首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The characteristic pulsatile secretion of GnRH from hypothalamic neurons is dependent on an autocrine interaction between GnRH and its receptors expressed in GnRH-producing neurons. The ontogeny and function of this autoregulatory process were investigated in studies on the properties of GnRH neurons derived from the olfactory placode of the fetal rat. An analysis of immunocytochemically identified, laser-captured fetal rat hypothalamic GnRH neurons, and olfactory placode-derived GnRH neurons identified by differential interference contrast microscopy, demonstrated coexpression of mRNAs encoding GnRH and its type I receptor. Both placode-derived and immortalized GnRH neurons (GT1-7 cells) exhibited spontaneous electrical activity that was stimulated by GnRH agonist treatment. This evoked response, as well as basal neuronal firing, was abolished by treatment with a GnRH antagonist. GnRH stimulation elicited biphasic intracellular calcium ([Ca2+]i) responses, and both basal and GnRH-stimulated [Ca2+]i levels were reduced by antagonist treatment. Perifused cultures released GnRH in a pulsatile manner that was highly dependent on extracellular Ca2+. The amplitude of GnRH pulses was increased by GnRH agonist stimulation and was diminished during GnRH antagonist treatment. These findings demonstrate that expression of GnRH receptor, GnRH-dependent activation of Ca2+ signaling, and autocrine regulation of GnRH release are characteristics of early fetal GnRH neurons and could provide a mechanism for gene expression and regulated GnRH secretion during embryonic migration.  相似文献   

2.
The neuroendocrine manifestations of puberty converge on changes in GnRH secretion. Their appraisal through the assay of GnRH-like material in 24-hour urine extracts shows an increased excretion of this material in the late prepubertal period. The most striking pubertal changes in GnRH secretion occur on a circadian and ultradian basis. In man, they can be evaluated only indirectly. The circadian variations in LH and FSH secretion characteristic of puberty may be observed in timed fractions of 24-hour urine with some delay when compared to the variations of plasma levels. Studies on the frequency of pulsatile LH secretion and during chronic intermittent administration of GnRH support the existence of an increased frequency of GnRH secretory episodes at puberty. LH response to synthetic GnRH is directly related to the frequency of stimulation by endogenous GnRH pulses and provides a very useful index of neuroendocrine maturation in patients with delayed or precocious puberty. A direct evaluation of pulsatile GnRH secretion is possible using the rat hypothalamus in vitro. In these experimental conditions, the frequency of pulsatile GnRH release increases during very early stages of sexual maturation in the male rat. GnRH itself and beta-endorphin are inhibitory regulators of GnRH secretion in vitro and may participate in the mechanisms restraining the pulse-generating machinery in the hypothalamus before puberty.  相似文献   

3.
There are reports that both interleukin-1 beta and interleukin-6 (IL-6) stimulate the release of adrenocorticotropin through stimulation of hypothalamic corticotropin-releasing factor. We established a primary culture system for hypothalamic neurons producing gonadotropin-releasing hormone (GnRH) and examined whether IL-6 stimulated their GnRH secretion. We demonstrated immunohistochemically that some of these neurons contained GnRH-like immunoreactivity. In primary cultures of these GnRH neurons, we found that the calcium ionophore A23187 stimulated GnRH secretion in a dose- and time-dependent manner. These hypothalamic cells secreted IL-6 spontaneously, producing about 10 ng/l in 24 h, and their IL-6 secretion was significantly stimulated by E2 at 10(-9)-10(-8) mol/l. This stimulatory effect was observed within 3 h. IL-6 also stimulated the release of GnRH in a dose- and time-dependent manner, and these effects of IL-6 were significantly blocked by anti-IL-6 antiserum. These results suggest that the central action of IL-6 on the GnRH neurons may be an important physiological event in the hypothalamus.  相似文献   

4.
Olfactory dysfunction has been implicated in various neurodegenerative diseases including Parkinson's and Alzheimer's disease but, despite intense interest in the neurobiology of the olfactory bulb (OB), studies of neurodegenerative mechanisms have not been attempted in primary OB cultures. This study was aimed at developing a primary OB culture under serum-free conditions in order to investigate injury and excitotoxicity in vitro. Olfactory bulbs from rat pups were rapidly trypsinised and mechanically dissociated and the resultant single cell suspension was centrifuged through a high bovine serum albumin concentration gradient to reduce cellular debris before being seeded in multi-well culture plates. Cells were plated in neurobasal medium containing 0.5 mM glutamine, 25 mM K+, 2% B27 and 10% fetal calf serum (FCS) for 24 h and, after 1 day in vitro (div1), were maintained without FCS. At div8, neurones exhibited extensive neuritic networks, were present as a monolayer and were mainly bipolar and immunopositive for γ-aminobutyric acid indicating that they were intrinsic OB neurones. At div8, neurones (positive for microtubule-associated protein-2, 73%) predominated over astrocytes (positive for glial fibrillary acidic protein, 27%). Cellular injury produced by staurosporine, hydrogen peroxide and kainate, when assessed by morphological and biochemical procedures, was shown to be concentration-dependent and significantly reduced the numbers of neurones and astrocytes. Further analyses of kainate-induced injury revealed the presence of TUNEL-positive cells (indicative of apoptosis) and increases in intracellular free calcium, both of which were antagonised by CNQX. Thus, the serum-free culture developed here is amenable to morphological and high throughput neurochemical analyses of mechanisms contributing to the injury of OB neurones in vitro. This work was supported by a Program Grant (no. 236805) from NH&MRC (Australia), of which P.M.B. is a Research Fellow.  相似文献   

5.
6.
Progesterone secretion has been observed to be episodic in the late luteal phase of the oestrous cycle of ewes and is apparently independent of luteinizing hormone (LH). This study investigated the effects of suppressing the pulsatile release of LH in the early or late luteal phase on the episodic secretion of progesterone. Six Scottish Blackface ewes were treated i.m. with 1 mg kg-1 body weight of a potent gonadotrophin-releasing hormone (GnRH) antagonist on either day 4 or day 11 of the luteal phase. Six ewes received saline at each time and acted as controls. Serial blood samples were collected at 10 or 15 min intervals between 0 and 8 h, 24 and 32 h, and 48 and 56 h after GnRH antagonist treatment and daily from oestrus (day 0) of the treatment cycle for 22 days. Oestrous behaviour was determined using a vasectomized ram present throughout the experiment. Progesterone secretion was episodic in both the early and late luteal phase with a frequency of between 1.6 and 3.2 pulses in 8 h. The GnRH antagonist abolished the pulsatile secretion and suppressed the basal concentrations of LH for at least 3 days after treatment. This suppression of LH, in either the early or late luteal phase, did not affect the episodic release of progesterone. Daily concentrations of progesterone in plasma showed a minimal reduction on days 11 to 14 after GnRH antagonist treatment on day 4, although this was significant (P < 0.05) only on days 11 and 13. There was no effect of treatment on day 11 on daily progesterone concentration, and the timing of luteolysis and the duration of corpus luteum function was unaffected by GnRH antagonist treatment on either day 4 or day 11. These results indicate that the episodic secretion of progesterone during the luteal phase of the oestrous cycle in ewes is independent of LH pulses and normal progesterone secretion by the corpus luteum can be maintained with minimal basal concentrations of LH.  相似文献   

7.
Our aim was to study the inhibitory and facilitatory factors possibly accounting for the undetectable activity of the GnRH pulse generator in late fetal life in vitro and its awakening in early postnatal life. Gamma aminobutyric acid (GABA(A)) receptor antagonism using SR 95 531 did not cause any secretory pulse in fetal explants, whereas a significant stimulation of GnRH pulse frequency was obtained at 5 and 15 days. GnRH secretory response to repeated N-methyl-D-aspartate (NMDA) stimulation showed progressive disappearance, indicating that the inhibitory autofeedback was operating. GnRH release caused by glutamine was respectively 9% and 20% of that evoked by glutamate in fetal and 5-day-old rats whereas both amino acids were equally active at 15 days. Explants obtained after cesarean section performed at onset of labor did not show any secretory pulse, while pulses could be observed with explants obtained 2 h after vaginal delivery. Incubation of fetal explants with oxytocin (10(-8) M) or prostaglandin E2 (PGE2) (10(-6) M) resulted in occurrence of GnRH secretory pulses. A facilitatory effect of the oxytocin was shown to persist on Days 1, 5, and 15 and inhibitory effects of an oxytocin receptor antagonist provided some evidence of endogenous oxytocin involvement. We conclude that, in the fetal rat hypothalamus, GnRH inhibitory autofeedback and GABAergic inputs do not account for the absence of pulsatile GnRH secretion in vitro. A low rate of glutamate biosynthesis from glutamine is a possibly limiting factor. Oxytocin and PGE2 can play a facilitatory role in the postpartal occurrence of pulsatile GnRH secretion.  相似文献   

8.
Three experiments were conducted to determine the effects of passively immunizing pigs against gonadotropin releasing hormone (GnRH) during the follicular phase of the estrous cycle. In Experiment 1, sows were given GnRH antibodies at weaning and they lacked estrogen secretion during the five days immediately after weaning and had delayed returns to estrus. In Experiment 2, gilts passively immunized against GnRH on Day 16 or 17 of the estrous cycle (Day 0 = first day of estrus) had lower (P<0.03) concentrations of estradiol-17beta than control gilts, and they did not exhibited estrus at the expected time (Days 18 to 22). When observed three weeks after passive immunization, control gilts had corpora lutea present on their ovaries, whereas GnRH-immunized gilts had follicles and no corpora lutea. The amount of GnRH antiserum given did not alter (P<0.05) serum concentrations of LH or pulsatile release of LH in sows and gilts. In Experiment 3, prepuberal gilts were given 1,000 IU PMSG at 0 h and GnRH antiserum at 72 and 120 h. This treatment lowered the preovulatory surge of LH and FSH, but it did not alter serum estradiol-17beta concentrations, the proportion of pigs exhibiting estrus, or the ovulation rate. These results indicate that passive immunization of pigs against GnRH before initiation of or during the early part of the follicular phase of the estrous cycle retards follicular development, whereas administration of GnRH antibodies during the latter stages of follicular development does not have an affect. Since the concentration of antibodies was not high enough to alter basal or pulsatile LH secretion, the mechanism of action of the GnRH antiserum may involve a direct ovarian action.  相似文献   

9.
The effects of naloxone and beta-endorphin on LH secretion by pig pituitary cells were studied in primary cultures. On Day 4 of culture, cells (10(5) seeded/well) were challenged with 10(-9), 10(-8) or 10(-7) M gonadotrophin-releasing hormone (GnRH), 10(-10), 10(-9), 10(-8) or 10(-7) M-beta-endorphin or 10(-6) M-naloxone individually or in combinations. Secreted LH was measured at 4 h and 24 h after treatment and cellular content of LH was measured after 24 h. Basal LH secretion (control) was 23.5 +/- 7.6 and 36.9 +/- 10.3 ng/well at 4 h and 24 h, respectively. Relative to control at 4 h, 10(-9), 10(-8) or 10(-7) M-GnRH stimulated (P less than 0.05) LH secretion 140%, 210% and 250%, respectively. At 24 h, LH secretion was increased (P less than 0.05) by GnRH compared to control, but the dose-response to GnRH was absent. Naloxone increased (P less than 0.01) LH secretion 166 +/- 13% at 4 h and 141 +/- 13% (P less than 0.06) at 24 h. Secretion of LH after simultaneous addition of 10(-8) M-GnRH plus naloxone was greater (P less than 0.01) than after GnRH alone at 4 h but not at 24 h. beta-Endorphin at 10(-10), 10(-9), 10(-8) or 10(-7) M failed to alter basal LH secretion at 4 h but decreased secretion at 24 h, while cellular LH content was similar to control at 24 h.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The development of in vitro models able to support the long-term viability and function of acinar cells is critical for exploring pancreatic pathophysiology. Despite considerable efforts, no long-term culture models for non-transformed pancreatic acini exist. Our aim was to develop and validate culture conditions for this purpose. An explant outgrowth culture design was established in which mouse pancreatic explants were cultured at the gas-liquid interphase. An enriched culture medium, pH 7.8, was employed to promote the selective outgrowth of acinar cells and to support their differentiated phenotype. After 7 days, the outgrown primary acinar cells were subcultured and maintained up to an additional 7 days as secondary monolayers on tissue culture plastic. Measurements of basal and caerulein-induced amylase secretion, phase-contrast microscopy and immunohistochemical analyses were used to characterize the cultures. Explants retained their pancreatic cytoarchitecture for 2 days in vitro. A triphasic dose response to caerulein was detected in 7-day primary cultures. The maximal rate of secretion was 1.2-fold versus basal (p=0.009) and 1.7-fold versus 1 pM caerulein (p=0.014). In secondary cultures the response was biphasic with maximal rates of secretion being 1.9-fold in 3- to 4-day cultures at 0.01 nM (p=0.049) and 2-fold in 6- to 7-day cultures at 0.1 nM (p=0.003). The present culture model provides a means to obtain functionally competent normal mouse acinar cells for long-term in vitro experimentation.  相似文献   

11.
The release of progesterone (P), estrone (E1), estradiol (E2) and estriol (E3) from human placental tissue in vitro was found to be related to the gestational age of the placenta. The basal release of P, E1 and E2 on Day 1 of culture was highest from placentas of early gestation (9-13 wk). The release of P then declined, reaching a nadir by 15 wk, and continued at that level. The release of E1 and E2, reached a nadir at 17 weeks, and then again increased by term. In contrast, the basal release of E3 increased with increasing gestational age of the placenta. Thus, it appears that differing factors may influence placental P, E1, E2 and E3 production. In addition, the effect of synthetic gonadotropin-releasing hormone (GnRH) on these hormonal releases was studied. The stimulation of P by GnRH was greatest in placentas of 16 and 17 wk of gestation after extended culture when the basal release of P had declined. As much as a 240-fold increase was observed on the eighth day of culture. A large stimulation of P (32-fold) was also observed in the term placental cultures. A stimulation of E1 and E2 by GnRH was observed during the initial days of culture and in mid-gestational placental cultures (16-17 wk). A stimulation of E2 only was also observed at 13-15 wk and at term. A stimulation of E3 was observed in certain individual placentas. A correlation of the P and human chorionic gonadotropin (hCG) response to GnRH stimulation was noted, as well as an inverse relation of estrogens and hCG stimulation by GnRH. These data demonstrate that steroidogenic competence of the placenta differs with gestational age and that GnRH can influence steroid release. The degree and pattern of response to GnRH varied with the gestational age of the placenta and its endocrine milieu.  相似文献   

12.
Hypogonadal (hpg) mice were injected once daily with 10 ng, 50 ng or 1 microgram GnRH for 5, 10 or 20 days or 12 times daily with 4.2 ng GnRH for 5 days. Basal and hCG-stimulated production in vitro of androstenedione, testosterone and 5 alpha-androstane-3 alpha,17 beta-diol (androstanediol) were measured by radioimmunoassay. All doses of GnRH increased testicular weight and in-vitro androgen production although seminal vesicle weights were unchanged and serum testosterone concentrations remained undetectable. After 5 days' treatment androstenedione and androstanediol were the dominant androgens produced, the latter indicating the presence of high levels of 5 alpha-reductase. By 20 days testosterone production was predominant after treatment with higher doses of GnRH. Total androgen production (androstenedione + testosterone + androstanediol) after 5 and 10 days was similar at all concentrations of GnRH used. After 20 days' treatment total androgen production was significantly greater with 50 ng GnRH/day than with 10 or 1000 ng/day. Multiple daily injections of 4.2 ng GnRH (total dose 50 ng/day) had no greater effect on androgen production in vitro compared to single daily injections of 50 ng. This suggests that under the conditions used in this study the testis does not require pulsatile release of the gonadotrophins. The pattern of [3H]pregnenolone metabolism was measured after 5 days injection of 50 ng GnRH/day. Compared to control hpg animals there was a significant increase in formation of C19 steroids, synthesis being solely through the 4-ene pathway. These results show that GnRH treatment of hpg mice will induce testicular steroidogenesis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
P H Li 《Life sciences》1987,41(22):2493-2501
The effect of cortisol or adrenocorticotropic hormone (ACTH) on basal and gonadotropin-releasing hormone (GnRH)-induced secretion of luteinizing hormone (LH) was studied in vitro using dispersed pig pituitary cells. Pig pituitary cells were dispersed with collagenase and DNAase and then grown in McCoy's 5a medium containing 10% dextran charcoal-pretreated horse serum and 2.5% fetal calf serum for 3 days. Cells were preincubated with cortisol or ACTH before GnRH was added. When pituitary cells were incubated with 400 micrograms cortisol/ml medium for 6 h or longer, increase basal secretion of LH was observed. However, GnRH-induced LH release was reduced by cortisol. The degree of this reduction was dependent on cortisol, and a concentration of cortisol higher than 100 micrograms/ml was needed. Cortisol also inhibited the 17 beta-estradiol-induced increase in GnRH response. ACTH-(1-24), ACTH-(1-39), or porcine ACTH had no influence on GnRH-induced LH secretion. Our results show that cortisol can act directly on pig pituitary to inhibit both normal and estradiol-sensitized LH responsiveness to GnRH.  相似文献   

14.
An increase in episodic release of LH is putatively the initial event leading to the onset of postpartum ovarian cyclicity in ewes. This experiment was conducted to determine the relationship between hypothalamic release of GnRH and onset of pulsatile secretion of LH during postpartum anestrus. Control ewes (n = 7) were monitored during the postpartum period to determine when normal estrous cycles resumed. In controls, the mean interval from parturition to the first postpartum estrus as indicated by a rise in serum progesterone greater than 1 ng/mg was 25.8 +/- 0.6 days. Additional ewes (n = 4-5) at 3, 7, 14, and 21 days postpartum (+/- 1 day) were surgically fitted with cannula for collection of hypophyseal-portal blood. Hypophyseal-portal and jugular blood samples were collected over a 6- to 7-h period at 10-min intervals. The number of GnRH pulses/6 h increased (p less than 0.05) from Day 3 postpartum (2.2 +/- 0.5) to Days 7 and 14 (3.6 +/- 0.2 and 3.9 +/- 0.4, respectively). A further increase (p less than 0.05) in GnRH pulse frequency was observed at Day 21 postpartum (6.4 +/- 0.4 pulses/6 h). Changes in pulsatile LH release paralleled changes observed in pulsatile GnRH release over Days 3, 7, 14, and 21 postpartum (0.83 +/- 0.3, 2.8 +/- 0.4, 2.9 +/- 0.6, and 4.0 +/- 1.1 pulses/6 h, respectively). GnRH pulse amplitude was higher at Day 21 than at Days 3, 7, or 14 postpartum. These findings suggest that an increase in the frequency of GnRH release promotes the onset of pulsatile LH release during postpartum anestrus in ewes.  相似文献   

15.
Previous in vivo studies from our laboratory suggested that glucocorticoids antagonize estrogen-dependent actions on LH secretion. This study investigated whether corticosterone (B) may have similar actions on gonadotropin biosynthesis and secretion in vitro. Enzymatically dispersed anterior pituitary cells from adult female rats were cultured for 48 h in alpha-modified Eagle's medium containing 10% steroid-free horse serum with or without 0.5 nM estradiol (E2). The cells were then cultured for 24 h with or without B in the presence or absence of E2. To evaluate hormone release, 5 x 10(5) cells were incubated with varying doses of GnRH (0, 10(-11)-10(-7) M) or pulsatile GnRH (10(-9) M; 20 min/h) for 4 h. Cell and medium LH and FSH were measured by RIA. To evaluate LH biosynthesis, 5 x 10(6) cells were incubated for an additional 24 h with 10(-10) M GnRH, 60 microCi 3H-glucosamine (3H-Gln), 20 microCi 35S-methionine (35S-Met), and the appropriate steroid hormones. Radiolabeled precursor incorporation into LH subunits was determined by immunoprecipitation, followed by SDS-PAGE. Continuous exposure to GnRH stimulated LH release in a dose-dependent manner, and this response was enhanced by E2. B by itself had no effect on LH release, but inhibited LH secretion in E2-primed cells at low concentrations of GnRH (10(-10) M or less). Total LH content was not altered by GnRH or steroid treatment. Similar effects of B were observed in cells that were given a pulsatile GnRH stimulus. In contrast to LH, E2 or B enhanced GnRH-stimulated FSH release at the higher doses of GnRH, while the combination of E2 and B increased basal and further augmented GnRH-stimulated release. Total FSH content was also increased in the presence of B, but not E2 alone, and was further augmented in cells treated with both steroids. There were no effects of the steroids on the magnitude of FSH release in response to GnRH pulses, but the cumulative release of FSH was greater in the E2 + B group compared to controls, indicating an increased basal release. Independent of E2, B suppressed the incorporation of 3H-Gln into LH by more than 50% of control, with only subtle effects on the incorporation of 35S-Met.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
In an in vitro bioassay using rat pituitary cell cultures the effect of contraceptive progestins was tested on basal and gonadotropin-releasing hormone (GnRH)-induced luteinizing hormone (LH) and follicle-stimulating hormone (FSH) secretion in vitro. Progestins diminished gonadotropin release in pituitary cells stimulated with GnRH, but did not alter basal values. This inhibitory effect was dose dependent in a range of 10(-10)-10(-5) M tested and the inhibitory action of most of the progestins examined was more potent than that of progesterone. The maximal reduction of LH and FSH values was by 60% of GnRH-induced control levels. Progestins also caused a shift in sensitivity of cells to GnRh (10(-12)-10(-6) M). When time dependence was investigated, some progestins potentiated GnRH effect on gonadotropins in pituitary cell cultures pre-incubated for a short time (4 h) with steroids. More prolonged pre-incubations from 23 to 71 h resulted in a progressive suppression of LH and FSH response to GnRH (10(-7) M). In order to examine intracellular effects, cells were pretreated with progestins and inositol phosphate metabolism was investigated. The data obtained in pituitary cells give evidence that polyphosphoinositide breakdown is potentially an early step in the action of GnRH on gonadotropin secretion by providing diacylglycerol and inositol phosphates. Addition of gonadotropin-releasing hormone to myo-2[3H]inositol-prelabeled rat pituitary cells in primary culture evoked a dose-dependent increase of the accumulation of [3H]inositol phosphates with a rise of inositol triphosphate, inositol diphosphate and inositol monophosphate within 1 min. Using one contraceptive progestin, gestoden, inositol phosphate production was inhibited by 80% compared to controls of GnRH-treated cells without the addition of steroids. The data obtained in this study suggest that this in vitro bioassay using rat pituitary cells is a useful tool in testing progestational compounds regarding their potency on gonadotropin release. In addition, these results show that one possible site of interference of progestins with GnRH-induced gonadotropin secretion may involve polyphosphoinositide breakdown.  相似文献   

17.
The preovulatory surge of gonadotropins induces meiotic maturation of the oocyte, the follicular/luteal phase shift in hormone production, and ovulation. This complex and rapid series of developmental changes is difficult to study in large mammals, such as primates and ruminants, because variability in the length of individual reproductive cycles makes it virtually impossible to predict the time of the LH surge. We have validated an experimental model for inducing the LH surge and ovulation in cattle and used it to study the sequence of changes in hormone secretion and some of the mechanisms of these changes. Luteolysis and a follicular phase were induced by injection of prostaglandin F(2alpha); injection of a GnRH analogue 36 h later induced an LH surge and ovulation. The LH surge peaked 2 h after GnRH and ovulation followed 22-31 h after the surge, consistent with the periovulatory interval in natural cycles. The ensuing luteal phase was normal, both in length and in concentrations of circulating progesterone. In experiment I, the uteroovarian effluent was collected, via cannulation of the vena cava, at frequent intervals relative to GnRH injection. Circulating estradiol declined progressively after GnRH, reaching a nadir by 8-10 h before ovulation, whereas concentrations of androstenedione and testosterone remained constant. In experiment II, preovulatory follicles were obtained at 0, 3.5, 6, 12, 18, or 24 h after GNRH: Concentrations of androgens and estradiol were measured in follicular fluid and medium from cultures of follicle wall (theca + granulosa cells); steady-state levels of mRNA for 17alpha-hydroxylase (17alphaOH) and P450 aromatase were measured in follicular tissue. Shortly after the LH surge (3.5 h post-GnRH) there was an acute increase in the capacity of follicular tissue to secrete androstenedione, but not estradiol, in vitro. Thereafter, both androgens and estradiol declined, both in follicular fluid and in medium collected from cultures of follicle wall. Levels of mRNA for 17alphaOH and aromatase in follicle wall decreased significantly by 6 h after GnRH, suggesting that declining levels of these enzymes underlie the decreases in steroid production by follicular cells. These results show that in cattle the preovulatory decrease in follicular estradiol production is mediated by redundant mechanisms, because androgen production and the capacity of granulosa cells to convert androgens to estradiol decline coordinately, in concert with decreases in mRNA for 17alphaOH and P450 aromatase.  相似文献   

18.
The development of gamma-glutamyl transpeptidase (GGT) activity in neurones and glial cells was studied in primary cell cultures derived from the cerebral hemispheres of chick embryos. GGT activity was found in both basic types of nervous tissue cells. It was always higher in glial cell cultures, where it was up to 2.3-fold the values in neurone-enriched cultures. If the culture medium contained foetal calf serum, the GGT activity of both types of nerve cells was higher than in the presence of inactivated calf serum. Comparison with the in vivo situation showed that the level of GGT activity in nerve cell cultures was significantly lower. Between the seventh day of embryogenesis and the third day of postnatal development of the nerve cells, there were marked differences between the GGT activity of cells maintained under in vitro conditions and cells of the same age in brain tissue homogenate. GGT activity in cerebral hemisphere homogenates from a 17-day-old embryos amounted to 4-fold the activity in a primary glial cell culture and to 16-fold the value in a neurone-enriched culture from hemispheres at the same stage of development.  相似文献   

19.
The release of alpha-human chorionic gonadotropin (alpha hCG), gonadotropin human chorionic gonadotropin (hCG) and human chorionic somatomammotropin (hCS) in vitro from placentas of different gestational ages was studied. In addition, the effect of gonadotropin-releasing hormone (GnRH) on these hormonal releases, as related to the gestational age of the placenta cultured and the dose of GnRH, was determined. The basal release of alpha hCG and hCG was greatest at 9-13 wk of gestation (1000-1500 ng/mg and 250-350 ng/mg, respectively). Lowest release rates were at term (28 ng/mg and 20 ng/mg, respectively). Hormonal release declined with extended culture, except from the cultures of 13- and 15-wk placentas, in which the initially high release continued throughout the 8 days of culture. The initial release of hCS was low at 6 wk, increased to maximum rates by 15 wk, and was similar to the initial rate of release at term. Gonadotropin-releasing hormone stimulated the release of alpha hCG and hCG most dramatically in cultures of 16-wk and 17-wk placentas, where as much as a 400- and 250-fold increase, respectively, on Day 6 of culture was observed (p less than 0.0001). In term placenta cultures after 6 days in vitro, a 20-fold stimulation of alpha hCG and a 10-fold increase of hCG was effected by GnRH (p less than 0.001). The largest responses of alpha hCG and hCG to GnRH were observed when estrogen levels were low. Dose-related responses were observed in some placentas, yet in some instances, maximal effects were attained with all doses utilized in these studies (0.2 to 50 micrograms/ml). These data demonstrate that human placentas of different gestational ages have varying hormonogenic capabilities in vitro. The data also establish that synthetic GnRH is capable of stimulating alpha hCG and hCG production, but the degree and pattern of response to GnRH stimulation are related to the gestational age of the placental tissue and its time in culture. The most responsive period to exogenous GnRH stimulation of alpha hCG and hCG release was on Days 5 and 6 of culture, when basal estrogen release was very low. These data support the hypothesis that hCG release might be controlled by a chorionic GnRH stimulation and suggest that local steroid levels may modulate the hCG response to GnRH stimulation.  相似文献   

20.
The proper maintenance of reproduction requires the pulsatile secretion of gonadotropin-releasing hormone (GnRH), which is ensured by synchronized periodic firing of multiple GnRH neurons. Both hormone secretion and electrophysiological properties of GnRH cells are influenced by estrogen. The impact of 17beta-estradiol treatment on the function of voltage gated A- and K-type potassium channels, known modulators of firing rate, was therefore examined in our experiments using immortalized GnRH-producing GT1-7 neurons. Whole cell patch clamp recordings showed the absence of the A-type current in GT1-7 cells cultured in estrogen-free medium and after 8h 17beta-estradiol treatment. Exposure of the cells to 17beta-estradiol for 24 and 48 h, respectively, resulted in the appearance of the A-type current. The induction of the A-type current by 17beta-estradiol was dose-related (50 pM to 15 nM range). In contrast, the K-type potassium current was apparent in the estrogen-free environment and 17beta-estradiol administration significantly decreased its amplitude. Co-administration of 17beta-estradiol and estrogen receptor blocker, Faslodex (ICI 182,780; 1 microM) abolished the occurrence of the A-type current. Real-time PCR data demonstrated that expression of the Kv4.2 subunit of the A-type channel was low at 0, 0.5, 2 and 8h, peaked at 24h and diminished at 48 h 17beta-estradiol treatment (15 nM). These data indicate that potassium channels of GT1-7 neurons are regulated by estrogen a mechanism that might contribute to modulation of firing rate and hormone secretion in GnRH neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号