, and, in concert, warming (≈1.5 °C average above and belowground warming over the growing season) and diversity caused a greater than additive increase in aboveground productivity. The aboveground warming effects increased over time, particularly at higher levels of diversity, perhaps because of warming‐induced increases in legume and C4 bunch grass abundances, and facilitative feedbacks of these species on productivity. Moreover, higher plant diversity was associated with the amelioration of warming‐induced environmental conditions. This led to cooler temperatures, decreased vapor pressure deficit, and increased surface soil moisture in higher diversity communities. Root biomass (0–30 cm) was likewise consistently greater at higher plant diversity and was greater with warming in monocultures and at intermediate diversity, but at high diversity warming had no detectable effect. This may be because warming increased the abundance of legumes, which have lower root : shoot ratios than the other types of plants. In addition, legumes increase soil nitrogen (N) supply, which could make N less limiting to other species and potentially decrease their investment in roots. The negative warming × diversity interaction on root mass led to an overall negative interactive effect of these two global change factors on the sum of above and belowground biomass, and thus likely on total plant carbon stores. In total, plant diversity increased the effect of warming on aboveground net productivity and moderated the effect on root mass. These divergent effects suggest that warming and changes in plant diversity are likely to have both interactive and divergent impacts on various aspects of ecosystem functioning.  相似文献   

7.
Krichen  Khouloud  Vilagrosa  Alberto  Chaieb  Mohamed 《Plant Ecology》2019,220(10):995-1008

Assessing differences in plant functional traits (PFTs) along climatic gradients is potentially useful for understanding variation within and across populations, and for predicting their responses to climate change. This study investigates the intraspecific variability of several PFTs in Stipa tenacissima (Alpha grass) seedlings from different populations distributed across a climatic gradient. Seven populations from Tunisia to Spain within a 100–600 mm/year rainfall range were selected. Seedlings from each population were grown in a common garden. We expected the functional characteristics to differ among seedling populations according to their climatic gradient. The response patterns were helpful to predict acclimation and fitness under future climatic conditions in these populations. The seedling development analysis showed differences in PFTs among S. tenacissima populations. The biomass traits analysis revealed that higher above-ground biomass was related to higher below-ground development. The leaf traits proved that seedlings with longer leaf length would have less sclerophyllous leaves, a trade-off between productivity and drought resistance. The root traits analysis reflects seedling strategies to maximize resource uptake efficiency. PFTs showed several significant relationships with climatic conditions. The less rainfall, the higher plant allocation to root systems exploring soil. Higher mean temperatures were related to reduced root/plant development. The PFT analysis proves that species followed the ‘optimal partitioning theory’, in that plants preferentially allocate biomass to acquire the resource that most limits their development. However, both the environmental conditions and genetic diversity in S. tenacissima populations influenced seedling growth and behaviour to face ongoing climate change.

  相似文献   

8.
L. H. Fraser  J. P. Grime 《Oecologia》1998,113(2):239-246
We used outdoor microcosms in order to freely manipulate three trophic levels (ladybird/aphid/grass) at two soil fertility levels (low and high). Two hypotheses were tested: (1) that top-down control is only a mechanistic factor at high soil fertility, and (2) that herbivory increases secondary plant succession by preferentially feeding on the fast-growing early-successional grasses. Plant biomass responded dramatically to the high soil fertility treatment, as did aphid numbers in the absence of ladybirds, and ladybird activity (ladybirds feeding on aphids). At low soil fertility, plant biomass was low, aphid numbers were small, and ladybird activity was minimal. Only at high soil fertility did top-down control cause a significant response to plant biomass and species composition. The two fast-growing, early-successional grasses (Poa annua and Arrhenatherum elatius) had a greater biomass in the presence of the ladybirds compared to when the ladybirds were absent, while the slow-growing, late-successional grass (Festuca ovina) suffered. The opposite was found when ladybirds were absent but aphids present. These results suggest that herbivory may increase the rate of secondary succession, but that top-down control of herbivory by carnivores may reduce the impact of herbivory in high productivity communities. Received: 2 May 1997 / Accepted: 25 July 1997  相似文献   

9.
In an experiment on artificial plant communities, the effects of three components of plant diversity—plant species diversity, plant functional group diversity and plant functional diversity—on community productivity and soil water content were compared. We found that simple regression analysis showed a positive diversity effect on ecosystem processes (productivity and soil water content). However, when three components of diversity were included in the multiple regression analyses, the results showed that functional group diversity and functional diversity had more important effects on productivity and resource use efficiency. These results suggested that, compared with species number, functional differences among species and the range of functional traits carried by plants are the basis of biodiversity effects on ecosystem functioning. These diversity effects of increasing functional group diversity or functional diversity were likely because species differing greatly in size, life form, phenology and capacity to capture and use resources efficiently in diverse communities realize complementary resource use in temporal, spatial, and biological ways.  相似文献   

10.
Which processes drive the productivity benefits of biodiversity remain a critical, but unanswered question in ecology. We tested whether the soil microbiome mediates the diversity‐productivity relationships among late successional plant species. We found that productivity increased with plant richness in diverse soil communities, but not with low‐diversity mixtures of arbuscular mycorrhizal fungi or in pasteurised soils. Diversity‐interaction modelling revealed that pairwise interactions among species best explained the positive diversity‐productivity relationships, and that transgressive overyielding resulting from positive complementarity was only observed with the late successional soil microbiome, which was both the most diverse and exhibited the strongest community differentiation among plant species. We found evidence that both dilution/suppression from host‐specific pathogens and microbiome‐mediated resource partitioning contributed to positive diversity‐productivity relationships and overyielding. Our results suggest that re‐establishment of a diverse, late successional soil microbiome may be critical to the restoration of the functional benefits of plant diversity following anthropogenic disturbance.  相似文献   

11.
Despite decades of research, the ecological determinants of microbial diversity remain poorly understood. Here, we test two alternative hypotheses concerning the factors regulating fungal diversity in soil. The first states that higher levels of plant detritus production increase the supply of limiting resources (i.e. organic substrates) thereby increasing fungal diversity. Alternatively, greater plant diversity increases the range of organic substrates entering soil, thereby increasing the number of niches to be filled by a greater array of heterotrophic fungi. These two hypotheses were simultaneously examined in experimental plant communities consisting of one to 16 species that have been maintained for a decade. We used ribosomal intergenic spacer analysis (RISA), in combination with cloning and sequencing, to quantify fungal community composition and diversity within the experimental plant communities. We used soil microbial biomass as a temporally integrated measure of resource supply. Plant diversity was unrelated to fungal diversity, but fungal diversity was a unimodal function of resource supply. Canonical correspondence analysis (CCA) indicated that plant diversity showed a relationship to fungal community composition, although the occurrence of RISA bands and operational taxonomic units (OTUs) did not differ among the treatments. The relationship between fungal diversity and resource availability parallels similar relationships reported for grasslands, tropical forests, coral reefs, and other biotic communities, strongly suggesting that the same underlying mechanisms determine the diversity of organisms at multiple scales.  相似文献   

12.
While there has been much recent interest about the relationships between plant diversity and plant productivity, much remains unknown about how the diversity of mycorrhizal fungi affects plant productivity. We investigated the effects of ectomycorrhizal fungal community composition and diversity on the productivity and growth characteristics of seedlings of two tree species ( Pinus sylvetris and Betula pendula ) as well as their interactions with each other. This involved setting up a mycorrhizal fungal diversity gradient from one to eight species using a design previously demonstrated to be able to separate diversity effects from compositional effects. We found that the eight mycorrhizal fungal species differed in their effects on seedling productivity and that the nature of effects was determined by the fertility of the substrate. Fungal species richness effects were also important in affecting seedling productivity over and above what could be explained by "sampling effect" but only in some situations. For B. pendula in a low fertility substrate there were clear positive causative effects between fungal species richness and productivity with the eight species treatment having over double the productivity of any of the eight monoculture treatments; no diversity effects were, however, detected in a high fertility substrate. For P. sylvestris in a high fertility substrate there were significant negative effects of fungal diversity on productivity while in a low fertility substrate no effects were apparent. The possible mechanistic bases for these results are discussed. The growth of P. sylvestris relative to that of B. pendula when grown in combination was unaffected by mycorrhizal treatments. Our results provide clear evidence that effects of mycorrhizal fungal diversity on productivity are context dependent and may be positive, negative or neutral depending on the situation considered.  相似文献   

13.
Previous research has found that plant diversity declines more quickly in exotic than native grassland plots, which offers a model system for testing whether diversity decline is associated with specific plant traits. In a common garden experiment in the Southern Great Plains in central Texas, USA, we studied monocultures and 9-species mixtures of either all exotic or all native grassland species. A total of 36 native and exotic species were paired by phylogeny and functional group. We used community-level measures (relative abundance in mixture) and whole-plant (height, aboveground biomass, and light capture) and leaf-level traits (area, specific leaf area, and C:N ratio) to determine whether trait differences explained native-exotic differences in functional group diversity. Increases in species’ relative abundance in mixture were correlated with high biomass, height, and light capture in both native and exotic communities. However, increasing exotic species were all C4 grasses, whereas, increasing native species included forb, C3 grass and C4 grass species. Exotic C4 grasses had traits associated with relatively high resource capture: greater leaf area, specific leaf area, height, biomass, and light capture, but similar leaf C:N ratios compared to native C4 grasses. Leaf C:N was consistently higher for native than exotic C3 species, implying that resource use efficiency was greater in natives than exotics. Our results suggest that functional diversity will differ between grasslands restored to native assemblages and those dominated by novel collections of exotic species, and that simple plant traits can help to explain diversity decline.  相似文献   

14.
Arbuscular mycorrhizal (AM) fungal communities can influence the species composition of plant communities. This influence may result from effects of AM on seedling recruitment, although the existing evidence is limited to experimental systems. We addressed the impact of AM fungi on the plant community composition and seedling recruitment of two species – Oxalis acetosella and Prunella vulgaris – in a temperate forest understory. We established a field experiment over two years in which soil fertility (using fertilizer to enhance and sucrose to decrease fertility) and the activity of AM fungi (using fungicide) was manipulated in a factorial design. Species richness, diversity and community composition of understory plants were not influenced by soil fertility or AM fungal activity treatments. However, plant community composition was marginally significantly affected by the interaction of these treatments as the effect of AM fungal activity became evident under enhanced soil fertility. Suppression of AM fungal activity combined with decreased soil fertility increased the number of shoots of herbaceous plants. Unchanged activity of AM fungi enhanced the growth of O. acetosella seedlings under decreased soil fertility, but did not influence the growth of P. vulgaris seedlings. We conclude that the role of AM fungi in structuring plant communities depends on soil fertility. AM fungi can have a strong influence on seedling recruitment, especially for those plants that are characteristic of the habitat.  相似文献   

15.
Assembly history, including the order in which species arrive into a community, can influence long‐term community structure; however we know less about how timing of species arrival may alter assembly especially under varying resource conditions. To explore how the timing of species arrival interacts with resource availability to alter community assembly, we constructed experimental plant communities and manipulated the interval between plantings of groups of seedlings (0, 5, 10, 15 or 20 days) at low and high levels of soil nutrient supply. To see if community changes influenced ecosystem‐scale processes, we measured parameters across the plant–soil continuum (e.g. plant biomass and net ecosystem carbon dioxide exchange). We found that the timing of species arrival had a large impact on community assembly, but the size of the effect depended on soil fertility. As planting interval increased, plant communities diverged further from the control, but the divergence was stronger at high than at low nutrient supply. Our data suggest that at high nutrient supply, early‐planted species preempted light resources more quickly, thus preventing the successful establishment of later arriving species even at short planting intervals. Finally, we found that assembly related divergence in plant communities scaled to impact ecosystem‐level characteristics such as green leaf chemistry, but had little effect on total community biomass and net ecosystem exchange of CO2 and water vapor. Our data indicate that the effect of a stochastic factor, here the timing of species arrival on community composition, depends on the resource level under which the community assembles.  相似文献   

16.
Fertilization causes species loss and species dominance changes in plant communities worldwide. However, it still remains unclear how fertilization acts upon species functional traits, e.g. seed mass. Seed mass is a key trait of the regeneration strategy of plants, which influences a range of processes during the seedling establishment phase. Fertilization may select upon seed mass, either directly by increased nutrient availability or indirectly by increased competition. Since previous research has mainly analyzed the indirect effects of fertilization, we disentangled the direct and indirect effects to examine how nutrient availability and competition influence the seed mass relationships on four key components during seedling establishment: seedling emergence, time of seedling emergence, seedling survival and seedling growth. We conducted a common garden experiment with 22 dry grassland species with a two‐way full factorial design that simulated additional nutrient supply and increased competition. While we found no evidence that fertilization either directly by additional nutrient supply or indirectly by increased competition alters the relationship between seed mass and (time of) seedling emergence, we revealed that large seed mass is beneficial under nutrient‐poor conditions (seedlings have greater chances of survival, particularly in nutrient‐poor soils) as well as under competition (large‐seeded species produced larger seedlings, which suffered less from competition than small‐seeded species). Based on these findings, we argue that both factors, i.e. nutrient availability and competition intensity, ought to be considered to understand how fertilization influences seedling establishment and species composition with respect to seed mass in natural communities. We propose a simple conceptual model, in which seed mass in natural communities is determined by competition intensity and nutrient availability. Here, we hypothesize that seed mass shows a U‐shaped pattern along gradients of soil fertility, which may explain the contrasting soil fertility‐seed mass relationships found in the recent literature.  相似文献   

17.
We measured aboveground plant biomass and soil inorganic nitrogen pools in a biodiversity experiment in northern Sweden, with plant species richness ranging from 1 to 12 species. In general, biomass increased and nitrate pools decreased with increasing species richness. Transgressive overyielding of mixed plant communities compared to the most productive of the corresponding monocultures occurred in communities with and without legumes. N2-fixing legumes had a fertilizing function, while non-legumes had a N retaining function. Plant communities with only legumes had a positive correlation between biomass and soil nitrate content, whereas in plant communities without legumes they were negatively correlated. Both nitrate and ammonium soil pools in mixed non-legume communities were approximately equal to the lowest observed in the corresponding monocultures. In mixed legume/non-legume communities, no correlation was found for soil nitrate with either biomass or legume biomass as percentage of total biomass. The idea of complementarity among species in nitrogen acquisition was supported in both pure non-legume and mixed non-legume/legume communities. In the latter, however, facilitation through increased nitrogen availability and retention, was probably dominating. Our results suggest that diversity effects on biomass and soil N pools through resource use complementarity depend on the functional traits of species, especially N2 fixation or high productivity.  相似文献   

18.
Soil communities are often degraded in mined sites, and facilitating the recovery of soil mutualists such as arbuscular mycorrhizal fungi (AMF) may assist with the restoration of native plants. At a grassland mine restoration site, I compared a commercial AMF inoculum with soil collected from beneath native grasses as a source of inoculum, as well as a control treatment. Field plots were broadcast‐inoculated and seeded with native grasses, and biomass of native and non‐native species was measured in three consecutive years. In addition, greenhouse‐grown seedlings of a native bunchgrass (Stipa pulchra) were inoculated with similar treatments, transplanted into the field, and assessed after 18 months. When broadcast inoculation was used, the local soil inoculum tended to increase non‐native grass biomass, and marginally decreased non‐native forb biomass in the second year of study, but did not significantly affect native grass biomass. Broadcast commercial inoculum had no detectable effects on biomass of any plant group. Stipa pulchra transplants had greater N content and mycorrhizal colonization, and marginally higher shoot mass and K content, when pre‐inoculated with local soil (relative to controls). Pre‐inoculation with commercial AMF increased AMF colonization of the S. pulchra transplants, but did not significantly affect biomass or nutrient content. The findings indicate that at this site, the use of local soil as an inoculum had greater effects on native and non‐native plants than the commercial product used. In order to substantially increase native grass performance, inoculation of transplanted plugs may be one potential strategy.  相似文献   

19.
At two field sites that differed in fertility, we investigated how species richness, functional group diversity, and species composition of constructed plant communities influenced invasion. Grassland communities were constructed to be either functionally diverse or functionally simple based on belowground resource use patterns of constituent species. Communities were also constructed with different numbers of species (two or five) to examine interactions between species richness, functional diversity and invasion resistance. We hypothesized that communities with more complementary belowground resource use (i.e., more species rich and more functionally diverse communities) would be less easily invaded than communities with greater degrees of belowground resource use overlap. Two contrasting invasive species were introduced: an early-season, shallow rooting annual grass, Bromus hordeaceus (soft chess), and a late-season, deep rooting annual forb, Centaurea solstitialis (yellow starthistle). Invader responses to species richness and functional diversity treatments differed between sites. In general, the more similar the patterns of belowground resource use between residents of the plant community and the invader, the poorer the invader’s performance. Complementarity or overlap of resource use among species in the constructed communities appeared to affect invader success less than complementarity or overlap of resource use between the invader and the species present in the community.  相似文献   

20.
Previous studies on biodiversity and soil food web composition have mentioned plant species identity, as well as plant species diversity as the main factors affecting the abundance and diversity of soil organisms. However, most studies have been carried out under limitations of time, space, or appropriate controls. In order to further examine the relation between plant species diversity and the soil food web, we conducted a three-year semi-field experiment in which eight plant species (4 forb and 4 grass species) were grown in monocultures and mixtures of two, four and eight plant species. In addition there were communities with 16 plant species. We analyzed the abundance and identity of the nematodes in soil and roots, including feeding groups from various trophic levels (primary and secondary consumers, carnivores, and omnivores) in the soil food web.
Plant species diversity and plant identity affected the diversity of nematodes. The effect of plant diversity was attributed to the complementarity in resource quality of the component plant species rather than to an increase in total resource quantity. The nematode diversity varied more between the different plant species than between different levels of plant species diversity, so that plant identity is more important than plant diversity. Nevertheless the nematode diversity in plant mixtures was higher than in any of the plant monocultures, due to the reduced dominance of the most abundant nematode taxa in the mixed plant communities. Plant species identity affected the abundances of the lower trophic consumer levels more than the higher trophic levels of nematodes. Plant species diversity and plant biomass did not affect nematode abundance. Our results, therefore, support the hypothesis that resource quality is more important than resource quantity for the diversity of soil food web components and that plant species identity is more important than plant diversity per se.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号