首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Tyrosine phosphorylation in the cytoplasmic domains of FcepsilonRI by the Src family kinase Lyn initiates a signaling cascade leading to mast cell activation. In this study, we show that a recently identified transmembrane protein, Csk-binding protein (Cbp), also known as phospoprotein associated with glycosphingolipid-enriched microdomains (PAG), negatively regulates FcepsilonRI signaling. In rat basophilic leukemia (RBL)-2H3 cells, the levels of tyrosine phosphorylation of Cbp/PAG and its association with Csk, a negative regulator for Lyn, significantly elevate immediately after aggregation of FcepsilonRI. An overexpression of Cbp/PAG in RBL-2H3 cells inhibits FcepsilonRI-mediated cell activation. This is accompanied with decreased levels of tyrosine phosphorylation of FcepsilonRI, association of FcepsilonRI with Lyn, and FcepsilonRI-associated tyrosine kinase activity. These findings combined with the fact that Cbp/PAG, Lyn, and aggregated FcepsilonRI are localized to lipid rafts, suggest that upon FcepsilonRI aggregation Cbp/PAG down-regulates the receptor-associated Lyn activity through relocating Csk to rafts, thereby efficiently mediating feedback inhibition of FcepsilonRI signaling.  相似文献   

2.
Polyunsaturated fatty acids (PUFAs) such as arachidonic acid (AA) have been shown to modulate a number of inflammatory disorders. Mast cells play a critical role in the initiation and maintenance of inflammatory responses. However, the effects of PUFAs on mast cell functions have not been fully addressed. We here-in examined the effects of PUFAs on the high affinity IgE receptor (FcepsilonRI)-mediated mast cell activation using RBL-2H3 cells, a rat mast cell line, that were cultured in the medium containing palmitic acid (PA), AA, or the AA analogs mead acid (MA) and eicosapentaenoic acid (EPA). In AA-supplemented cells, the FcepsilonRI-mediated beta-hexosamidase and TNF-alpha release, calcium (Ca(2+)) influx, and some protein tyrosine phosphorylations including Syk and linker for activation of T cells (LAT) were enhanced, whereas, in MA- or PA-supplemented cells, they were not changed when compared with cells cultured in control medium. In EPA-supplemented cells, the enhancements of beta-hexosamidase release and protein tyrosine phosphorylations were observed. Furthermore, in AA- or EPA-supplemented cells, FcepsilonRI-mediated intracellular production of reactive oxygen species (ROS) that is required for the tyrosine phosphorylation of LAT and Ca(2+) influx were enhanced when compared with the other cells. Thus, preincubation of AA or EPA augmented FcepsilonRI-mediated degranulation in mast cells by affecting early events of FcepsilonRI signal transduction, which might be associated with the change of fatty acid composition of the cell membrane and enhanced production of ROS. The results suggest that some PUFAs can modulate FcepsilonRI-mediated mast cell activation and might affect FcepsilonRI/mast cell-mediated inflammation, such as allergic reaction.  相似文献   

3.
We previously showed that silver stimulates degranulation and leukotriene (LT) C(4) production in rat basophilic leukemia mast cells and now show that silver induces these events by a mechanism that differs from the FcepsilonRI-mediated response. In common with FcepsilonRI cross-linking, silver induced tyrosine phosphorylation of extracellular signal-regulated kinases and furthermore, PD98059, a specific inhibitor of extracellular signal-regulated kinase kinase dose-dependently inhibited the silver-induced LTC(4) production. In contrast to FcepsilonRI cross-linking, silver had no effect on the production of IL-4 and TNF-alpha, indicating that different mechanisms are involved in the activation by these two stimuli. In line with this, silver had no or only marginal effect on the tyrosine phosphorylation of FcepsilonRIbeta, Lyn, Syk, and linker for activation of T cells, the early and crucial events in FcepsilonRI signaling. Silver induced calcium signals that were involved in the metal-induced degranulation, but not LTC(4) production. Unlike Ag, the silver-induced calcium signals were resistant to the depletion of thapsigargin-sensitive calcium stores and the inhibition of tyrosine kinases and phospholipase Cgamma. These findings indicate that silver activates mast cells by bypassing the early signaling events required for the induction of calcium influx. Our data strongly suggest the existence of an alternative pathway bypassing the early signaling events in mast cell activation and indicate that silver may be useful for analyses of such alternative mechanisms.  相似文献   

4.
CC chemokines participate in the recruitment and activation of immune cells through CC chemokine receptors (CCRs). Here, we report that cross-talk between CCR1-mediated signaling pathway and FcepsilonRI-mediated signaling pathway affects degranulation positively but affects chemotaxis of mast cells adversely. Costimulation via FcepsilonRI engagement with IgE/antigen and CCR1 engagement with recombinant human CCL3 synergistically enhanced degranulation in rat basophilic leukemia-2H3 cells expressing human CCR1 (RBL-CCR1). Interestingly, FcepsilonRI engagement inhibited CCL3-mediated chemotaxis and membrane ruffling of RBL-CCR1 cells. Small GTP-binding proteins of the Rho family, Rac, Cdc42, and Rho control chemotaxis by mediating the reorganization of the actin cytoskeleton. Both a Rho inhibitor C3 exoenzyme and a Rho kinase (ROCK) inhibitor Y-27632 inhibited chemotaxis of RBL-CCR1 cells toward CCL3, indicating that activation of the Rho/ROCK signaling pathway is required for the CCL3-mediated chemotaxis of the cells. Costimulation with IgE/antigen and CCL3 enhanced Rac and Cdc42 activation but decreased ROCK activation in RBL-CCR1 cells compared with that in the cells stimulated with CCL3 alone. These results suggest that costimulation via FcepsilonRI and CCR1 engagements induced 1) inhibition of membrane ruffling, 2) decreased ROCK activation, and 3) reciprocal imbalance between Small GTP-binding proteins of the Rho family, which result in the inhibition of chemotaxis of RBL-CCR1 cells. The cross-talk between FcepsilonRI-mediated signaling pathway and CCR-mediated signaling pathway would induce optimal activation and arrested chemotaxis of mast cells, thus contributing to allergic inflammation.  相似文献   

5.
6.
Crosslinking of multivalent antigen bound IgE transduces FcepsilonRI mediated signaling cascades, which activate nonreceptor-type protein-tyrosine kinases and subsequent tyrosine phosphorylation of cellular proteins, and these are critical elements for degranulation in mast cells. We cloned a novel adaptor molecule, signal transducing adaptor protein (STAP)-2 containing PH and SH2-like domains as a c-fms interacting protein. STAP-2 was identical to a recently cloned adaptor molecule, BKS, a substrate of BRK (breast tumor kinase) tyrosine kinase, although its function is still unknown. To examine a novel function of STAP-2/BSK, we expressed STAP-2/BSK or its mutants in rat basophilic leukemia RBL-2H3 cells. Overexpression of STAP-2/BSK resulted in a suppression of FcepsilonRI-mediated calcium mobilization and degranulation. FcepsilonRI-induced tyrosine phosphorylation of phospholipase C-gamma (PLC-gamma) but not Syk was significantly suppressed in these cells. Furthermore, STAP-2/BSK associated with PLC-gamma in vivo. These data indicate that STAP-2/BSK negatively controls the FcepsilonRI-mediated calcium mobilization and degranulation by direct modulation of tyrosine phosphorylation of PLC-gamma.  相似文献   

7.
Engagement of the high affinity receptor for IgE (FcepsilonRI) on mast cells and basophils results in FcepsilonRI beta and gamma subunits ubiquitination by an as yet undefined mechanism. Here we show that, upon FcepsilonRI engagement on RBL-2H3 cells Syk undergoes ubiquitination and Syk kinase activity is required for its own ubiquitination and that of FcepsilonRI beta and gamma chains. This requirement was demonstrated by overexpression of Syk wild-type or its kinase-dead mutant in RBL cells or using an Syk-deficient RBL-derived cell line transfected with wild-type or a kinase inactive form of Syk. We also identify c-Cbl as the E3 ligase responsible for both Syk and receptor ubiquitination. Furthermore, we demonstrate that Syk controls tyrosine phosphorylation of Syk-associated Cbl induced after receptor engagement. These data suggest a mutual regulation between Syk and Cbl activities. Finally, we show that a selective inhibitor of proteasome degradation induces persistence of tyrosine-phosphorylated receptor complexes, of activated Syk, and of FcepsilonRI-triggered degranulation. Our results provide a molecular mechanism for down-regulation of engaged receptor complexes by targeting ubiquitinated FcepsilonRI and activated Syk to the proteasome for degradation.  相似文献   

8.
We investigated the role of JAK3 in IgE receptor/FcepsilonRI-mediated mast cell responses. IgE/antigen induced degranulation and mediator release were substantially reduced with Jak3-/- mast cells from JAK3-null mice that were generated by targeted disruption of Jak3 gene in embryonic stem cells. Further, treatment of mast cells with 3'bromo-4'-hydroxylphenyl)-amino-6,7-dimethoxyquinazoline (WHI-P154), a potent inhibitor of JAK3, inhibited degranulation and proinflammatory mediator release after IgE receptor/ FcepsilonRI crosslinking. Thus, JAK3 plays a pivotal role in IgE receptor/ FcepsilonRI-mediated mast cell responses and targeting JAK3 may provide the basis for new and effective treatment as well as prevention programs for mast cell-mediated allergic reactions.  相似文献   

9.
Signaling through the high affinity IgE receptor FcepsilonRI on human basophils and rodent mast cells is decreased by co-aggregating these receptors to the low affinity IgG receptor FcgammaRII. We used a recently described fusion protein, GE2, which is composed of key portions of the human gamma1 and the human epsilon heavy chains, to dissect the mechanisms that lead to human mast cell and basophil inhibition through co-aggregation of FcgammaRII and FcepsilonRI. Unstimulated human mast cells derived from umbilical cord blood express the immunoreceptor tyrosine-based inhibitory motif-containing receptor FcgammaRII but not FcgammaRI or FcgammaRIII. Interaction of the mast cells with GE2 alone did not cause degranulation. Co-aggregating FcepsilonRI and FcgammaRII with GE2 1) significantly inhibited IgE-mediated histamine release, cytokine production, and Ca(2+) mobilization, 2) reduced the antigen-induced morphological changes associated with mast cell degranulation, 3) reduced the tyrosine phosphorylation of several cellular substrates, and 4) increased the tyrosine phosphorylation of the adapter protein downstream of kinase 1 (p62(dok); Dok), growth factor receptor-bound protein 2 (Grb2), and SH2 domain containing inositol 5-phosphatase (SHIP). Tyrosine phosphorylation of Dok was associated with increased binding to Grb2. Surprisingly, in non-stimulated cells, there were complexes of phosphorylated SHIP-Grb2-Dok that were lost upon IgE receptor activation but retained under conditions of Fcepsilon-Fcgamma co-aggregation. Finally, studies using mast cells from Dok-1 knock-out mice showed that IgE alone triggers degranulation supporting an inhibitory role for Dok degranulation. Our results demonstrate how human FcepsilonRI-mediated responses can be inhibited by co-aggregation with FcgammaRIIB and implicate Dok, SHIP, and Grb2 as key intermediates in regulating antigen-induced mediator release.  相似文献   

10.
11.
Posner RG  Paar JM  Licht A  Pecht I  Conrad DH  Hlavacek WS 《Biochemistry》2004,43(35):11352-11360
Aggregation of FcepsilonRI, the high-affinity cell-surface receptor for IgE antibody, is required for degranulation of basophils and mast cells, but not all receptor aggregates elicit this cellular response. The stereochemical constraints on clusters of FcepsilonRI that are able to signal cellular responses, such as degranulation, have yet to be fully defined. To improve our understanding of the properties of FcepsilonRI aggregates that influence receptor signaling, we have studied the interaction of 23G3, a rat IgG(1)(kappa) IgE-specific monoclonal antibody, with IgE-FcepsilonRI complexes on rat mucosal-type mast cells (RBL-2H3 line). We find that 23G3 is a potent secretagogue. This property and the structural features of 23G3 (two symmetrically arrayed IgE-specific binding sites) make 23G3 a potentially valuable reagent for investigating the relationship between FcepsilonRI clustering and FcepsilonRI-mediated signaling events. To develop a mathematical model of 23G3-induced aggregation of FcepsilonRI, we used fluorimetry and flow cytometry to quantitatively monitor equilibrium binding of FITC-labeled 23G3 intact Ab and its Fab' fragment to cell-surface IgE. The results indicate that IgE bound to FcepsilonRI expresses two epitopes for 23G3 binding; that 23G3 binds IgE resident on the cell surface with negative cooperativity; and that 23G3 appears to induce mostly but not exclusively noncyclic dimeric aggregates of FcepsilonRI. There is no simple relationship between receptor aggregation at equilibrium and the degranulation response. Further studies are needed to establish how 23G3-induced aggregation of IgE-FcepsilonRI correlates with cellular responses.  相似文献   

12.
Activation and function of the mTORC1 pathway in mast cells   总被引:1,自引:0,他引:1  
Little is known about the signals downstream of PI3K which regulate mast cell homeostasis and function following FcepsilonRI aggregation and Kit ligation. In this study, we investigated the role of the mammalian target of rapamycin complex 1 (mTORC1) pathway in these responses. In human and mouse mast cells, stimulation via FcepsilonRI or Kit resulted in a marked PI3K-dependent activation of the mTORC1 pathway, as revealed by the wortmannin-sensitive sequential phosphorylation of tuberin, mTOR, p70S6 kinase (p70S6K), and 4E-BP1. In contrast, in human tumor mast cells, the mTORC1 pathway was constitutively activated and this was associated with markedly elevated levels of mTORC1 pathway components. Rapamycin, a specific inhibitor of mTORC1, selectively and completely blocked the FcepsilonRI- and Kit-induced mTORC1-dependent p70S6K phosphorylation and partially blocked the 4E-BP1 phosphorylation. In parallel, although rapamycin had no effect on FcepsilonRI-mediated degranulation or Kit-mediated cell adhesion, it inhibited cytokine production, and kit-mediated chemotaxis and cell survival. Furthermore, Rapamycin also blocked the constitutive activation of the mTORC1 pathway and inhibited cell survival of tumor mast cells. These data provide evidence that mTORC1 is a point of divergency for the PI3K-regulated downstream events of FcepsilonRI and Kit for the selective regulation of mast cell functions. Specifically, the mTORC1 pathway may play a critical role in normal and dysregulated control of mast cell homeostasis.  相似文献   

13.
Engagement of the IgE receptor (FcepsilonRI) on mast cells leads to the release of preformed and newly formed mediators as well as of cytokines. The signaling pathways responsible for these responses involve tyrosine phosphorylation of multiple proteins. We previously reported the phosphorylation on tyrosine of phospholipid scramblase 1 (PLSCR1) after FcepsilonRI aggregation. Here, PLSCR1 expression was knocked down in the RBL-2H3 mast cell line using short hairpin RNA. Knocking down PLSCR1 expression resulted in significantly impaired degranulation responses after FcepsilonRI aggregation and release of vascular endothelial growth factor, whereas release of MCP-1 was minimally affected. The release of neither leukotriene C4 nor prostaglandin D2 was altered by knocking down of PLSCR1. Analysis of FcepsilonRI-dependent signaling pathways revealed that whereas tyrosine phosphorylation of ERK and Akt was unaffected, tyrosine phosphorylation of LAT was significantly reduced in PLSCR1 knocked down cells. Tyrosine phosphorylation of phospholipase Cgamma1 and consequently the mobilization of calcium were also significantly reduced in these cells. In nonactivated mast cells, PLSCR1 was found in part in lipid rafts where it was further recruited after cell activation and was constitutively associated with Lyn and Syk but not with LAT or Fyn. Altogether, these data identify PLSCR1 as a novel amplifier of FcepsilonRI signaling that acts selectively on the Lyn-initiated LAT/phospholipase Cgamma1/calcium axis, resulting in potentiation of a selected set of mast cell responses.  相似文献   

14.
Ryu SD  Lee HS  Suk HY  Park CS  Choi OH 《Cell calcium》2009,45(2):99-108
Clathrin-coated pits are now recognized to be involved in cell signaling in addition to receptor down-regulation. Here we tried to identify signaling pathways that might be dependent on clathrin. Our initial data with pharmacological inhibitors of formation of clathrin-coated pits or lipid-rafts indicated that Ca(2+) response evoked by cross-linking of the high affinity receptors for IgE (FcepsilonRI) was dependent on clathrin. To confirm this finding, we created clathrin-knockdown cells by transfecting the mast cell line RBL-2H3 with a shRNA-clathrin heavy chain construct. In these cells, the FcepsilonRI-mediated Ca(2+) response was almost completely abolished, which was accompanied by the inhibition of sphingosine 1-phosphate (S1P) production with no changes in inositol 1,4,5-trisphosphate (IP(3)) production. This suggests that the Ca(2+) signaling pathway via a sphingosine kinase (SK) is dependent on clathrin. Furthermore, antigen-induced tyrosine phosphorylation of p85 and p110 subunits of PI3K was almost completely inhibited in clathrin-knockdown cells. In contrast, antigen-induced tyrosine phosphorylation of phospholipase Cgamma was not affected by clathrin-knockdown and tyrosine phosphorylation of Syk and degranulation were partially inhibited in clathrin-knockdown cells. The present study identifies the SK/Ca(2+) pathway to be dependent on clathrin.  相似文献   

15.
Focal adhesion kinase (FAK) is tyrosine-phosphorylated by adherence of cells and also by FcepsilonRI aggregation in RBL-2H3 mast cells. Using phosphorylation site-specific antibodies, we observed that FcepsilonRI activation in these cells led to an increase in FAK phosphorylation at the same tyrosine residues that are phosphorylated by integrin-induced activation. Previous studies in the 3B6 line, a FAK-deficient variant of the RBL-2H3 cells, suggest that FAK plays a role in FcepsilonRI-induced secretion. Stable cell lines expressing either full-length or truncated forms of FAK were isolated after transfection of the FAK-deficient 3B6 variant cells. The NH(2) domain of FAK, which lacks the enzymatic and the COOH-terminal regions, was sufficient to reconstitute secretion. The different truncated forms of FAK were still tyrosine-phosphorylated after FcepsilonRI aggregation. Therefore, the kinase domain and the COOH-terminal region are not essential for FcepsilonRI-induced tyrosine phosphorylation of FAK or for secretion. Taken together, our data demonstrate that the reconstitution of secretion is dissociated from FAK activation and that the NH(2)-terminal region of FAK is the only critical element that may play a role in FcepsilonRI-induced secretion by acting as an adaptor or linker molecule.  相似文献   

16.
Mangostin, Garcinia mangostana L. is used as a traditional medicine in southeast Asia for inflammatory and septic ailments. Hitherto we indicated the anticancer activity induced by xanthones such as alpha-, beta-, and gamma-mangostin which were major constituents of the pericarp of mangosteen fruits. In this study, we examined the effect of xanthones on cell degranulation in rat basophilic leukemia RBL-2H3 cells. Antigen (Ag)-mediated stimulation of high affinity IgE receptor (FcepsilonRI) activates intracellular signal transductions resulting in the release of biologically active mediators such as histamine. The release of histamine and other inflammatory mediators from mast cell or basophils is the primary event in several allergic responses. These xanthones suppressed the release of histamine from IgE-sensitized RBL-2H3 cells. In order to reveal the inhibitory mechanism of degranulation by xanthones, we examined the activation of intracellular signaling molecules such as Lyn, Syk, and PLCgammas. All the xanthones tested significantly suppressed the signaling involving Syk and PLCgammas. In Ag-mediated activation of FcepsilonRI on mast cells, three major subfamilies of mitogen-activated protein kinases were activated. The xanthones decreased the level of phospho-ERKs. Furthermore, the levels of phospho-ERKs were observed to be regulated by Syk/LAT/Ras/ERK pathway rather than PKC/Raf/ERK pathway, suggesting that the inhibitory mechanism of xanthones was mainly due to suppression of the Syk/PLCgammas/PKC pathway. Although intracellular free Ca(2+) concentration ([Ca(2+)](i)) was elevated by FcepsilonRI activation, it was found that alpha- or gamma-mangostin treatment was reduced the [Ca(2+)](i) elevation by suppressed Ca(2+) influx.  相似文献   

17.
Janus kinase 3 (JAK3), a member of the Janus family protein-tyrosine kinases, is expressed in mast cells, and its enzymatic activity is enhanced by IgE receptor/FcepsilonRI cross-linking. Selective inhibition of JAK3 in mast cells with 4-(4'-hydroxylphenyl)-amino-6, 7-dimethoxyquinazoline) (WHI-P131) blocked the phospholipase C activation, calcium mobilization, and activation of microtubule-associated protein kinase after lgE receptor/FcepsilonRI cross-linking. Treatment of IgE-sensitized rodent as well as human mast cells with WHI-P131 effectively inhibited the activation-associated morphological changes, degranulation, and proinflammatory mediator release after specific antigen challenge without affecting the functional integrity of the distal secretory machinery. In vivo administration of the JAK3 inhibitor WHI-P131 prevented mast cell degranulation and development of cutaneous as well as systemic fatal anaphylaxis in mice at nontoxic dose levels. Thus, JAK3 plays a pivotal role in IgE receptor/FcepsilonRI-mediated mast cell responses, and targeting JAK3 with a specific inhibitor, such as WHI-P131, may provide the basis for new and effective treatment as well as prevention programs for mast cell-mediated allergic reactions.  相似文献   

18.
The hematopoietic cell-specific protein Vav1 is a substrate of tyrosine kinases activated following engagement of many receptors, including FcepsilonRI. Vav1-deficient mice contain normal numbers of mast cells but respond more weakly than their normal counterparts to a passive systemic anaphylaxis challenge. Vav1-deficient bone marrow-derived mast cells also exhibited reduced degranulation and cytokine production, although tyrosine phosphorylation of FcepsilonRI, Syk, and LAT (linker for activation of T cells) was normal. In contrast, tyrosine phosphorylation of phospholipase Cgamma1 (PLCgamma1) and PLCgamma2 and calcium mobilization were markedly inhibited. Reconstitution of deficient mast cells with Vav1 restored normal tyrosine phosphorylation of PLCgamma1 and PLCgamma2 and calcium responses. Thus, Vav1 is essential to FcepsilonRI-mediated activation of PLCgamma and calcium mobilization in mast cells. In addition to its known role as an activator of Rac1 GTPases, these findings demonstrate a novel function for Vav1 as a regulator of PLCgamma-activated calcium signals.  相似文献   

19.
Some tea polyphenolic compounds including (-)-epigallocatechin gallate (EGCG) have been shown to inhibit histamine release from mast cells through poorly understood mechanisms. By using a mast cell model rat basophilic leukemia (RBL-2H3) cells we explored the mechanism of the inhibition. EGCG inhibited histamine release from RBL-2H3 cells in response to antigen or the calcium-ionophore A23187, while (-)-epicatechin (EC) had little effect. Increased tyrosine phosphorylation of several proteins including approximately 120 kDa proteins occurred in parallel with the secretion induced by either stimulation. EGCG also inhibited tyrosine phosphorylation of the approximately 120-kDa proteins induced by either stimulation, whereas EC did not. The tyrosine kinase-specific inhibitor piceatannol inhibited the secretion and tyrosine phosphorylation of these proteins induced by either stimulation also. Further analysis showed that the focal adhesion kinase pp125(FAK) was one of the approximately 120-kDa proteins. These findings suggest that EGCG prevents histamine release from mast cells mainly by inhibiting tyrosine phosphorylation of proteins including pp125(FAK).  相似文献   

20.
The cross-linking of IgE-bound FcepsilonRI by Ags triggers mast cell activation leading to allergic reactions. The in vivo contribution of FcepsilonRIgamma signaling to IgE/FcepsilonRI-mediated mast cell responses has not yet been elucidated. In this study FcepsilonRIgamma(-/-) mast cells were reconstituted with either wild-type or mutant FcepsilonRIgamma in transgenic mice and transfected mast cells in vitro. We demonstrate that FcepsilonRIgamma-immunoreceptor tyrosine-based activation motif is essential for degranulation, cytokine production, and PG synthesis as well as for passive systemic anaphylaxis. Recent reports have suggested that cell surface FcepsilonRI expression and mast cell survival are regulated by IgE in the absence of Ag, although the molecular mechanism is largely unknown. We also found that the promotion of mast cell survival by IgE without Ags is mediated by signals through the FcepsilonRIgamma-immunoreceptor tyrosine-based activation motif. In contrast, the IgE-mediated up-regulation of FcepsilonRI is independent of FcepsilonRIgamma signaling. These results indicate that FcepsilonRIgamma-mediated signals differentially regulate the receptor expression, activation, and survival of mast cells and systemic anaphylaxis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号